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Abstract
In this paper, we present a unified framework for reduced space modeling and rendering of dynamic and non-
homogenous participating media, like snow, smoke, dust and fog. The key idea is to represent the 3D spatial
variation of the density, velocity and intensity fields of the media using the sameanalytic basis. In many situa-
tions, natural effects such as mist, outdoor smoke and dust are smooth (low frequency) phenomena, and can be
compactly represented by a small number of coefficients of a Legendre polynomial basis. We derive analytic ex-
pressions for the derivative and integral operators in the Legendre coefficient space, as well as the triple product
integrals of Legendre polynomials. These mathematical results allow us to solve both the Navier-Stokes equations
for fluid flow and light transport equations for single scattering efficiently in the reduced Legendre space. Since
our technique does not depend on volume grid resolution, we can achieve computational speedups as compared
to spatial domain methods while having low memory and pre-computation requirements as compared to data-
driven approaches. Also, analytic definition of derivatives and integral operators in the Legendre domain avoids
the approximation errors inherent in spatial domain finite difference methods. We demonstrate many interesting
visual effects resulting from particles immersed in fluids as well as volumetricscattering in non-homogenous and
dynamic participating media, such as fog and mist.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction and Related Work

Participating media such as smoke, snow, dust, mist and fog
exhibit a wide range of visual effects. Such media are charac-
terized by their density, velocity and intensity fields that vary
across both space and time. Accurate modeling of densities
and velocities as well as rendering of intensities of these me-
dia is critical for achieving photo-realism in computer graph-
ics. Also, many applications like games require interactive
changes in lighting, view-point and the medium properties.
For such applications, it is imperative to achieve these visual
effects in real-time.

The first step in realizing this goal of visual realism re-
quires modeling the time-varying density and velocity fields
of participating media. The Navier-Stokes equations for in-
compressible fluid flow [CM90] provide a differential model
for simulating the density and velocity fields. Explicit analytic
solutions to Navier-Stokes equations are hard to obtain and
hence, a number of works that employ numerical finite dif-
ference methods (FDM) have been proposed [FM96, FM97,
Sta99, Sta01, FF01, FSJ01, NFJ02, SRF05]. Although simple
to implement, such schemes require high spatial resolution
to minimize the finite differencing numerical errors, plac-

ing serious demands on memory and compromising speed.
Treuille et al [TMPS03] develop an approach for key-framing
of fluid flows that alleviate the discretization errors. How-
ever, their approach becomes computationally prohibitive for
large grid sizes. More recently, an interesting data-driven ap-
proach has been taken to simulate the velocity fields using
a reduced dimensional PCA basis [TLP06]. This approach
achieves considerable speed-ups and produces impressive re-
sults, but at the cost of high memory requirements and lengthy
pre-computation. Furthermore, as the authors mention, it is
unclear whether the approach generalizes to new fluid flows
that are not represented in the pre-computation.

The second step towards the goal of creating the desired
visual effects is rendering of participating media, which re-
quires modeling the intensity fields resulting from volumet-
ric scattering. Using the computed density field, the corre-
sponding intensity field of the participating medium is then
rendered by solving the light transport equation [Cha60].
Analogous to fluid modeling, many works that numerically
solve the light transport equation based on FDMs have been
proposed [KH84,Max94,Jen01,PM93,EP90,Sak90,LBC94,
RT87]. As such, many of the issues related to numerical er-
rors must be addressed here as well. While these methods
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Clear Weather Snow Snow and Mist

Figure 1: Legendre domain 3D fluid simulation and rendering:In this example, we have3000snow flakes being carried by a wind field
(Legendre domain fluid simulation). We add mist to the scene using Legendre domain rendering for participating media. Notice further objects
appearing brighter due to the air-light effect, and distantsnow-flakes becoming invisible as the mist density is increased. The clear weather
Christmas image was downloaded from www.survivinggrady.com/2005_12_01_archive.html

can produce impressive visual effects, they are too slow for
interactive applications. Recent hardware-accelerated tech-
niques [DYN02, REK∗04, HL01] can significantly decrease
the running times of numerical simulations, although they are
specialized to particular phenomena.

