
Learning Basketball Dribbling Skills Using
Trajectory Optimization and Deep Reinforcement Learning

LIBIN LIU, DeepMotion Inc., USA
JESSICA HODGINS, Carnegie Mellon University, USA

Fig. 1. Real-time simulation of the learned basketball skills. Top: A player dribbles a ball behind the back and between the legs. Bottom: A player performs
crossover moves.

Basketball is one of the world’s most popular sports because of the agility
and speed demonstrated by the players. This agility and speed makes de-
signing controllers to realize robust control of basketball skills a challenge
for physics-based character animation. The highly dynamic behaviors and
precise manipulation of the ball that occur in the game are difficult to re-
produce for simulated players. In this paper, we present an approach for
learning robust basketball dribbling controllers from motion capture data.
Our system decouples a basketball controller into locomotion control and
arm control components and learns each component separately. To achieve
robust control of the ball, we develop an efficient pipeline based on trajec-
tory optimization and deep reinforcement learning and learn non-linear
arm control policies. We also present a technique for learning skills and the
transition between skills simultaneously. Our system is capable of learning
robust controllers for various basketball dribbling skills, such as dribbling
between the legs and crossover moves. The resulting control graphs enable
a simulated player to perform transitions between these skills and respond
to user interaction.

CCS Concepts: • Computing methodologies → Physical simulation;
Neural networks; Motion capture;

Authors’ addresses: Libin Liu, DeepMotion Inc. 3 Twin Dolphin Dr. Suite 295, Red-
wood City, CA, 94065, USA, libin@deepmotion.com; Jessica Hodgins, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA, jkh@cs.cmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Asso-
ciation for Computing Machinery.
0730-0301/2018/8-ART142 $15.00
https://doi.org/10.1145/3197517.3201315

Additional Key Words and Phrases: physics-based characters, human simu-
lation, motion control, basketball, deep deterministic policy gradient

ACM Reference Format:
Libin Liu and Jessica Hodgins. 2018. Learning Basketball Dribbling Skills
Using Trajectory Optimization and Deep Reinforcement Learning. ACM
Trans. Graph. 37, 4, Article 142 (August 2018), 14 pages. https://doi.org/10.
1145/3197517.3201315

1 INTRODUCTION
Basketball is one of the world’s most popular sports. Animating bas-
ketball sports with motion capture data is challenging because the
precise coupling between the movement of the ball and the motion
of the player can be easily damaged during kinematic operations
such as blending and deformation. Although the state-of-the-art
basketball video games, such as the NBA 2K series and the NBA
Live series, have demonstrated very natural motion with motion
capture data and have provided a lot of enjoyment to fans, they
still contain artifacts. For example, the ball may move in a physi-
cally implausible trajectory or appear to be stuck to the player’s
hand. Designing physics-based controllers for basketball skills has
the potential to create high-quality, physically realistic basketball
animation. However, designing such controllers is challenging be-
cause of the details of the physical interactions with the ball and
the ground, the agility and grace required to perform the required
tasks, and the coupling between the locomotion control and the
manipulation of the fast-moving basketball.

In this paper, we describe a method for learning robust basketball
dribbling controllers for simulated players from motion capture
data. Our method treats a basketball controller as a combination of
locomotion control and arm control components. The system learns

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201315
https://doi.org/10.1145/3197517.3201315
https://doi.org/10.1145/3197517.3201315


142:2 • Liu, Libin and Hodgins, Jessica

the locomotion control first then trains the arm control to achieve
robust control of the ball in a variety of dribbling tasks. We develop
an efficient learning pipeline based on trajectory optimization and
deep reinforcement learning and learn non-linear arm control poli-
cies. The control of agile locomotion in these basketball skills is
learned using the sampling-based method proposed by Liu and his
colleagues [2016]. To enable the player to transition between skills,
we develop a learning procedure that allows a basketball skill and
the transitions between the skill and other skills to be trained simul-
taneously. Our system is capable of learning a variety of dribbling
skills, such as dribbling between the legs and crossover moves, as
well as the transitions between those behaviors, while responding
to user interaction.

Our work makes two principal contributions: (1) We present the
first realtime, physics-based control of complex basketball skills. Our
clips-to-controllers pipeline does not require that the input motion
capture data contain the ball movement. Instead, it automatically
recovers this information using trajectory optimization and learns
robust basketball controllers that produce physically plausible ball
movement and coordinated arm motion. (2) We demonstrate a suc-
cessful adaptation of deep reinforcement learning to allow efficient
learning of non-linear arm control policies that enable robust con-
trol of the ball during highly dynamic basketball skills. Our learning
pipeline supports both the learning of individual skills and the learn-
ing of transitions between these skills. We find that initializing the
learning using linear policies is key for efficient learning. We be-
lieve our design of the network structure and learning process will
provide useful insights into the application of deep reinforcement
learning to other tasks with dynamically manipulated objects.

2 RELATED WORK
Locomotion has been a central topic of physics-based character
animation for several decades. Numerous successful control systems
have been developed for various walking styles [Coros et al. 2010;
Lee et al. 2010a; Yin et al. 2007], running [Ding et al. 2015; Mordatch
et al. 2010], balancing [Macchietto et al. 2009], gymnastics [Hodgins
et al. 1995; Kwon and Hodgins 2017], and acrobatic stunts [Al Borno
et al. 2013; Ha et al. 2012; Zordan et al. 2014].
Recently, Liu and his colleagues [2016] proposed a sampling-

based method for learning motion controllers from motion capture
data. This method had been demonstrated to be applicable to a
variety of locomotion skills, but we find that it cannot be used to
create successful control of basketball skills. To successfully dribble
a ball, basketball players must accurately control the ball before
it leaves their hands and anticipate when and where the ball will
next be contacted. A purely sampling-based method cannot easily
accomplish such a task without an efficient lookahead policy.
Compared to the volume of research on locomotion control sys-

