Learning Based Methods in Vision

16-824 Spring 2015

RI Logo SCS Logo

  • Instructor: Abhinav Gupta
  • Time: Monday/Wednesday 12:00-1:20pm
  • Location: NSH 3002
  • Assignemnts
    • Have Fun!
  • Discussion
    • Course Blog
  • Schedule
    • Course Schedule for Spring 2015
  • Home
    • Information and Logistics

Course Schedule for Spring 2015

Date Presenter Topic Papers Download
01/12/2015 Abhinav Gupta Introduction -
01/14/2015 Abhinav Gupta Theories of Vision
  • J. Mundy. Object Recognition in the Geometric Era: a Retrospective, Springer Berlin Heidelberg, 2006. 3-28
01/19/2015 Martin Luther King Holiday (No Class)
01/21/2015 Abhinav Gupta Theories of Vision (Cont.) -
01/26/2015 Abhinav Gupta Introduction to Data
  • A. Halevy, P. Norvig, and F. Pereira. The Unreasonable Effectiveness of Data, IEEE Intelligent Systems, 24 8--12, 2009.
  • A. Torralba, and A. Efros. Unbiased Look at Dataset Bias, CVPR, 2011.
01/28/2015 Abhinav Gupta Introduction to Data
    -
02/02/2015 Abhinav Gupta Introduction to Learning
  • S. Andrews, I. Tsochantaridis and T. Hofmann. Support vector machines for multiple-instance learning, NIPS, 2002.
  • A. Criminisi, J. Shotton and E. Konukoglu. Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning, Foundations and Trends in Computer Graphics and Computer Vision. NOW Publishers. Vol.7: No 2-3, pp 81-227. 2012.
02/04/2015 Abhinav Gupta Overview of Papers -
02/09/2015 Abhinav Gupta Introduction to Deep Learning
  • G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks, Science 313.5786 (2006): 504-507.
  • L. Bottou. Stochastic gradient descent tricks, Neural Networks: Tricks of the Trade. Springer Berlin Heidelberg, 2012. 421-436.
02/11/2015 Abhinav Gupta Low Level Features
  • D. Lowe. Distinctive image features from scale-invariant keypoints, IJCV 60.2 (2004): 91-110.
  • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection, CVPR, 2005.
  • A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope, IJCV 42.3 (2001): 145-175.
02/16/2015 Xinlei Chen Introduction to Caffe Toolbox
  • Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell Caffe: Convolutional Architecture for Fast Feature Embedding, arXiv preprint arXiv:1408.5093 (2014).
  • F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, K. Keutzer DenseNet: Implementing Efficient ConvNet Descriptor Pyramids, arXiv preprint arXiv:1404.1869 (2014).
02/19/2015 Elissa Aminoff Uncovering Visual Cortex -
02/23/2015 Abhinav Gupta Image Classification
  • A. Krizhevsky, I. Sutskever and G. Hinton. Imagenet classification with deep convolutional neural networks, NIPS, 2012.
  • K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv preprint arXiv:1409.1556 (2014).
  • M. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks, ECCV, 2014.
02/25/2015 Xinwu Yang and Hanbyul Joo Image Segmentation
  • P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour detection and hierarchical image segmentation, TPAMI 33, no. 5 (2011): 898-916.
  • J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic object segmentation, CVPR, 2010.
  • J. Long, E. Shelhamer and T. Darrell. Fully convolutional networks for semantic segmentation, arXiv preprint arXiv:1411.4038 (2014).
03/02/2015 Xinlei Chen Recitation -
03/04/2015 Xiaolong Wang and Rohit Girdhar Object Detection
  • P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan. Object detection with discriminatively trained part-based models, TPAMI 32, no. 9 (2010): 1627-1645.
  • R. Girshick, J. Donahue, T. Darrell, J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, arXiv preprint arXiv:1311.2524 (2013).
  • C. Szegedy, S. Reed, D. Erhan, D. Anguelov. Scalable, High-Quality Object Detection, arXiv preprint arXiv:1412.1441 (2014).
03/09/2015 Spring Break (No Class)
03/11/2015 Spring Break (No Class)
03/16/2015 Namhoon Lee and Shreyansh Daftry Object Detection with 3D Models
  • M. Aubry, D. Maturana, A. Efros, B. Russell, J. Sivic. Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD models, CVPR, 2014.
  • J. Lim, A. Khosla and A. Torralba. FPM: Fine pose Parts-based Model with 3D CAD models, ECCV, 2014.
  • A. Dosovitskiy, J. Springenberg, T. Brox. Learning to Generate Chairs with Convolutional Neural Networks, arXiv preprint arXiv:1411.5928 (2014).
03/18/2015 Tejas Mathai and Ganesh Attributes and Zero-Shot Recognition
  • A. Farhadi, I. Endres, D. Hoiem and D. Forsyth. Describing Objects by their Attributes, CVPR, 2009.
  • N. Kumar, A. Berg, P. Belhumer and S. Nayar. Attribute and Simile Classifiers for Face Verification, ICCV, 2009.