In addition, note that the intensity fields depend on the illu-
mination and viewing geometry as well as the scattering prop-
erties [NGD∗06,HED05] of the participating medium. More-
over, the lighting, viewpoint and the densities of the medium
may change with time. Thus, the pre-computations required
are too prohibitive for data driven approaches to be applied
to intensity fields. For the special case of homogeneous me-
dia, many previous analytic approaches [Max86, SRNN05,
JMLH01, NN03] may be used to render the effects of scat-
tering in real-time. However, homogeneous media are not the
focus of our work.

The goal of this paper is fast modeling and rendering of dy-
namic and non-homogenous participating media, like smoke,
dust and fog. The key idea is to represent the 3D spatial vari-
ation of the density, velocity and intensity fields using the
same analytic basis. Jos Stam [Sta99] used Fourier basis to
solve the diffusion and projection steps of the fluid simulation
pipe-line over a domain with periodic boundary conditions. In
this work, we use Legendre Polynomials [Cha60] as our basis
functions. In many situations, natural effects such as mist, out-
door smoke and dust are smooth (low frequency) phenomena,
and can be compactly represented by a small number of coef-
ficients of a Legendre polynomial basis. In this work, we will
focus on optically thin media where single scattering is the
dominant form of light transport [SRNN05, NGD∗06]. Un-
der these conditions, the common Legendre polynomial ba-
sis for different fields allows us to analytically solve both the
Navier-Stokes and light transport equations in the reduced
Legendre space. It turns out that this solution requires us to
analyze triple product integrals of Legendre polynomials and
their sparsity [GN07], similar in spirit to the triple product
wavelet integrals for relighting [NRH04].

Since all the fields are represented using Legendre poly-
nomials, their derivatives (and integrals) can be computed
analytically, thereby avoiding the numerical errors resulting
from spatial finite differences approximation. Additionally,
the compactness of the Legendre domain representations of
natural effects makes modeling and rendering of such partic-

ipating media very fast. Depending on the number of coef-
ficients required, we achieve computational speedups of one
to three orders of magnitude as compared to spatial domain
techniques. At the same time, only a few coefficients must be
stored in memory as compared to the full 3D volumes that
must be stored for the data-driven (eg., PCA) approaches.

The main contribution of this paper is a theoretical one:
a unified framework for both fluid simulation and rendering
in an analytic reduced space. We believe that this is an im-
portant first step towards bridging the gap between model re-
duction for fluid simulation and pre-computed radiance trans-
fer for rendering. In addition, we believe that the mathemat-
ical results derived in the paper are general enough to find
use in many computer graphics applications. We demonstrate
several visual effects resulting from volumetric scattering in
time-varying participating media, such as shadowgrams that
are cast by the medium on a background, mixing of different
gaseous media and airlight effects due to depth disparities in
the scene. We also show fluid simulation results illustrating
snow flakes (see Figure1) and confetti immersed in turbulent
wind fields, as well as smoke density fields evolving under the
influence of user-defined forces.

For the purpose of deriving the unified reduced space simu-
lation and rendering framework, we have made several limit-
ing assumptions such as smooth (low frequency) phenomena,
no objects within the medium, single scattering, orthographic
viewing and distant lighting. In Section8, we discuss these
limitations in detail, along with future research directions for
extending the technique to more general settings.

2. Physical Models for Participating Media
Dynamic and non-homogenous participating media can be
characterized by density, velocity and intensity fields, that
vary across both space and time. Whereas Navier-Stokes
equations for incompressible fluid flow model the evolution
of the density and velocity fields over time, the intensity fields
are rendered using light transport equations. The time evolu-
tion of the velocity fieldu is given by [CM90]:

∂u
∂ t

= −(u.∇)u−ν∇2u+∇p+b, s.t. ∇.u = 0, (1)

where,ν is the kinematic viscosity,p is the pressure field and
b denotes the external forces (the notation used in the paper is
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u velocity field
u♦ ♦−component of velocity field
r density field
b external force field

b♦ ♦−component of force field
Ed direct transmission intensity field
Es scattered intensity field
ν kinematic viscosity
σ extinction coefficient
β scattering coefficient
θ scattering angle