tems, research on controlling simulated humanoid characters that
actively interact with moving objects is relatively sparse. Jain and
Liu [2009] developed a physics-based system that animates ball
movement corresponding to kinematic motion sequences. Tan et
al. [2014] optimized neural networks to achieve robust control of
bicycle stunts. Mordatch et al. [2012b] solved for complex inter-
actions between characters and objects using contact-invariant

optimization. Peng et al. [2017] demonstrated a soccer dribbling
controller learned with the deep reinforcement learning. Liu and
Hodgins [2017] demonstrated that by scheduling tracking control at
runtime, a simulated character can perform various skateboarding
skills, balancing on a bongo board, and even walking on a ball. In
this paper, we realize robust control of agile basketball skills, where
the fast movement of the ball, the small amount of time for control-
ling the ball, and the coupling between the ball’s movement and the
character’s locomotion make it a non-trivial control problem.
Synthesizing grasping and manipulation has a long history in

computer animation, robotics, and biomechanics [Wheatland et al.
2015]. Physics-based methods are often employed to generate de-
tailed, physically realistic hand motion in these tasks. For example,
realistic grasping can be achieved by tracking a few example poses
using PD servos [Pollard and Zordan 2005], the interaction between
fingers and objects can be transferred to other tasks by capturing
contact forces [Kry and Pai 2006], and detailed hand manipulations
can be optimized by carefully modeling contact constraints [An-
drews and Kry 2013; Liu 2009; Mordatch et al. 2012a; Ye and Liu 2012;
Zhao et al. 2013]. Dribbling or juggling a ball using a robot arm is
also studied in robotics [Bätz et al. 2009, 2010; Haddadin et al. 2011;
Reist and D’Andrea 2012], where the control policy is designed by
carefully analyzing and modeling the ball’s motion in every phase.
Despite their success, these research works usually focus on con-
trolling fingers, hands, and optionally arms, while the other parts of
the character’s body are neglected or controlled using baked anima-
tion sequences [Bai et al. 2012]. In comparison with these existing
works, we focus on controlling fast moving objects like a basketball
by coordinating a simulated character’s arms, hands, and fingers,
where the motions of the character’s arms and the other part of its
body are fully coupled.

Trajectory optimization is often employed in physics-based char-
acter animation to generate motions for both human [Al Borno et al.
2013; Mordatch et al. 2012b] and imaginary creatures [Wampler and
Popović 2009] with or without a reference motion. It can compute a
physically valid motion trajectory and the corresponding control
signal trajectory. Feedback policies can be learned to realize robust
tracking control systems based on these open-loop trajectories [Liu
et al. 2016; Muico et al. 2009]. Some research also reveals that the
solutions obtained by trajectory optimization can dramatically facil-
itate the learning of control policies in complex, high-dimensional
tasks [Levine and Koltun 2014; Mordatch et al. 2015]. Inspired by
these works, our control system utilizes trajectory optimization to
learn a linear control policy for each basketball task. This control
policy is then used to initialize the learning of a more complicated
non-linear policy.

Reinforcement learning offers a convenient framework for learn-
ing good control strategies. In the field of character animation, a
number of previous works have demonstrated successful adapta-
tions of reinforcement learning approaches in both interactive mo-
tion synthesis [Lee et al. 2010b; McCann and Pollard 2007; Treuille
et al. 2007] and physics-based control [Coros et al. 2009; Liu andHod-
gins 2017; Peng et al. 2017]. The reinforcement learning problem for
controlling a physically simulated character has high-dimensional,
continuous state space and action space, which makes it hard to
tackle [van Hasselt 2012]. A possible solution is to discretize the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.



Learning Basketball Dribbling Skills Using Trajectory Optimization and Deep Reinforcement Learning • 142:3

Locomotion Control

Arm Control

Mocap 
Clips

Trajectory 
Optimization

Linear 
Regression

Deep 
Reinforcement 

Learning

Fig. 2. System Overview

action space by learning a number of motion primitives [Coros et al.
2009; Liu and Hodgins 2017] so that value-based methods such as
deep Q-learning [Mnih et al. 2015b] can be applied. In recent years,
significant advances have been made by directly solving such high-
dimensional continuous control problems, using methods such as
guided policy search [Levine and Koltun 2013; Mordatch et al. 2015]
and actor-critic approaches [Lillicrap et al. 2015; Peng et al. 2017;
Schulman et al. 2015a,b]. Our work adapts the deep deterministic
policy gradient (DDPG) method [Lillicrap et al. 2015] to learn arm
control in basketball skills. In addition to training control policies
for individual skills like many of the existing works, we developed
a learning pipeline that trains the transitions between the skills as
well, enabling the character to perform multiple skills and respond
to user interaction.

3 SYSTEM OVERVIEW
Our system takes motion capture clips as input and creates robust
controllers that allow a simulated basketball player to perform var-
ious basketball skills. As sketched in Figure 2, a controller in our
system consists of two coupled components, each controlling a
disjoint set of joints: the arm control component coordinates the
player’s arms, hands, and fingers for stable manipulation of the ball;
while the locomotion control component handles the rest of the
joints, keeping the player moving and maintaining balance.
We learn the locomotion control component and the arm con-

trol component separately. The locomotion control component is
learned first using the method developed by [Liu et al. 2016]. In this
stage, the movement of the ball is not taken into account, and the
simulated player tries to mimic the arm motion in the reference
motion capture data. This simplification is reasonable because a
basketball is light compared to a human player and the adjustments
to the arm for variations in the ball trajectory are small. In practice,
the learned locomotion control component is robust enough to deal
with the unmodeled perturbations caused by the ball and the change
in player’s arm motion.
The learning of the arm control component begins with the re-

construction of the ball’s movement. Our system does not require
that the motion of the ball be captured in the input motion clips.
Instead, it solves an optimization problem to compute open-loop
arm control for each control fragment that produces a simulated
ball trajectory which best matches the motion clip.