  • D. Parikh and K. Grauman. Relative attributes, ICCV, 2011.
03/23/2015 Wei-Chiu Ma and Chao Liu Mid-level Patches
  • L. Bourdev and J. Malik. Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations, ICCV, 2009.
  • S. Singh, A. Gupta and A. Efros. Unsupervised discovery of mid-level discriminative patches, ECCV, 2012.
  • Y. Li, L. Liu, C. Shen, A. Hengel. Mid-level Deep Pattern Mining, arXiv preprint arXiv:1411.6382 (2014).
03/25/2015 David Fouhey 3D Scene Understanding
  • D. Lee, A. Gupta, M. Hebert and T. Kanade. Estimating Spatial Layout of Rooms using Volumetric Reasoning about Objects and Surfaces, NIPS, 2010.
  • D. Eigen, C. Puhrsch, R. Fergus. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, arXiv preprint arXiv:1406.2283 (2014).
  • X. Wang, D. Fouhey, A. Gupta. Designing Deep Networks for Surface Normal Estimation, arXiv preprint arXiv:1411.4958 (2014).
03/30/2015 Esha Uboweja and Minh Vo Action Recognition/Videos
  • A. Jain, A. Gupta, M. Rodriguez, L. Davis. Representing videos using mid-level discriminative patches, CVPR, 2013.
  • A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, F. Li. Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014.
  • K. Simonyan, A. Zisserman. Two-Stream Convolutional Networks for Action Recognition in Videos, arXiv preprint arXiv:1406.2199 (2014).
04/01/2015 Sahil Shah and Harrison Billmers Context-based Reasoning
  • B. Yao and F. Li. Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities, CVPR, 2010.
  • Z. Tu Auto-context and Its Application to High-level Vision Tasks, CVPR, 2008.
  • D. Hoiem, A.A. Efros, and M. Hebert, Putting Objects in Perspective, IJCV 2008.
04/06/2015 Yiying Li and Calvin Murdock Unsupervised Learning
  • B. Russell, A. Efros, J. Sivic, B. Freeman, A. Zisserman. Using Multiple Segmentations to Discover Objects and their Extent in Image Collections, CVPR, 2006.
  • Y. Lee and K. Grauman. Object-Graphs for Context-Aware Visual Category Discovery, CVPR, 2010.
  • Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean and A. Ng. Building high-level features using large scale unsupervised learning, ICML, 2012.
04/08/2015 Leonid Sigal Human Pose Estimation
  • Y. Yang and D. Ramanan. Articulated Human Detection with Flexible Mixtures-of-Parts, CVPR, 2011.
04/13/2015 Ankit Laddha and Gunnar Sigurdsson Semi-supervised Learning
  • R. Fergus, Y. Weiss and A. Torralba. Semi-supervised Learning in Gigantic Image Collections, NIPS, 2009.
  • A. Shrivastava, S. Singh and A. Gupta. Constrained Semi-Supervised Learning Using Attributes and Comparative Attributes, ECCV, 2012.
  • S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, A. Rabinovich. Training Deep Neural Networks on Noisy Labels with Bootstrapping, arXiv preprint arXiv:1412.6596 (2014).
04/15/2015 Lerrel Pinto and Yimeng Zhang Weakly-supervised Learning
  • X. Chen, A. Shrivastava and A. Gupta. Enriching Visual Knowledge Bases via Object Discovery and Segmentation, CVPR, 2014.
  • H. Song, R. Girshick, S. Jegelka, J. Mairal, Z. Harchaoui and T. Darrell. On learning to localize objects with minimal supervision, ICML, 2014.
  • C. Wang, W. Ren, K. Huang and T. Tan. Weakly Supervised Object Localization with Latent Category Learning, ECCV, 2014.
04/20/2015 Meng Song and Venkatesh Learning from the Web
  • L. Li and F. Li. Optimol: automatic online picture collection via incremental model learning, IJCV, 88.2 (2010): 147-168.
  • X. Chen, A. Shrivastava and A. Gupta. NEIL: Extracting Visual Knowledge from Web Data, ICCV, 2013.
  • S. Divvala, A. Farhadi and C. Guestrin. Learning Everything about Anything: Webly-Supervised Visual Concept Learning, CVPR, 2014.
04/22/2015 ICCV Deadline (No Class)
04/27/2015 Karanhaar Singh and Zehua Huang Text and Images
  • G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. Berg and T. Berg. Baby Talk: Understanding and Generating Image Descriptions, CVPR, 2011.
  • V. Ordonez, G. Kulkarni and T. Berg. Im2Text: Describing Images Using 1 Million Captioned Photographs, NIPS, 2011.
  • X. Chen, C. Zitnick. Learning a Recurrent Visual Representation for Image Caption Generation, arXiv preprint arXiv:1411.5654 (2014).
04/29/2015 All Final Project Presentations -

Instructor Info

Photo Here


Abhinav Gupta

abhinavg (at) cs.cmu.edu

TA Info

Photo Here


Xinlei Chen

xinleic (at) cs.cmu.edu

The Robotics Institute

5000 Forbes Ave, Pittsburgh, PA 15213, USA
Tel: 412-268-3818

Copyright © 2015 - All Rights Reserved - The Robotics Institute

Template by OS Templates