Ω(θ) scattering phase function
ωd lighting direction
ωs viewing direction

Figure 2: Notation used in our paper.♦ stands for either x, y or z.
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Figure 3: The participating medium is illuminated by a distant
light source and is viewed by an orthographic camera. Under the
single scattering assumption, the intensity field within the medium
volume can be split into two sets of light rays: the pre-scattering (di-
rect transmission) intensity field Ed(x, t) and post-scattering intensity
field Es(x, t) (shown using red rays).

given in Figure2). Following [Sta99,CM90], Equation1 can
be written as:

∂u
∂ t

= P︸︷︷︸
pro jection



−(u.∇)u
︸ ︷︷ ︸
advection

+ ν∇2u︸ ︷︷ ︸
di f f usion

+ b︸︷︷︸
f orces



 (2)

Here,P is a linear operator which projects a vector field to
its divergence free component. Equation2 can be resolved by
splitting the right hand side into four sequential steps: (i) ad-
vection, (ii) diffusion, (iii) external forces and (iv) projection
[Sta99]. Similarly, the time evolution of the density fieldr is
given by:

∂ r
∂ t

= −(u.∇)r
︸ ︷︷ ︸
advection

− κ∇2r︸ ︷︷ ︸
di f f usion

+ −αr︸︷︷︸
dissipation

+ Sr︸︷︷︸
source

, (3)

where,κ is the diffusion constant,α is the dissipation rate
andSr is the source term for density.

Using the density fieldr, we can render the intensity fields
for any configuration of illumination and viewing geometry.
In this work, we consider optically thin media wheresin-
gle scattering is the dominant form of light transport. Fig-
ure 3 shows an orthographic camera viewing a participating
medium that is illuminated by a distant light source. Then, we
can split the intensity fields into two components: thepre-

Orthogonality
∫ 1
−1Li(x)L j (x)dx= δi j

Derivative L′
i(x) = ∑k cikLk(x)

Integral
∫

Li(x)dx= ∑k bikLk(x)

Figure 4: Properties of Legendre Polynomials [Cha60].

scattering(direct transmission) intensity fieldEd(x, t), and
the post-scatteringintensity field Es(x, t). Mathematically,
these intensity fields can be written as [Cha60]:

(
ωd

.∇
)

Ed = −σ r ·Ed (4)

(ωs
.∇)Es = −σ r ·Es+β r ·Ω(θ) ·Ed (5)

Here,σ andβ are the extinction and scattering coefficients
respectively andΩ(θ) is the phase function. When the camera
is outside the medium, the acquired2D imageof the medium
is simply the boundary of the 3D intensity fieldEs(Figure3).

3. Compact Analytic Representation of
Non-Homogenous Media

The key idea in this paper is to represent the 3D spatial varia-
tion of the density, velocity and intensity fields using the same
analytic basis. We choose to use Legendre polynomials as ba-
sis functions. In many situations, natural effects such as mist,
outdoor smoke and dust are smooth (low frequency) phenom-
ena, and can be compactly represented by a small number
of coefficients. Legendre polynomials are orthogonal, have
global support (non-zero over the entire domain), and have
analytic derivatives and integrals (Figure4). As a result, they
find wide application in mathematical physics literature in
conjunction to solving differential equations [Cha60].

A function f (x) can be represented as a linear combina-
tion of Legendre polynomialsLk of different ordersf (x) =
∑k FkLk(x), where the Legendre domain coefficients[Fk] can
be computed analytically as:

Fk =

1∫

−1

f (x)Lk(x)dx. (6)

In 3D, we represent a fieldf (x,y,z) that is smooth in x-,y-
and z-directions as:

f (x,y,z) = ∑
i jk

Fi jkLi(z)L j (y)Lk(x) . (7)

For notational ease, Equation7 is written asf (x,y,z)⇔ [Fi jk ].
The Legendre representations for the various fields are given
in Figure5.

4. Analytic Operators in Legendre Space
In this section, we derive the legendre space formulations for
various operators and establish that they are compact, com-
putationally efficient, and completely analytic in nature. For
ease of exposition, we illustrate the concepts with 1D exam-
ples; analysis in 2D and 3D follows in an exactly similar man-
ner.

