More Mosaic Madness

© Jeffrey Martin (jeffrey-martin.com)

with a lot of slides stolen from Steve Seitz and Rick Szeliski

15-463: Computational Photography
Alexei Efros, CMU, Fall 2011
Homography

A: Projective – mapping between any two PPs with the same center of projection
 • rectangle should map to arbitrary quadrilateral
 • parallel lines aren’t
 • but must preserve straight lines
 • same as: project, rotate, reproject

called Homography

\[
\begin{bmatrix}
w x' \\
w y' \\
w \\
\end{bmatrix} =
\begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1 \\
\end{bmatrix}
\]

To apply a homography \(H \)
 • Compute \(p' = Hp \) (regular matrix multiply)
 • Convert \(p' \) from homogeneous to image coordinates
Rotational Mosaics

Can we say something more about rotational mosaics? i.e. can we further constrain our H?
3D \rightarrow 2D Perspective Projection

$$(x, y, z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} U \\ V \\ W \end{bmatrix} = \begin{bmatrix} f & 0 & u_c \\ 0 & f & v_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$
3D Rotation Model

Projection equations

1. Project from image to 3D ray

\[(x_0, y_0, z_0) = (u_0 - u_c, v_0 - v_c, f)\]

2. Rotate the ray by camera motion

\[(x_1, y_1, z_1) = R_{01} (x_0, y_0, z_0)\]

3. Project back into new (source) image

\[(u_1, v_1) = (fx_1/z_1 + u_c, fy_1/z_1 + v_c)\]

Therefore:

\[H = K_0 R_{01} K_1^{-1}\]

Our homography has only 3, 4 or 5 DOF, depending if focal length is known, same, or different.

- This makes image registration much better behaved
Pairwise alignment

Procrustes Algorithm [Golub & VanLoan]

Given two sets of matching points, compute R

\[p_i' = R p_i \]

with 3D rays

\[p_i = N(x_i, y_i, z_i) = N(u_i - u_c, v_i - v_c, f) \]

\[A = \sum_i p_i p_i' \]

\[A = \sum_i p_i p_i' = \sum_i p_i p_i^T R^T = U S V^T = (U S U^T) R^T \]

\[V^T = U^T R^T \]

\[R = V U^T \]
Rotation about vertical axis

What if our camera rotates on a tripod?
What's the structure of H?
Do we have to project onto a plane?
Full Panoramas

What if you want a 360° field of view?

mosaic Projection Cylinder
Cylindrical projection

- Map 3D point \((X, Y, Z)\) onto cylinder
 \[
 (\tilde{x}, \tilde{y}, \tilde{z}) = \frac{1}{\sqrt{X^2 + Z^2}} (X, Y, Z)
 \]
- Convert to cylindrical coordinates
 \[
 (\sin \theta, h, \cos \theta) = (\tilde{x}, \tilde{y}, \tilde{z})
 \]
- Convert to cylindrical image coordinates
 \[
 (\tilde{x}, \tilde{y}) = (f \theta, fh) + (\tilde{x}_c, \tilde{y}_c)
 \]
Cylindrical Projection

\[Y \quad X \]

\[\tilde{y} \quad \tilde{x} \]
Inverse Cylindrical projection

\[\begin{align*}
\theta &= \frac{(x_{cyl} - x_c)}{f} \\
\hat{h} &= \frac{(y_{cyl} - y_c)}{f} \\
\hat{x} &= \sin \theta \\
\hat{y} &= h \\
\hat{z} &= \cos \theta \\
x &= f\hat{x}/\hat{z} + x_c \\
y &= f\hat{y}/\hat{z} + y_c
\end{align*} \]
Cylindrical panoramas

Steps
- Reproject each image onto a cylinder
- Blend
- Output the resulting mosaic
Cylindrical image stitching

What if you don’t know the camera rotation?

- Solve for the camera rotations
 - Note that a rotation of the camera is a **translation** of the cylinder!
Assembling the panorama

Stitch pairs together, blend, then crop
Problem: Drift

Vertical Error accumulation
• small (vertical) errors accumulate over time
• apply correction so that sum = 0 (for 360° pan.)

Horizontal Error accumulation
• can reuse first/last image to find the right panorama radius
Full-view (360°) panoramas
Spherical projection

- Map 3D point \((X,Y,Z)\) onto sphere
 \[
 (\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Y^2 + Z^2}}(X,Y,Z)
 \]
- Convert to spherical coordinates
 \[
 (\sin \theta \cos \phi, \sin \phi, \cos \theta \cos \phi) = (\hat{x}, \hat{y}, \hat{z})
 \]
- Convert to spherical image coordinates
 \[
 (\tilde{x}, \tilde{y}) = (f \theta, f h) + (\tilde{x}_c, \tilde{y}_c)
 \]
Spherical Projection
Inverse Spherical projection

\[\theta = \frac{(x_{sph} - x_c)}{f} \]
\[\varphi = \frac{(y_{sph} - y_c)}{f} \]
\[\hat{x} = \sin \theta \cos \varphi \]
\[\hat{y} = \sin \varphi \]
\[\hat{z} = \cos \theta \cos \varphi \]
\[x = \frac{f \hat{x}}{\hat{z}} + x_c \]
\[y = \frac{f \hat{y}}{\hat{z}} + y_c \]
3D rotation

