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Problem

» Find structure in large dataset

» Training data not always available
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Background

» Topic models
» pLSA, LDA

» Appearance based
grouping problem
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» Does seeing known objects help discover new categories?



Context Aware Discovery




Overview

» Learn category models for some classes
» Detect unknowns
» Describe object-level context using a graph structure

» Group regions to discover new categories



Learn Known Categories

» Texture, color, and shape using multiple kernel learning

» Train SVM classifies for the probability that a segment belongs to a
class P(c|s)

» Known categories
» Tree, building, sky, road




|[dentifying Unknown Objects

» Compute multiple segmentations

» Run the classifiers that was frained offline s
E Prediction:
» Compute entropy % > known
: £ A :
» equation & &

» Lower = more confidence
» Higher = low confidence
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Object Graphs

» Models contextual information surrounding the unknown segment
» Regions with similar context should net similar graph structures
» Compute superpixels

» Each superpixel is a node in the graph

An unknown region
within an image
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Object Graphs

» Compute histograms of superpixels above and below the segment

» No side superpixels due to the interchangeability of left and right

» Histograms are averages probabilities of occurrence of pixels r

distance away
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Closest nodes in
its object-graph

An unknown region
within an image
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Object Graphs

» Concatenate histograms to from a histogram vector
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Object Graphs

» Superpixel know object probabilities are computed from multiple
segmentations
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Category Discovery

» Similarity function based on two regions
> K(si,57) = Kapp(si,5) + Kgrapn(si, 57)
» Weights can be learned in a unsupervised way

» Appearance based similarity scores

» bag-of-features histograms
» A affinity matrix is generated between all pairs on unknown regions

» A specitral clustering method is used to cluster



Datasets

» MSRC-v2

» 21 classes, 591 images
» PASCAL 2008

» 20 classes, 1,023 images
» MSRC-VO

» 21 classes, 3,457 images
» Corel

» 7 classes, 100 images
» Train 40% for known
» Test 60%
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Results - Numbers
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Results - Numbers

MSRC Mean Average Precision
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DISCUSSION