Using the optimized open-loop arm control, we can learn a step-
wise linear feedback policy for each skill using the regressionmethod
demonstrated in [Liu et al. 2016]. In practice, this initial arm control

Fig. 3. Character model. Left: skeleton and collision geometries. Right:
rigged characters.

policy enables successful control of simple skills such as carrying a
ball with both hands, but is not capable of controlling more complex
skills such as dribbling. Because the player cannot apply control to
the ball when it is bouncing or in flight, a small error in the ball’s
state amplifies quickly and drives the simulation out of the basin of
attraction of a linear policy.

Our system thus learns a non-linear arm control policy modeled
with artificial neural networks for each basketball skill. We use the
Deep Deterministic Policy Gradient (DDPG) method [Lillicrap et al.
2015] to learn this control policy. In the learning process, the arm
control policy is repeatedly applied and updated according to the
simulation results until a robust policy is reached. This process is
initialized with the examples generated from the linear feedback
policies. This initialization is crucial for efficient learning.
In addition to learning individual basketball skills, our system

follows the same learning process to learn control graphs that con-
sist of multiple basketball skills and transitions between the skills.
To ensure successful transitions, a control graph is learned in an
incremental manner, where a new skill is added to the graph by train-
ing a combined motion that consists of the new skill, the learned
skills that the new skill connects to, and the transitions between the
learned and new skills. In this process, the learned control policies
are reused in this learning process to facilitate the training.

3.1 Simulation Framework
We model our basketball player as an articulated skeletal system
(Figure 3), which consists of a floating root joint and internal joints

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.



142:4 • Liu, Libin and Hodgins, Jessica

(a) Hand model used in this paper. We use 1-DoF pin joint for proximal
interphalangeal joints and distal interphalangeal joints, and 3-DoF ball and
socket joint for metacarpophalangeal joints. The red dots on the fingertips
are proxies used to calculate the distance between the ball and the hand.

(b) The flat hand pose (left) and the fist pose (right) used for computing the
target pose for hands.

Fig. 4. Hand model

actuated with PD-servos. At every time step, the locomotion and
arm control components compute a target pose containing target
angles for each internal joint. The joint torques are then computed
by tracking this target pose using the PD-servos.
The player’s hands are modeled with fingers, each having five

degrees of freedom as shown in Figure 4a, and each being con-
trolled individually. Finger motions are known to contain redundant
degrees of freedom [Wheatland et al. 2015]. To make the control
problem simpler, our system computes the target poses for each
hand as the interpolation between a flat hand pose and a fist pose
as shown in Figure 4b, i.e.

θ̂i = (1 − λi )θflati + λiθ
fist
i (1)

where i ∈ { Thumb, Index, Middle, Ring, Pinky } is the index of a
finger, θ̂i , θflati , θfisti represent the pose of finger i in the target
pose, the flat hand pose, and the fist pose, respectively. λi is the
interpolation factor for finger i . To achieve coordinated finger mo-
tions, our system controls each hand using three control signals
α = {λThumb; λIndex; λPinky}. The interpolation factors for the other

Open-loop Control Clips

Feedback Policies
Control Fragment

Fig. 5. Structure of Controllers

two fingers are computed as:

λMiddle =
2
3
λIndex +

1
3
λPinky (2)

λRing =
1
3
λIndex +

2
3
λPinky (3)

3.2 Control Fragments
Both the locomotion control component and the arm control com-
ponent of our basketball controllers share the structure shown in
Figure 5. Specifically, each control component consists of a feed-
back policy and an open-loop control trajectory that has been seg-
mented into short clips. A control fragment, represented with a tuple
Ck = (mk ;π ), is then defined as the combination of an open-loop
control clip,mk , and an associated control policy, π . A controller is
thus a series of control fragments, {Ck }.

A control policy π : X → A is a mapping between a state x ∈ X
and an action a ∈ A, where X and A represent the state space
and the action space respectively. In our system, the state vector
x = (s;k) consists of the current state of the simulation, s , and the
index of the control fragment, k . The action a is a corrective offset
that will be added to the open-loop control clipmk to compensate
for unexpected perturbations in the simulation.
At runtime, our system evaluates the feedback policies at the

beginning of each control fragment and computes compensative
offsets for both the locomotion and arm control according to the
state of the simulation. By tracking the modified control clip, the
simulation can be stabilized within the vicinity of the reference
motion.

3.3 Review of Sampling-based Motion Control Method
We adapt the sampling-based motion control method proposed by
Liu et al. [2016] for learning the locomotion control components of
our basketball controllers. In this section, we briefly review a few
concepts of this method that relate to our work. We refer interested
readers to the original paper for more details.

When given a reference motion as input, the method of [Liu et al.
2016] first segments the input into short control fragments and
learns a stepwise linear control policy for these fragments. This
feedback policy is defined as

a = π (x) := π (s;k) = Mks + âk (4)

where Mk and âk are the gain matrix and the affine term of the
policy associated with the control fragment Ck respectively.

To learnMk and âk , Liu et al. [2016] construct a long open-loop
control trajectory which can be tracked using PD-servos to repro-
duce the target motion a number of times. In this process, every

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.



Learning Basketball Dribbling Skills Using Trajectory Optimization and Deep Reinforcement Learning • 142:5

fragment of the target motion has been performed multiple times,
thus a number of example state-action pairs can be extracted from
the construction for each control fragment. Then the policy param-
eters (Mk ; âk ) are learned with linear regression using the example
state-action pairs corresponding to the control fragment Ck .

Liu et al. [2016] developed a sampling-basedmethod, called Guided
SAMCON, to effectively construct the long open-loop control trajec-
tory. Guided SAMCON can be seen as a special Sequential Monte-
Carlo method. It constructs open-loop control for every control
fragment in sequence by generating sample actions, running simu-
lation while applying the actions, and recording the samples which
produce the motions that are the closest to the reference. These
samples are generated from the current feedback policy combined
with a Gaussian exploration noise. Once the long open-loop control
trajectory is constructed, the feedback policy is updated using the
recorded samples. This process continues until a robust policy is
found.