Rotate image before placing on unrolled sphere

\[
\begin{align*}
\theta &= \frac{(x_{sph} - x_c)}{f} \\
\varphi &= \frac{(y_{sph} - y_c)}{f} \\
\hat{x} &= \sin \theta \cos \varphi \\
\hat{y} &= \sin \varphi \\
\hat{z} &= \cos \theta \cos \varphi \\
x &= f\hat{x}/\hat{z} + x_c \\
y &= f\hat{y}/\hat{z} + y_c
\end{align*}
\]
Full-view Panorama
Other projections are possible

You can stitch on the plane and then warp the resulting panorama
 • What’s the limitation here?
Or, you can use these as stitching surfaces
 • But there is a catch…
Cylindrical reprojection

Focal length – the dirty secret...

Image 384x300 f = 180 (pixels) f = 280 f = 380
What’s your focal length, buddy?

Focal length is (highly!) camera dependent

- Can get a rough estimate by measuring FOV:

```
\[
\frac{W}{2} \quad f \quad \frac{\theta}{2}
\]
```

- Can use the EXIF data tag (might not give the right thing)
- Can use several images together and try to find f that would make them match
- Can use a known 3D object and its projection to solve for f
- Etc.

There are other camera parameters too:

- Optical center, non-square pixels, lens distortion, etc.
Distortion

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens
Radial distortion

Correct for “bending” in wide field of view lenses

\[
\hat{r}^2 = \hat{x}^2 + \hat{y}^2 \\
\hat{x}' = \hat{x}/(1 + \kappa_1 \hat{r}^2 + \kappa_2 \hat{r}^4) \\
\hat{y}' = \hat{y}/(1 + \kappa_1 \hat{r}^2 + \kappa_2 \hat{r}^4) \\
x = f \frac{\hat{x}'}{\hat{z}} + x_c \\
y = f \frac{\hat{y}'}{\hat{z}} + y_c
\]

Use this instead of normal projection
Polar Projection

Extreme “bending” in ultra-wide fields of view

\[\hat{r}^2 = \hat{x}^2 + \hat{y}^2 \]

\[
\begin{align*}
\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi &= s (x, y, z) \\
\end{align*}
\]

Equations become

\[
\begin{align*}
x' &= s\phi \cos \theta = s \frac{x}{r} \tan^{-1} \frac{r}{z}, \\
y' &= s\phi \sin \theta = s \frac{y}{r} \tan^{-1} \frac{r}{z},
\end{align*}
\]
Camera calibration

Determine camera parameters from known 3D points or calibration object(s)

1. *internal* or *intrinsic* parameters such as focal length, optical center, aspect ratio: *what kind of camera?*
2. *external* or *extrinsic* (pose) parameters: *where is the camera in the world coordinates?*
 - World coordinates make sense for multiple cameras / multiple images

How can we do this?
Approach 1: solve for projection matrix

Place a known object in the scene

• identify correspondence between image and scene
• compute mapping from scene to image

\[
\begin{bmatrix}
 u_i \\
 v_i \\
 1
\end{bmatrix} \rightarrow \begin{bmatrix}
 m_{00} & m_{01} & m_{02} & m_{03} \\
 m_{10} & m_{11} & m_{12} & m_{13} \\
 m_{20} & m_{21} & m_{22} & m_{23}
\end{bmatrix} \begin{bmatrix}
 X_i \\
 Y_i \\
 Z_i \\
 1
\end{bmatrix}
\]
Direct linear calibration

\[
\begin{bmatrix}
 u_i \\
 v_i \\
 1
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
 \begin{bmatrix}
 m_{00} & m_{01} & m_{02} & m_{03} \\
 m_{10} & m_{11} & m_{12} & m_{13} \\
 m_{20} & m_{21} & m_{22} & m_{23}
 \end{bmatrix}
\end{bmatrix}
\begin{bmatrix}
 X_i \\
 Y_i \\
 Z_i \\
 1
\end{bmatrix}
\]

Solve for Projection Matrix Π using least-squares (just like in homework)

Advantages:
- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the image

Disadvantages:
- Doesn’t tell us about particular parameters
- Mixes up internal and external parameters
 - pose specific: move the camera and everything breaks
Approach 2: solve for parameters

A camera is described by several parameters
- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called “extrinsics,” red are “intrinsics”

Projection equation

$$
\mathbf{X} = \begin{bmatrix}
 s_x \\
 s_y \\
 s
\end{bmatrix} = \begin{bmatrix}
 * & * & * \\
 * & * & * \\
 * & * & *
\end{bmatrix} \begin{bmatrix}
 X \\
 Y \\
 Z
\end{bmatrix} = \Pi \mathbf{X}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations
- Solve using non-linear optimization
Multi-plane calibration

Advantage

- Only requires a plane
- Don’t have to know positions/orientations
- Good code available online!