Modeling Mutual Context of Object and Human Pose in Human-object Interaction Activities

- Bangpeng Yao
- Li Fei-Fei

Presented by Sahil Shah

Agenda

- Introduction
- Problem Formulation
- Learning
- Inference
- Results

Agenda

- Introduction
- Problem Formulation
- Learning
- Inference
- Results

- Note on author
 - Pioneer of ImageNet dataset
 - Must see TED talk in March 2015

 Problem: Detecting objects in cluttered scenes and estimating articulated human body parts especially in human object interaction activities

- Key insight: Mutual Context
 - Automatically discover relevant poses
 - Automatically discover spatial relationships
 - Optimize for mutual co-occurrence of object and pose

- Contribution
 - Builds up on Prof. Gupta's work
 - First to use mutual context
 - Jointly solve object detection & pose estimation

Agenda

- Introduction
- Problem Formulation
- Learning
- Inference
- Results

- Goal: Given an image of HOI activity we need to estimate human pose(H), detect the object(O) and classify HOI activity(A)
- Model
 - Hierarchical Random Field
 - A,O and H contribute to detection of each other
 - H is a hidden variable
 - Body parts {P_n} are found using feature based detectors and they compose to form H

Golf Swing

Tennis Forehand

- Why need to learn structure?
 - The model captures important connections between object and the body parts
 - Which parts of the body should be connected to overall pose (H) and object (O)?

- Model
 - Overall model: $\Psi = \sum w_e \psi_e$
 - A,O,H: $oldsymbol{\psi_e}(A$, $oldsymbol{O}$), $oldsymbol{\psi_e}(A$, $oldsymbol{H}$), and $oldsymbol{\psi_e}(O$, $oldsymbol{H}$)
 - Counting co-occurrence frequencies
 - Spatial Relationships: $\psi_e(O,P_n) \& \psi_e(P_m,P_n)$
 - $\bullet \ \operatorname{bin}(\mathbf{I}_O \mathbf{I}_{Pn}) \cdot \operatorname{bin}(\boldsymbol{\theta}_O \boldsymbol{\theta}_{Pn}) \cdot \boldsymbol{\mathcal{N}}(\boldsymbol{s}_O / \boldsymbol{s}_{Pn})$
 - Compatibility: $\psi_e(H,P_n)$
 - $\bullet \ \operatorname{bin}(\mathbf{I}_{Pn} \mathbf{I}_{P^{\intercal}}) \cdot \operatorname{bin}(\boldsymbol{\theta}_{Pn}) \cdot \boldsymbol{\mathcal{N}}(\boldsymbol{s}_{Pn})$
 - Object & Body parts: $\psi_e(O,f_o)$ and $\psi_e(P_n,f_{Pn})$
 - Shape context feature based detectors

Agenda

- Introduction
- Problem Formulation
- Learning
- Inference
- Results

Input and Output

Overall Algorithm

Hill-climbing structure learning for each activity class.

foreach Iteration do

- Model parameter estimation by max-margin learning;
- Choose the model with the largest number of mis-classified images;
- Cluster the images in the selected model into two sub-classes;
- Structure learning for the two new sub-classes;

end

- Hill climbing structure learning
 - Each pose in each HOI activity class
 - Add/remove an edge and check for optima
 - Keep tabu list to avoid revisiting solutions
 - Randomly initialize thrice to avoid local optimas

- Max-margin for parameter estimation
 - Maximize discrimination between different A
 - Each A has subclasses, hence multiple models and multiple weight vectors
 - Training sample: $(x_i, c_i, y(c_i))$ y: maps c_i to class label
 - F: y(F(xi)) = y(ci) F(x_i) = argmax_r{w_r·x_i} w_r: weights for rth subclass.

$$\min_{\mathbf{w}, \xi} \frac{1}{2} \sum_{r} \|\mathbf{w}_r\|_2^2 + \beta \sum_{i} \xi_i$$

subject to: $\forall i, \ \xi_i \geq 0$

 $\forall i, r \text{ where } y(r) \neq y(c_i), \ \mathbf{w}_{c_i} \cdot \mathbf{x}_i - \mathbf{w}_r \cdot \mathbf{x}_i \geq 1 - \xi_i$

Overall Algorithm

Hill-climbing structure learning for each activity class.

foreach Iteration do

- Model parameter estimation by max-margin learning;
- Choose the model with the largest number of mis-classified images;
- Cluster the images in the selected model into two sub-classes;
- Structure learning for the two new sub-classes;

end

Agenda

- Introduction
- Problem Formulation
- Learning
- Inference
- Results

Inference

- Given a test image(I), estimate pose and detect object and classify activity
 - To detect object (O) we maximize likelihood of the models given that object. Denoted as $\max_{O,H} \Psi(A_k, O, H, I)$
 - To detect human pose (H), compute $\max_{O,H} \Psi(A_k, O, H, I)$ for each A_k and select the one corresponding to the ML score

Inference

Agenda

- Introduction
- Problem Formulation
- Learning
- Inference
- Results

- Object Detection
 - Compare with two experiments
 - 1. Sliding window as baseline
 - 2. Pedestrian detector for human's location context

Pose Estimation

Method	Torso	Upper Leg	Lower Leg	Upper Arm	Fore Arm	Head
Iterative parsing [26]	52±19	22±11 22±10	21±9 28±16	24±16 28±17	17±11 14±10	42±18
Pictorial structure [1]	50±14	31±12 30±9	31±15 27±18	18±6 19±9	11±8 11±7	45±8
Class-based pictorial structure	59±9	36±11 26±17	39±9 27±9	30±12 31±12	13±6 18±14	46±11
Our model, only one pose per class	63±5	40±8 36±15	41±10 31±9	38±13 35±10	21±12 23±14	52±8
Our full model	66±6	43±8 39±14	44±10 34±10	44±9 40±13	27±16 29±13	58±11

- HOI classification
 - Compare with SVM with BoW
 - Compare with Gupta et. al.

- Upper-left → object detection by mutual context
- Lower-left → object detection by a scanning window
- Upper-right → pose estimation by mutual context
- Lower-right → pose estimation by the state-of-the-art pictorial structure method

(g) volleyball smash

(h) volleyball smash

- Upper-left → object detection by mutual context
- Lower-left → object detection by a scanning window
- Upper-right → pose estimation by mutual context
- Lower-right → pose estimation by the state-of-the-art pictorial structure method

Thank you!