4 LEARNING OF LOCOMOTION CONTROL
Our system follows the same learning process as detailed in [Liu et al.
2016] to learn the locomotion control component for a basketball
skill. Because basketball players can only control the ball during
the short time the ball is in contact with their hands, we use control
fragments of 0.05 s in length in our control system, instead of the
0.1 s fragments suggested by [Liu et al. 2016]. By shortening the
length of the control fragments, we allow tighter control of the ball’s
motion as a new control fragment is selected more frequently.

As discussed above, the ball’s motion is not included in the learn-
ing of the locomotion component. This simplification allows us to
treat each hand as a single rigid body during the learning of the
locomotion control component, which reduces the total number of
degrees of freedom (DoF) involved in the simulation and signifi-
cantly speeds up the learning process.

Once learned, the locomotion control component is fixed during
the learning of the arm control component. For all of the skills
learned in this paper, the linear policy is robust enough to allow the
locomotion controller to deal with the disturbance caused by the
movement of the ball and the player’s arms.

5 LEARNING OF ARM CONTROL
The method developed by [Liu et al. 2016] relies on the Guided SAM-
CON algorithm to generate example open-loop control for training
the linear policies. Although this method is applicable to a variety
of locomotion skills, we find that it cannot generate open-loop arm
control that allows a player to successfully dribble a ball. Dribbling
tasks require that the basketball players should accurately control
the ball before it leaves their hands and anticipate when and where
the ball will next be contacted. A purely sampling-based method
cannot accomplish such tasks without an efficient lookahead policy.
To solve this problem, our system uses trajectory optimization to
compute successful open-loop arm control for dribbling tasks.
When our system constructs the open-loop locomotion control

clip for each control fragment Ck , the open-loop control targets for
shoulders, elbows, and wrists are also computed from the input mo-
tion clip. The open-loop arm control clipmk is thus initialized with

these control targets. The fingers are ignored during the learning
of the locomotion control components, so the target angles for the
finger joints are initialized to zero inmk . Note that these open-loop
control clips, {mk }, are not accurate enough to produce successful
dribbling because the ball’s movement is not taken into account.
The learning of the arm control component thus starts by improving
the physical accuracy of these open-loop arm control clips while
reconstructing the ball’s movement.

5.1 Trajectory Optimization
We use trajectory optimization to find a set of corrective offsets to
apply to the initial open-loop arm control clips so that the player can
successfully dribble the ball. Specifically, given a reference motion
clip as input, we first specify frames in which the ball should be
touching the player’s hands. This information will be used as soft
constraints in the optimization and does not need to be precise.
We represent this contact information as H = {Ht }, where Ht ∈

{∅; {L}; {R}; {L;R}} is the set of hands that should control the ball
in frame t . The objective of the optimization is to adjust the arm
control to minimize the distance between the ball and the player’s
hands in these frames. In addition, a few frames are designated
as checkpoints for the skill and will be treated as hard constraints
where the contact between the ball and the player’s fingers will be
enforced by the optimizer. We choose the frames in which the ball
reaches the highest point in a dribbling cycle as the checkpoints.
Additional checkpoints can be included for more complicated skills.
For example, for a spin crossover move, we set two checkpoints at
the beginning and the end of the spin so that the system ensures
the completion of the move during the optimization.

The optimization variables are the set of corrective offsets {χLk ; χ
H
k }

which will be used to correct the open-loop arm control clips {mk }.
Here χLk and χHk represent the corrections being applied to the left
arm and the right arm in control clipmk respectively. The value of
χ is a 10-DoF vector

χ = (qshoulder;qelbow;qwrist;αfingers) (5)

where qshoulder and qwrist are both three-dimensional rotation vec-
tors representing the offset rotations for the shoulder joint and the
wrist joint respectively, qelbow is the offset angle for the elbow joint,
and the 3-DoF vector αfingers contains the finger control parameters
defined in Section 3.1.
A basketball player often controls the ball using one hand at a

time, which allows our system to only optimize the corrective offsets
for a single arm. We represent the set of such corrective offsets with
X = {χhk }, in which each χhk indicates that the hand h ∈ {L;R} is
actively controlling the ball in control fragment Ck .X can be derived
from the contact information H . For example, when the player
dribbles the ball using one hand, X contains only the corrective
offsets for the corresponding arm; when the player controls the ball
with both hands alternately,X contains the corrective offsets for the
first arm before the ball contacts with the ground, and the corrective
offsets for the second hand thereafter. When a hand is inactive in a
control fragment, a default corrective offset χ̃ = {0; 0; 0; α̃ } is used
to keep it in the pose of the original motion capture clip, where α̃
is empirically set to (0:2; 0:2; 0:2).

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.



142:6 • Liu, Libin and Hodgins, Jessica

Iteration 1

Iteration 2

…

Check Points

Iteration 3

time

optimization

Update Initialization

Fig. 6. Optimization schedule for a cyclic basketball skill consists of three
optimization windows defined by three checkpoints. In Iteration 1, the
first and second windows are initialized to zero and optimized together.
The optimized corrective offsets for the first window are recorded by the
system, while those for the second windows are kept as the initial solution
for the next iteration. In Iteration 2, the second and third windows are
optimized together, with the third window initialized to zero. In Iteration 3,
the first window is optimized again. Our system initializes it according to
the recorded corrective offsets.