4.1. Derivative Operator
Observe that spatial derivatives appear both in the Navier-
Stokes and the light transport equations (2, 3, 4, 5) in the form
of gradient and Laplacian operators. Using the property that
derivative of a legendre polynomial can be expressed in terms
of lower order legendre polynomials (Figure4), we derive the

c© Association for Computing Machinery, Inc. 2007.
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Field Spatial⇔ Legendre

Density Field r ⇔ [R]
Velocity Field u♦ ⇔ [U♦]

Divergence free Velocity Field û♦ ⇔ [Û♦(t)]
External Force Field b+ ⇔ [B+(t)]
Direct Transmission Intensity FieldEd ⇔ [Id]
Scattered Intensity Field Es ⇔ [Is]

Figure 5: Legendre representations of various fields, where♦

stands for x,y or z. In Figures5 and 6, sub-scripts and arguments
have been dropped for brevity. For example, d and[D] should be read
as d(x,y,z, t) and[Di jk(t)] respectively.

OperationOperand Result Complexity

Derivative g⇔ [G] ∂
∂♦g⇔ D♦ · [G] O(K2)

Integral g⇔ [G]
∫

gd♦⇔ Î♦ · [G] O(K2)

Product g⇔ [G]
g·h⇔ MG · [H] O(K3)h⇔ [H]

Truncation [G] [GT ] = T · [G] O(K2)

Legendre
[G] g O(NK)to Spatial

Figure 6: Legendre Space Operators (♦ stands for x,y or z). N
is the size of the spatial grid. K is the size of legendre coefficient
representation.

derivative operator in legendre domain, which iscompletely
analytic, and hence, devoid of the numerical errors resulting
from the Finite Difference approximation:

f (x) = ∑
i

FiLi(x) ⇒ f ′(x) = ∑
i

FiL
′
i(x) (8)

⇒ f ′(x) = ∑
k

(

∑
i

Fi ∗cik

)
Lk(x) . . . (Figure4)

= ∑
k

F ′(k)Lk(x)

whereF ′(k) = ∑i Fi ∗cik. We can write this equation in matrix
form, with [F ′

k] and[Fi ] as the coefficient vectors correspond-
ing to the derivative and the original function respectively.
Thederivativeoperator (x-direction) in Legendre Domain is
thus given by the matrixDx(i,k) = cik:

[F ′
k] = Dx ∗ [Fi ] (9)

Derivatives iny andzand the integral operator can be defined
likewise. Figure6 lists all the legendre space operators that we
derive, along with the corresponding time complexity. Given
K as the size of legendre space representation[Fi ], the matrix-
vector multiplication requireO(K2) computations. Building
the derivative and integral matrices is a one time operation,
and takesO(K2) time.

4.2. Product Operator in Legendre Domain
The advection term in the Navier-Stokes equation (2, 3) as
well as the single scattering equation for rendering (4, 5) en-
tail multiplication of two fields to compute a third one. This
motivates investigating the general problem of multiplying
two functions,h(x) = f (x).g(x), where both the functions and
the result are represented in the Legendre Basis:

f (x) = ∑
j

FjL j (x) g(x) = ∑
k

GkLk(x) h(x) = ∑
i

HiLi(x)

To compute theith basis coefficient for the result, we use or-
thogonality of Legendre Polynomials (see Figure4)

Hi =

1∫

−1

Li(x)h(x)dx=

1∫

−1

Li(x) f (x)g(x)dx

=

1∫

−1

Li(x)

(

∑
j

FjL j (x)

)(

∑
k

GkLk(x)

)
dx

= ∑
jk

FjGkTIi jk

whereTIi jk =
∫ 1
−1Li(x)L j (x)Lk(x)dx is the Legendre Poly-

nomial triple product integral, and can be pre-computed apri-
ori. As with the derivative and integral case, we can write the
above equation in matrix form as follows:

[Hi ] = MG∗ [Fj ] = MF ∗ [Gk] (10)

where, MG(i, j) = ∑k GkTIi jk and MF (i,k) = ∑ j FjTIi jk .
Given the size of legendre representations asK, the multi-
plication matrix hasO(K2) entries. For each entry,O(K)
computations are required. Thus, we needO(K3) computa-
tions to build the multiplication matrix andO(K2) time for
the matrix-vector multiplication. Therefore, total time com-
plexity of legendre space multiplication isO(K3). However,
we show that the 3D tensorTI is sparse using theLegendre
Polynomials Triple Product Integrals theorem [GN07].
Using the theorem, we show that approximately3

4 of the en-
tries of the TI tensor are exactly zero. We exploit this sparsity
to achieve computational speed-ups in the advection and the
rendering stages. Indeed, the time required to construct the
multiplication matrix can be reduced by a factor of 4 in 1D
and by 43 = 64 in the 3D case.

