Image Blending

© NASA
Image Compositing
Compositing Procedure

1. Extract Sprites (e.g. using *Intelligent Scissors* in Photoshop)

2. Blend them into the composite (in the right order)
Need blending
Alpha Blending / Feathering

\[I_{\text{blend}} = \alpha I_{\text{left}} + (1-\alpha)I_{\text{right}} \]
Setting alpha: simple averaging

Alpha = .5 in overlap region
Setting alpha: center seam

\[\text{Distance Transform} \]

\[\text{bwdist} \]

\[\text{Alpha} = \text{logical}(\text{dtrans1} > \text{dtrans2}) \]
Setting alpha: blurred seam

Distance transform

Alpha = blurred
Setting alpha: center weighting

\[\text{Distance transform} \]

\[\text{Ghost!} \]

\[\text{Alpha} = \frac{\text{dtrans1}}{\text{dtrans1} + \text{dtrans2}} \]
Affect of Window Size
Affect of Window Size
Good Window Size

“Optimal” Window: smooth but not ghosted
What is the Optimal Window?

To avoid seams
• window = size of largest prominent feature

To avoid ghosting
• window ≤ 2*size of smallest prominent feature

Natural to cast this in the *Fourier domain*
• largest frequency ≤ 2*size of smallest frequency
• image frequency content should occupy one “octave” (power of two)
What if the Frequency Spread is Wide

Idea (Burt and Adelson)

• Compute $F_{\text{left}} = \text{FFT}(I_{\text{left}})$, $F_{\text{right}} = \text{FFT}(I_{\text{right}})$
• Decompose Fourier image into octaves (bands)
 – $F_{\text{left}} = F_{\text{left}}^1 + F_{\text{left}}^2 + \ldots$
• Feather corresponding octaves F_{left}^i with F_{right}^i
 – Can compute inverse FFT and feather in spatial domain
• Sum feathered octave images in frequency domain

Better implemented in spatial domain
Octaves in the Spatial Domain

Lowpass Images

Bandpass Images
Pyramid Blending

Left pyramid blend Right pyramid
Pyramid Blending
laplacian level 4

laplacian level 2

laplacian level 0

left pyramid right pyramid blended pyramid
Laplacian Pyramid: Blending

General Approach:

1. Build Laplacian pyramids LA and LB from images A and B
2. Build a Gaussian pyramid GR from selected region R
3. Form a combined pyramid LS from LA and LB using nodes of GR as weights:
 - $LS(i,j) = GR(i,j) \cdot LA(i,j) + (1-GR(i,j)) \cdot LB(i,j)$
4. Collapse the LS pyramid to get the final blended image
Blending Regions
Results from this class (fall 2005)

© Chris Cameron
Season Blending (St. Petersburg)
Season Blending (St. Petersburg)
Simplification: Two-band Blending

Brown & Lowe, 2003

• Only use two bands: high freq. and low freq.
• Blends low freq. smoothly
• Blend high freq. with no smoothing: use binary alpha
2-band Blending

Low frequency ($\lambda > 2$ pixels)

High frequency ($\lambda < 2$ pixels)
Linear Blending
2-band Blending
Don’t blend, CUT!

So far we only tried to blend between two images. What about finding an optimal seam?

Moving objects become ghosts
Davis, 1998

Segment the mosaic

- Single source image per segment
- Avoid artifacts along boundaries
 - Dijkstra’s algorithm
Minimal error boundary

overlapping blocks

vertical boundary

overlap error

min. error boundary
What if we want similar “cut-where-things-agree” idea, but for closed regions?

- Dynamic programming can’t handle loops
Graph cuts
(simple example à la Boykov&Jolly, ICCV’01)

Minimum cost cut can be computed in polynomial time
(max-flow/min-cut algorithms)
Actually, for this example, DP will work just as well…
Lazy Snapping

Interactive segmentation using graphcuts
Gradient Domain

In Pyramid Blending, we decomposed our image into 2nd derivatives (Laplacian) and a low-res image

Let us now look at 1st derivatives (gradients):

- No need for low-res image
 - captures everything (up to a constant)
- Idea:
 - Differentiate
 - Blend
 - Reintegrate
Gradient Domain blending (1D)

Two signals

Regular blending

Blending derivatives

bright

dark
Gradient Domain Blending (2D)

Trickier in 2D:
- Take partial derivatives dx and dy (the gradient field)
- Fiddle around with them (smooth, blend, feather, etc)
- Reintegrate
 - But now $\int dx$ might not equal $\int dy$
- Find the most agreeable solution
 - Equivalent to solving Poisson equation
 - Can use FFT, deconvolution, multigrid solvers, etc.
Perez et al., 2003
Limitations:

- Can’t do contrast reversal (gray on black -> gray on white)
- Colored backgrounds “bleed through”
- Images need to be very well aligned
Painting in Gradient Domain! (McCann)

Real-Time Gradient-Domain Painting
James McCann* Carnegie Mellon University
Nancy S. Pollard† Carnegie Mellon University

Code available!

See Jim’s talk this Friday:
James McCann
Real-Time Gradient-Domain Painting, 12:00 p.m.,
5409 Wean Hall
Putting it all together

Compositing images

• Have a clever blending function
 – Feathering
 – Center-weighted
 – blend different frequencies differently
 – Gradient based blending

• Choose the right pixels from each image
 – Dynamic programming – optimal seams
 – Graph-cuts

Now, let’s put it all together:

• Interactive Digital Photomontage, 2004 (video)
Interactive Digital Photomontage

Aseem Agarwala, Mira Dontcheva
Maneesh Agrawala, Steven Drucker, Alex Colburn
Brian Curless, David Salesin, Michael Cohen