For a long, complex basketball skill consisting of many control
fragments, the optimization variable X can contain a large number
of parameters, making the optimization prohibitively expensive and
prone to falling into local minima. To mitigate this problem, our
system uses a sliding window scheme like many previous works
[Al Borno et al. 2013; Liu et al. 2006]. Specifically, our system divides
a basketball skill into optimization windows at the checkpoints and
then optimizes two consecutive windows each time. Figure 6 illus-
trates this process: The first two windows are optimized together
with all the corrective offsets initialized to zero. When the optimiza-
tion finishes, the first window is removed from the optimization
problem, and the second and third windows are optimized together.
The optimized corrective offsets for the second window are kept
as the initial solution for this new optimization problem, while the
corrective offsets for the third window are initialized to zero. This
process is repeated until the whole motion is optimized.
The objective of the optimization problem is formulated as:

min
X

1∑
|Ht |

∑
Ht ∈H

∑
h∈Ht

Dh
t +

wχ

|X|

∑
χ ∈X

| |χ | | +wẼ Ẽ (6)

where the first term computes the average distance between the
player’s fingers and the ball in the frames specified inH , the second
term penalizes excessive corrections with the weightwχ = 0:1, and
the last term is a helper cost that guides the optimization towards
the feasible region.

Our system employs five proxy points placed on the fingertips of
each hand to measure the distance between the ball and the player’s
hands. Figure 4a shows the position of these proxy points with red

dots. The distance between a ball and a hand is then computed as:

Dh
=

1
|Ph |

∑
p∈Ph

∥dp ∥ − rball (7)

where Ph represents the set of proxy points on hand h ∈ {L;R},
dp = pp − pball is the distance vector between proxy point p ∈ P
and the center of the ball, and rball is the radius of the ball.

Even with the sliding window scheme, the optimization problem
is still difficult to solve because the optimization process can easily
stall at a poor local minimum where the player cannot catch the
ball again after dribbling it. The helper cost in Equation 6 is crucial
to the success of the optimization. It serves as a large penalty when
the simulated ball motion does not satisfy some requirements and
becomes zero when the optimization converges. We formulate this
helper cost as:

Ẽ = 2Ncheck + max(href − hball; 0) +
T0 −Tcont

T0
(8)

where the first term Ncheck ∈ {0; 1; 2} counts the number of failed
checkpoints at which the distance between the ball and the corre-
sponding hands (Equation 7) is greater than 5 cm. The second term
of Equation 8. applies a penalty if the ball fails to reach a reference
height href at the last checkpoint, where href is extracted from the
reference motion as the height of the corresponding hand at the
checkpoint, less the radius of the ball along the normal direction of
the palm. The last term of Equation 8 prevents unwanted contacts
between the ball and the player’s body, where T0 is the total length
of the two windows being optimized and Tcont is either the time
when the first bad contact occurs or T0 if no such contact occurs.
We usewẼ = 10 as the weight of this helper cost term in Equation 6.

Our system employs the Covariance Matrix Adaption Evolution
Strategy (CMA-ES) [Hansen 2006] to solve the optimization prob-
lem. CMA-ES is a sampling-based method that iteratively evaluates
a number of random samples and updates the sample distribution
according to their costs. For each CMA-ES sample X, our system ap-
plies the corrective offsets to the corresponding control fragments,
simulates the two optimization windows from a starting state, and
evaluates the objective function of Equation 6. For efficiency, the
simulation stops early if the distance between the ball and the cor-
responding hand is greater than 5 cm at a checkpoint. The starting
state is initially obtained from the input motion clip, where the
position of the ball is manually set to make the palm and all the
fingers touch it. When the optimization finishes, this starting state
is updated to the end state of the first optimization window.

5.2 Learning of the Linear Control Policy
Similar to the locomotion control policy, the arm control policy,
π , takes a state vector x as input and computes an action vector
a = (χL; χR) that contains the correction offsets for both of the
character’s arms. The state vector x = (s;k) consists of the current
simulation state, s , and the index of the control fragment, k , where
s captures the states of the player and the ball as an 165-DoF vector:

s = {pball; Ûpball;pj ; Ûpj ;di ;c; Ûc;L} (9)

which consists of the positions and velocities of the basketball
(pball; Ûpball) and every body part of the player except the fingers

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.



Learning Basketball Dribbling Skills Using Trajectory Optimization and Deep Reinforcement Learning • 142:7

(pj ; Ûpj ), the distances between the fingertips and the center of the
ball (di ), the position and velocity of the player’s center of mass
(c; Ûc), and the angular momentum of the player (L). All these quan-
tities are computed in a body local reference coordinate frame that
moves horizontally with the player’s root and with one axis pointing
in the facing direction of the player.
Inspired by [Liu et al. 2016], we use linear regression to learn a

stepwise linear control policy, π (s;k) = Mks + âk , as the initial arm
control policy. The learned linear policy enables robust control of
simple skills such as carrying the ball while swinging the arms, but
cannot control more complicated dribbling skills. We will use this
linear policy to initialize the deep reinforcement learning process
in the next section.

The input to the regression is an optimized open-loop arm control
trajectory that produces a long motion sequence in which the target
skill is repeated Nrep times. To facilitate the optimization of this
long control trajectory, our system maintains a moving average
ãk of the optimized actions {ak,i } for each control fragment Ck
and initializes new optimizations according to it. As illustrated in
Figure 6, when a control fragment Ck has been optimized i times
and is being removed from the optimization, our system updates
the corresponding ãk using

ãk ← (1 − β)ãk + βak,i (10)

where the decay factor β = 1/i when i <= 10 and is fixed to 0.1
when i > 10. The next time this control fragment is optimized,
the corresponding actions will be initialized with 0:9ãk , where the
shrinkage factor 0.9 is employed to actively encourage the optimiza-
tion process to use small corrective offsets.
In addition to learning the linear control policies, our system

also computes the average ball positions for every control fragment
from the optimized motion sequence and updates the contact in-
formation setH to include only the frames in which the average
distance between the player’s fingers and the ball (Equation 7) is not
greater than 5 cm. This information will be referenced by the deep
reinforcement learning algorithm described in the next section.