Lower Order Approximation: Note that multiplying two
polynomials of degreeK each results in a polynomial of de-
gree 2K. Therefore, given two functions, each with Legendre
representation of sizeK, the Legendre representation of the
product will have size 2K. For computational savings, it is
desirable to keep the size of the Legendre representation con-
stant. To this end, we devise a simple approximation scheme
using theChebyshev Polynomialsto truncate a given Legen-
dre representation from 2K terms toK terms, while keep-
ing the approximation error low under theL∞ norm [GN07].
We define theTruncation Matrix Operator T in legendre
space, such that

[FT
i ]
︸︷︷︸
K×1

= T︸︷︷︸
K×2K

∗ [Fi ]︸︷︷︸
2K×1

where[Fi ] is the legendre representation of size 2K, and[FT
i ]

is the corresponding truncated representation of sizeK. As
with derivatives and integrals, truncation requires a matrix
multiplication with a time complexity ofO(K2). Building the
truncation matrixT is a one time operation requiringO(K2)
operations.

c© Association for Computing Machinery, Inc. 2007.
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5. Modeling in Legendre Domain
Using the Legendre representations for fields and the op-
erators (derivative, multiplication, truncation), we solve the
Navier-Stokes equations (2, 3) in the Legendre domain. For
velocity simulation, we decompose Equation2 into the 4 se-
quential steps of advection, diffusion, external forces and pro-
jection [Sta99]. Now we show how each of these steps can be
simulated in the Legendre domain:

5.1. Advection
In the spatial domain, the conservation form of the advection
equation is given by:

∂
∂ t

u♦ =−∇ · (uu♦) (11)

= −

(
∂
∂x

uxu♦ +
∂
∂y

uyu♦ +
∂
∂z

uzu♦

)
(12)

Subscript♦ denotes eitherx,y or z direction. This form im-
plicitly assumes a divergence free velocity field, i.e.∇ ·u = 0.

Legendre space advection equationis then derived by sub-
stituting the legendre representations of the fields (Figure5),
along with the legendre space derivative and multiplication
operators (Figure6) in Equation12:

∂
∂ t [U♦(t)] = −A· [U♦(t)] (13)

whereA = T︸︷︷︸
truncation

·



∑
♦

D♦︸︷︷︸
derivative

· MU♦s
︸ ︷︷ ︸

multiplication





∑
♦

(·)♦ is short-hand for(·)x +(·)y +(·)z. For example,∑
♦

D♦ ·

MU♦ is expanded asDx ·MUx +Dy ·MUy +Dz·MUz. We update
the legendre representations of the velocity field by comput-
ing the eigen decomposition ofA = AE ·

∧
· A−1

E [TLP06]:

[U♦(t +△t)] =
(

AE ·e△t·
∧
·A−1

E

)
· [U♦(t)] (14)

A similar approach can be used to update the density field as
well. Since it uses the multiplication operator, the time com-
plexity of Legendre advection isO(K3) (Section4), where
K is the number of coefficients. In addition to the computa-
tional speed-up, using the completely analytic Legendre do-
main derivative operator reduces the numerical dissipation in-
herent in the FDM based approximations of the derivative op-
erator (Figure7).

(a) Original Field (b) Legendre Advection (c) Spatial Advection

Figure 7: Comparison between Legendre and Spatial domain ad-
vection (high intensities signify higher values of the field). Notice, that
the field after advection in the spatial domain (c) has lower energy
than the field resulting from analytic legendre domain advection (b).
Spatial advection results in dissipation of energy due to discretization
of the gradient operators. The grid size used for spatial advection was
5002, while144coefficients were used for legendre advection.