5.3 Deep Reinforcement Learning
We model our control problem as a Markov Decision Process (MDP)
and train a non-linear arm control policy using deep reinforcement
learning to achieve robust control of basketball skills. Specifically,
our control system receives an observation xt ∈ X of the simulation
at the beginning of a control fragment Ckt , takes an action at ∈ A,
and receives a scalar reward rt = r (xt ;at ). The simulation then
transitions to a new state xt+1 when the control fragment finishes,
resulting in a transition tuple τt = (xt ;at ; rt ;xt+1). Repeatedly ap-
plying the policy π produces a sequence (x0;a0; r0;x1;a1; r1; : : : ).
The return from a state xt is then defined as the sum of the rewards
Rt =

∑∞
k=t γ

(k−t )rk along this sequence with a discounting factor
γ = 0:99. The goal of the reinforcement learning is to find the opti-
mal policy that maximizes the expected returns from any starting
state. This goal can be denoted with the objective J (π ).
The deep deterministic policy gradient (DDPG) algorithm [Lilli-

crap et al. 2015] is an actor-critic method based on the deterministic
policy gradient (DPG) [Silver et al. 2014]. This method trains a pol-
icy π (x ;θπ ), also known as the actor, and an action-value function

ALGORITHM 1: Learn Arm Control Policy Using DDPG
Input: control fragments {Ck }, k = 1, . . . , K and

associated linear control polices {(Mk , âk )}
Input: starting states {ski }, ki ∈ {1, . . . , K }
Result: arm control policy π

1 initialize D ← ∅
2 initialize critic network parameters θQ and actor network parameters

θπ
3 initialize target function θ ′Q ← θQ , θ ′π ← θπ
4 initialize simulation with random starting state ski , set x ← (ski , ki )
5 for t ← 1, 2, . . . do
6 k ← k (x ) ; // get the ‘k’ component of x

7 if t ≤ Ninit then
8 s ← s (x ) ; // get the ‘s’ component of x

9 compute action a = Mk s + âk + εt and r = r (x , a)
10 else
11 compute action a = π (x ; θπ ) + εt and r = r (x , a)
12 end
13 execute control fragment Ck and observe x ′ ← (s ′, next(k ))
14 store transition τ = (x , a, r, x ′) in D
15 if t > Ninit then
16 sample a minibatch of Nbatch transtions {τi } ⊂ D
17 compute target values yi = y(τi ; θ ′Q , θ ′π ) using Equation 13
18 update θQ by minimizing the loss function of Equation 12
19 update θπ using the policy gradient of Equation 16
20 θ ′Q ← (1 − η)θ

′
Q + ηθQ

21 θ ′π ← (1 − η)θ ′π + ηθπ
22 end
23 if x ′ ∈ Xterm then
24 reset simulation to a random stating state ski
25 x ← (s, ki )
26 else
27 x ← x ′

28 end
29 end

Q(x ;a;θQ ), or rather, the critic, both parameterized as artificial neu-
ral networks with the parameters θπ and θQ respectively. These
networks are updated iteratively based on past simulation results.

The action-value function Q(x ;a) computes the expected return
of taking an action a at a state x . With the deterministic policy π ,
this function can be written as the recursive Bellman equation:

Q(xt ;at ) = rt + γ Ext+1 |xt ,at [Q (xt+1;π (xt+1))] (11)

The DDPG algorithm learns this critic function using Q-learning. It
optimizes the network parameters θQ by minimizing the loss

L(θQ ) = E
[
∥y(τ ;θ ′Q ;θ ′π ) −Q(xt ;at ;θQ )∥2

]
+wθQ ∥θQ ∥

2 (12)

against a target function

y(τ ;θ ′Q ;θ ′π ) =

{
rt + γQ

(
xt+1;π (xt+1;θ ′π );θ ′Q

)
xt+1 < XT

rt xt+1 ∈ XT
(13)

where XT ⊂ X is the set of terminal states in which the player fails
to control the ball. The regularization weight is wθQ = 0:001 in

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.



142:8 • Liu, Libin and Hodgins, Jessica

all our tests. The parameters θQ are then updated using the batch
stochastic gradient descent method:

θQ ← θQ − αQ∇θQ L(θQ ) (14)

where ∇θQ L(θQ ) is the derivative of the loss function with respect
to the parameters θQ , and αQ is the learning rate for the critic.

The actor is updated similarly using the policy gradient ∇θπ J (θπ ):

θπ ← θπ − απ∇θπ J (π ) (15)

whereαπ is the learning rate for the actor. Silver and colleagues [2014]
proved that ∇θπ J (θπ ) can be computed using the chain rule:

∇θπ J (θπ ) = E
[
∇θπQ (x ;π (x ;θπ ))

]
= E

[
∇θπ π (x ;θπ ) · ∇aQ(x ;a)|a=π (x ;θπ )

]
(16)

In the learning process, the expectations in Equation 12 and Equa-
tion 16 are computed over a minibatch that consists of Nbatch = 32
samples randomly selected from a replay buffer D = {τi }, which
stores up to ND = 106 most recent transitions tuples. In addition,
instead of directly applying the update rule of Equation 14 and Equa-
tion 15, our system employs the Adam algorithm [Kingma and Ba
2014] to achieve stabler and more efficient learning.
Directly setting the parameters θ ′Q ;θ ′π of the target function of

Equation 13 to the updated critic parameters θQ and actor parame-
ters θπ at every learning step can make the learning process prone
to divergence in many cases [Mnih et al. 2015a]. Following the sug-
gestion of Lillicrap et al. [2015], our system fixes the problem of
divergence by making the target function slowly track the update of
θQ and θπ by maintaining a moving average θ ′∗ ← (1 − η)θ ′∗ + ηθ∗,
where θ∗ represents either θQ or θπ and the decay factor η = 0:001.

Algorithm 1 outlines the major steps of the learning process. Start-
ing from randomly initialized actor and critic networks, our system
repeatedly executes the current arm control policy and simulates
the control fragments in sequence. At the end of every control frag-
ment, the transition is evaluated by the reward function and stored
in the replay buffer. The critic θQ and the actor θπ are then updated
using ∇θQ L(θQ ) and ∇θπ J (θπ ) respectively. The replay buffer D is
initialized with Ninit = 2× 105 samples generated with the stepwise
linear arm control policy learned above. In the learning process,
random exploration noise εt ∼ N(0;σ 2

ε ) is added to each action,
where σε = 0:05 is the standard deviation of this noise.

Our system uses the reward function of Equation 17 to evaluate
the transitions:

r (x ;a) ≡ r ((s;k);a)

= R0 −wa∥a∥ −wDD(s)

−wball max
(
0; ∥pball − p̃ball,k ∥ − rball

)
(17)

where R0 = 1 is a constant default reward; D is the average distance
between fingertips and the ball as defined in Equation 7, which
is non-zero only in the frames specified in H ; p̃ball,k is the refer-
ence ball position corresponding to control fragment Ck , which
was obtained during the trajectory optimization. All the weights of
Equation 17 are empirically set to 1, exceptwD = 10.
Our system utilizes two medium-sized neural networks to ap-

proximate the actor and critic functions. As depicted in Figure 7,
the critic network has two fully connected hidden layers containing

𝒙

𝒂

𝑄 𝒙, 𝒂

Fully Connected

Fig. 7. Critic Network: The input layer consists of a state vector and an
action vector, the output is a scalar representing the critic. The hidden layers
consist of leaky rectified linear units (Equation 18). The action vector is not
connected to the network until the second hidden layer. All the layers are
fully connected.

𝒙 𝒂

Fully Connected

Fig. 8. Actor Network: The input layer is the state vector, the output layer
is the action computed by the policy. The hidden layer consists of leaky
ReLUs (Equation 18). The output layer is bounded by Equation 19. All the
layers are fully connected.

400 and 600 leaky rectified linear units (ReLU) respectively. A leaky
ReLU is defined as

f (z) =

{
z z ≥ 0
0:001z z < 0 (18)

where the scalar z represents the input signal to the unit. The action
component a of the critic function Q(x ;a) is not included into the
network until the second hidden layer.
The actor network shown in Figure 8 has one fully connected

hidden layer containing 500 leaky ReLUs. In practice, this network
can produce excessive actions in the first few thousands of learning
steps, which can lead to unstable learning because the gradient
information corresponding to these actions is not reliable. The same
issue has been observed in several recent works [Hausknecht and
Stone 2015; Peng and van de Panne 2017]. They suggested enforcing
reasonable action bounds to avoid this problem. Inspired by these
works, we include a leaky bounded output layer in the actor network,

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.



Learning Basketball Dribbling Skills Using Trajectory Optimization and Deep Reinforcement Learning • 142:9

O

P Q

(a)

O

P

O

Q

(b)

O

P Q
𝓒𝓒𝐏𝐏𝟐𝟐

𝓒𝓒𝐏𝐏𝟏𝟏

𝐎𝐎

(c)

Fig. 9. Control graphs used in the learning process. (a) An example control graph consist of three basketball skills. (b) A control graph derived from (a) for the
optimization of the open-loop arm control. (c) A control graph derived from (a) for the deep reinforcement learning of the arm control policy. The symbols C1

P
and C1

P each represents a control fragment. See the text for more details.

which is defined as

f (z) =


0:001(z + b) − b z < −b
z |z | ≤ b
0:001(z − b) + b z > b

(19)

where b = 1 is an empirical bound on each DoF of the action.
The policy gradient of Equation 16 is also rectified in the first 50k
learning steps using

∇θπQ
(
x ;π (x ;θπ );θQ

)
= ∇θπ π (x ;θπ ) · ∇a (20)

where each component of ∇a is determined by

∇ai =


b − ai ; ai > b and ∇aQ(x ;a)i > 0
−b − ai ; ai < −b and ∇aQ(x ;a)i < 0

∇aQ(x ;a)i ; otherwise

������
a=π (x ;θπ )

In our early experiments, we find that the output of the critic
network,Q(x ;a), is prone to increasing quickly in the first thousands
of learning steps, which causes the learning process to diverge. To
solve this problem, we let the learning rate of the critic network
decrease when the critic value increases. Specifically, the learning
rate is updated to αQ = 10−4 × 10αQ̄ every one hundred learning
steps, where Q̄ is the average critic value in the past one hundred
learning steps and α is a negative constant. We choose α = −0:04
empirically, which decreases the learning rate to one percent of its
original value when the average critic value is 50. This method is
inspired by the commonly used approach where the learning rate
decreases slowly at a fixed rate in the learning, but by letting the
learning rate change according to the average Q-value instead of the
fixed rate, we make the method independent from the convergence
speed and thus generalize well to skills of different difficulty. For the
actor network which is already bounded, we use a constant learning
rate απ = 10−4.

6 LEARNING OF CONTROL GRAPHS
The previous sections have introduced our learning pipeline for
individual basketball skills. In this section, we will describe how we
extend this method to learn control graphs that allow a simulated
player to switch among a set of basketball skills.

A control graph is a graph data structure whose nodes are control
fragments. Figure 9a shows an example control graph consisting of
three basketball skills marked with (O), (P), and (Q), each consisting
of a number of control fragments drawn in the same color. In this
example graph, (O) is a cyclic skill like dribbling, (P) and (Q) are both
noncyclic skills such as a crossover move. The player can perform
each skill by executing the control fragments in sequence and can
transition to another skill at designated transition points.

The structure of a control graph is created from the input motions
by specifying the transitions between the skills. Transitions only
happen at the frames where the states of the player are similar. A
few frames near a transition point are blended to make the transition
smooth. As with the learning of individual skills, we use the method
of [Liu et al. 2016] to learn the locomotion control for the entire
control graph.
Our system learns the arm control for the control graph in an

incremental manner. Take the control graph in Figure 9a as an
example. In both of the trajectory optimization stage and the deep
reinforcement learning stage, we train the cyclic skill (O) first and
then the noncyclic skills (P) and (Q), where the learned control
policy of (O) is reused in the latter trainings.