5.2. Diffusion
For the diffusion step, we solve the implicit form of diffusion
equation:(

IN×N −ν△t ∇2
)

u♦ (x, t +△t) = u♦ (x, t) (15)

whereN is the total number of simulation grid voxels. The
implicit form of diffusion equation is more stable than the
explicit form. However, one drawback of the implicit form
is that it requires solving a large system of linear equations.
Fortunately, in our case, this issue is addressed by solving the
diffusion equation in the reduced legendre space. Once again,
we use the legendre representation of the fields and the opera-
tors (Figures5 and 6) to obtain thelegendre space diffusion
equation:

(
IK×K −ν△t D2

)
[U♦ (t +△t)] = [U♦ (t)] (16)

where,D2 = (Dx)
2 +

(
Dy
)2

+ (Dz)
2 is the legendre space

Laplacian operator. Since we solve aK×K linear system, the
time complexity of legendre space diffusion isO(K3). This is
a considerable speed-up over solving the(N×N) system in
spatial domain.

5.3. External Forces
External forces are handled by adding their legendre repre-
sentation (Figure5) to that of the velocity field:

[U♦(t +△t)] = [U♦(t)]+ [B♦] ·△t (17)

5.4. Projection
This step ensures that the velocity field is divergence free,
which is required to satisfy mass-conservation. For the pro-
jection step, we use the implicit definition of the projection
operatorP:

∇2q = ∇ ·u û = Pu = u−∇q (18)

This step requires solving the following Poisson system of
equation for the scalar fieldq: ∇2q = ∇ ·u. û, the divergence
free component ofu (∇ · û = 0), is then computed by sub-
tracting the gradient ofq from u. The Poisson equation can
be formulated as a linear system of equations by discretizing
the ∇2 operator in the spatial domain. Analogously, we can
definePL, the projection operator in the legendre space im-
plicitly as follows:

D2 · [Q] = ∑
♦

D♦ · [U♦(t)] (19)

[Û♦(t)] = PL · [U♦(t)] = [U♦(t)]−D♦ · [Q] (20)

Hence, in legendre space projection step, we need to solve the
linear system of equations in the unknown vector[Q] (Equa-
tion 19), requiringO(K3) time. As with diffusion, this is a
considerable speed-up over solving the(N×N) linear system
in spatial domain.As an additional advantage, using the an-
alytic definitions of the derivative operators in all the simula-
tion steps alleviates the numerical errors resulting from spatial
finite difference approximations.

c© Association for Computing Machinery, Inc. 2007.
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5.5. Density Dissipation
For density simulation, Equation3 is solved in the legendre
space. The advection, diffusion and source terms are handled
in a way similar to velocity simulation. The dissipation term
is then solved in the legendre space as follows:

(1+△tα) · [R(t +△t)] = [R(t)] (21)

Size of the Legendre representation:Figure8 illustrates the
time-evolution of 2D density and velocity fields for differ-
ent sizes of Legendre representations. We start with the same
low frequency density and velocity fields and apply the same
forces throughout the 3 different Legendre domain simula-
tions. We can observe that more coefficients allow for higher
frequencies and vorticities as the density and velocity fields
evolve. In Figures9, 10 and 11, we also provide theoretical
and empirical computational complexity of our framework as
a function of the size of the Legendre representation (K). A
user can use these as a guide for choosing the Legendre rep-
resentation size that best addresses the demands (speed/ high
frequency detail) of a particular application.

6. Rendering in Legendre Space
Rendering requires solving the light transport equations (4,5)
in the Legendre domain using techniques similar to those used
for the Navier-Stokes equations.

6.1. Direct Transmission intensity field
As earlier, substituting Legendre representations of various
fields and Legendre operators (Figures5 and 6) into Equa-
tion 4, we get:

(

∑
♦

ωd
♦D♦

)
· [Id] = −σT ·MR · [Id]

⇒ Lωd · [Id(t)] = 0 (22)

whereLωd =

(

∑
♦

ωd
♦

D♦ +σT ·MR

)
.

6.2. Scattered intensity field
Similarly, we can project Equation5 into the Legendre do-
main:
(

∑
♦

ωs
♦D♦

)
· [Is]=−σT ·MR · [Is] + βΩ(θ) ·T ·MR · [Id]

⇒ Lωs · [Is] = βΩ(θ) ·T ·MR · [Id] (23)

whereLωs =

(

∑
♦

ωs
♦

D♦ +σT ·MR

)
.

In the legendre space, both the light scattering equations are
thus formulated as linear systems of equations in the un-
knowns [Id] (22) and [Is] (23). Along with the boundary
conditions, which can be formulated as additional linear con-
straints, these systems can be solved inO(K3) time.

Imagine a camera observing the medium from the outside
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Figure 8: 2D Legendre domain Simulation results:Evolution of
density and velocity for different number of Legendre coefficients.
More coefficients allow higher frequencies andvorticities in the den-
sity and velocity fields.

(Figure 3). Then, theimage recorded is given by the scat-
tering intensity fieldEs at the domain boundary:

Es(x,y,z, t) = ∑
i jk

Is
i jkLi(x)L j (y)Lk(z) (24)

If the image resolution isS, then time-complexity of image
computation isO(SK). Note that the image computation step
is output-sensitive, and can easily be parallelized. Our Legen-
dre domain modeling and rendering framework is summa-
rized in Figure9.
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For every time step:

• Update Velocity and Density Fields
Advection (13) and Diffusion (16) O(K3)
Forces/Source (17) O(K2)
Projection(19, 20) O(K3)

• Update Intensity Fields
Direct Transmission(22), Scattered (23) O(K3)

• Compute Image (24) O(SK)

Figure 9: Legendre domain Rendering algorithm:K is the size of
Legendre space representations and S is the image resolution.
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Figure 10: Typical computational speed-ups for 2D simulation and
rendering in Legendre domain as compared to the spatial domain.

7. Results
Our results show that Legendre polynomials can express a va-
riety of interesting density and force distributions compactly,
thereby letting the user manipulate the densities, velocities
and forces globally to produce the desired effects.

Particles immersed in dynamic fluid media:Figure12 and
Figure1 show simulations of 500 pieces of confetti and 3000
snow-flakes respectively being carried by a wind field sim-
ulated using 216 Legendre coefficients each. We can notice
vorticities being created in the confetti example due to the
turbulent behavior of the wind field. On the other hand, the
snow flakes are carried by a more gentle,breeze-likewind.
We encourage the reader to view the animation results in the
supplementary video.

Simulation of smoke and advection of scattering albedos:
Figure14 shows a vertically upwards axial impulse applied
to a vase shapedsmoke density field. Since the impulse is
applied for a short duration, the density field dissolves to-
wards the end of the simulation. For the first time, we also
show advection of the optical properties of the medium (scat-
tering albedos), in addition to the physical properties (densi-
ties and velocities), resulting in completely new colors and
appearances as the medium evolves under external forces.

Single Scattering based rendering of participating me-
dia: We demonstrate the visual effects of both relighting
the medium under the single scattering model, and varying
the viewpoint and scattering albedos, as the medium evolves
under user defined forces (supplementary video). We also
show interesting effects of shadowgrams that are cast by the
medium on a background plane (Figures13and 14).

3D Visual effects resulting from volumetric scattering in
non-homogenous and dynamic participating media:In the
examples of Figure15and Figure1, we add non-homogenous
mist to scenes with large depth variation. Notice how dis-
tant objects appear brighter due to the airlight [Kos24] effect.
Reproducing such effects accurately, particularly for non-
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Figure 11: Typical computational speed-ups for 3D simulation and
rendering in Legendre domain as compared to the spatial domain.

homogenous media, is critical for achieving photo-realism
while rendering 3D scenes. Finally, in Figure16, we add non-
homogenous and dynamic fog to a clear day fly-through of
Swiss Alps.

Computational Speed-ups:Due to the compact representa-
tions of fields in the Legendre domain, we can achieve com-
putational speed-ups of one to three orders of magnitude, de-
pending on the number of Legendre coefficients (Figures10
and 11). The comparison is made with our implementation
of the Stable Fluids [Sta99] algorithm in the spatial domain.
However, our technique places a restriction on the size of the
simulation time-step; adding higher frequencies will require
a progressively smaller time-step owing to stability consid-
erations given by the CFL condition [FM97]. On the other
hand, the Stable Fluids technique can support arbitrarily large
time-steps. All our implementation was done in MATLAB on
a 3.2GHzP-4 PC with 2 GB of RAM.

Figure 12: Legendre domain Simulation result:500pieces of con-
fetti being carried by a turbulent wind field simulated using216
Legendre coefficients.

8. Discussion of Limitations and Future Work

Our goal in this paper is fast rendering of non-homogenous
and dynamic participating media. We achieve this by repre-
senting the spatio-temporally varying intensity (rendering), as
well as density and velocity (simulation) fields in a reduced
analytic Legendre space. This results in a single scattering
based rendering technique for smooth non-homogenous and
dynamic media, a significant improvement over similar tech-
niques which make the severely limiting assumption of ho-
mogenous medium densities [SRNN05]. We believe this is
the first work that provides a unified framework for both mod-
eling and rendering in an analytic reduced space, and hope
this can help bridge the gap between model reduction in flu-
ids and pre-computed radiance transfer in rendering. How-
ever, the speed and analytic nature of the technique come at
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the cost of its limited ability to handle high frequency fluid
phenomena. Indeed, using only a global Legendre Polynomi-
als basis offers limited local control and allows only for the
box-boundary conditions, making it difficult to account for
complex effects like local vorticities, turbulence and objects
inside the medium. Also, being aglobal sub-space method,
it offers low flexibility on the domain boundaries.

These limitations can be addressed by augmenting the
global Legendre polynomials basis, which capture the major-
ity of the energy of the fluid flow, with a local-support ba-
sis such as Haar-Wavelets or spatial voxels, thus accounting
for the spatially sparse ’residual energy’. This is similar in
spirit to adding local high frequency turbulence, or vortici-
ties [FSJ01] to counter the dampening caused by the Stable
Fluids semi-Lagrangian technique. Also, high frequency de-
tails in a particular dimension can be captured by keeping the
full spatial representation and using Legendre expansion in
the remainnig directions. Using suchhybrid basescan provide
the desired local control in addition to computational speed-
ups, and in our opinion, forms a very promising direction for
future research. Since we also make assumptions of single
scattering, orthographic viewing and distant lighting, extend-
ing our system to perspective viewer and more general, near-
field lighting is another research direction worth exploring.
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Light Source and View Point Variation Variation in Scattering Properties
Figure 13: 3D Legendre domain Rendering:Here we consider asmoke-cubeilluminated by distant light source(s). The image is formed
at an orthographic viewer observing the scene. Since the whole of our pipe-line is in the reduced Legendre domain, the user can control the
view-point, lighting and scattering albedo interactively. Notice the varying shadow-gram patterns on the wall as the smoke evolves. The smoke
and the shadow become darker as we decrease the albedo. Colored smoke and shadows can be created by varying the scatteringproperties
differently across the color channels. This example required64coefficients for density and velocity, and216coefficients for intensity fields.

Figure 14: 3D Legendre domain simulation and advection of optical properties:3D Simulation results for a vertically upwards axial impulse
applied to avase shapedsmoke density field.. Also, we advect the optical propertiesof the media (scattering albedos) along with the densities
and velocities to create the effect of mixing of different media. This example required216Legendre coefficients for density and velocity fields
(simulation) and512coefficients for intensity fields (rendering).

Clear Weather Homogenous mist Non-homogenous mist Attenuation
Figure 15: Rendering of Non-homogenous participating media:Our technique can be used to render non-homogenous media as well under
the single scattering model efficiently. Here we add mist to aclear weather scene (Images courtesy Google Earth). Non-homogenous density
distributions, for example the high mist density over the lake provides for more realism as compared to homogenous mist.Also, notice how
distant objects appear brighter due to the air-light effect, whereas distant objects appear darker in the attenuation-only image.

Figure 16: Snapshots from a fly-through of Swiss Alps with Non-homogenous and dynamic fog added (Images courtesy Google Earth). Images
have been tone-mapped to high-lite the non-homogeneity of the medium. Complete video is included with the supplementalmaterial.
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