Specifically, in the trajectory optimization stage, our system first
optimizes the open-loop control clips for the cyclic skill (O) using
the method discussed above and learns a stepwise linear policy πO .
When training a noncyclic skill, e.g. (P), our system combines (O)
and (P) into a cyclic motion (O+P) and optimizes open-loop control
clips for it. Figure 9b shows this combined skill. This configuration
ensures that both the skill (P) and the transitions between (O) and
(P) are optimized simultaneously, so that the corresponding control
policies are compatible with each other.

Because a linear policy usually cannot provide robust control of a
basketball skill, our system still optimizes skill (O) when training the
combined skill (O+P), but the corresponding learned linear feedback
policy πO will not be updated. To facilitate the optimization, πO
is used as a guiding policy for skill (O) in the CMA-ES algorithm,

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.



142:10 • Liu, Libin and Hodgins, Jessica

where a sample action is computed as

a(j)k = πO (s;k) + a(j)cma-es

= MO,ks + âO,k + a(j)cma-es (21)

Here {a(j)cma-es} are the actual samples generated by the CMA-ES
algorithm.With the guiding policy πO , the optimization process can
quickly converge to successful open-loop control for (O). Therefore
the total computational cost for the combined skill is reduced.

In the deep reinforcement learning stage, our system first trains
the non-linear control policy for skill (O) using the DDPG algorithm,
then uses the combined skill (O+P) to train the noncyclic skill (P).
During the latter training, the control policy of (O) is fixed, and
the simulation of (O) is not used by the training algorithm. More
specifically, as shown in Figure 9c, when the transition sequence

C1
P (O) C2

P
appears in the learning process, where (O) may be performed multi-
ple times, the entire simulation will be recorded as a single transition
tuple (x1

P;a
1
P; r ;x

2
P). If the player fails to perform (O), the correspond-

ing state will be recorded in x2
P and marked as a terminal state. In

this way, our system learns a robust control policy that provides
successful control of both the skill (P) and the transitions between
(P) and (O).

7 RESULTS
We tested our method by letting a simulated player learn a set of
basketball skills. The player model is 1.8m tall, weighs 76 kg, and
contains 101 DoFs in total. A full-sized basketball is used in these
tests, which is 11.93 cm in radius and weighs 623.7 g. Our system
is implemented in C++. We augment the Open Dynamics Engine
(ODE) with the stable-PD control scheme as suggested in [Liu et al.
2013; Tan et al. 2011] to enable a large simulation time step so that
the system can run faster than real-time. The built-in contact model
of ODE is used in the simulation. This model treats each contact
as a set of unilateral constraints and ensures that the ball’s vertical
velocity after a collision with the ground is proportional to that
before the collision. We use a coefficient of restitution of 0.8 in our
simulation. The learned arm control policies are executed by a neural
network implementation based on the Eigen library [Guennebaud
et al. 2010]. With the simulation time step of 0.01 s, our unoptimized
single-threaded simulation pipeline runs at 3x faster than realtime
on a desktop with a Intel Core i5-6500 @ 3.2GHz CPU. The DDPG
algorithm is implemented in Python 2 based on the Theano library
[Theano Development Team 2016]. We run the learning algorithm
on a separate workstation with dual 3.06 GHz 6-core, 12-thread Intel
Xeon CPUs.

7.1 Cyclic Skills
We have tested a set of cyclic basketball skills to evaluate the capa-
bility of our method, including (A) carrying the ball while swinging
arms, (B) dribbling in-place with the right hand, (C) rotating the ball
around the waist, (D) dribbling in-place while switching hands, and
(E) dribbling while running. The input motion clips for these skills
were captured from human subjects of different heights and weights.

(A) (B)

(C) (D)

(E)

Fig. 10. Real-time simulation of the learned skills: (A) carrying a ball while
swinging arms, (B) dribbling in-place with the right hand, (C) rotating a ball
around the waist, (D) dribbling in-place while switching hands, (E) dribbling
while running.

Table 1. Performance statistics for cyclic skills.

skill Tcycle Topt Nlinear
# of DDPG Tddpg

(second) (hour) steps (×106) (hour)

(A) 1.5 1.1 571 0.08 0.8
(B) 0.75 4.0 99 2.34 19.9
(C) 0.9 3.3 4 0.28 2.1
(D) 1.7 8.7 6 2.67 19.4
(E) 0.6 7.3 6 0.81 6.3

The skill: (A) carrying the ball while swinging arms, (B) dribbling in-place with the
right hand, (C) rotating the ball around the waist, (D) dribbling in-place while switching
hands, and (E) dribbling while running. Tcycle represent the period of the skill. Topt is
the computation time for the trajectory optimization processes. Nlinear is the maximum
number of cycles that the simulated player can perform a skill using a linear arm control
policy. Tddpg is the computation time for the deep reinforcement learning processes.

We retarget them onto our player model by copying the rotations of
corresponding joints. A few frames at the beginning and the end of
each clip are kinematically blended to make the reference motion
cyclic. Although this kinematic process can cause artifacts such
as foot skating and inaccurate arm motions, the learning pipeline
automatically corrects these artifacts during the learning process.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.



Learning Basketball Dribbling Skills Using Trajectory Optimization and Deep Reinforcement Learning • 142:11

0 20 40 60 80 100
Cycle

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ac

tio
n 

Le
ng

th

Fig. 11. Average length of the optimized corrective offsets in every trajectory
optimization iteration of the dribbling skill (B).

The animation sequences shown in Figure 10 demonstrate the exe-
cutions of these learned skills. We encourage readers to watch the
supplemental video to better evaluate the motion quality.

Trajectory optimization. For each target skill, we optimize a mo-
tion sequence in which the player repeatedly performs the skill
Nrep = 100 cycles. The sample distribution of the CMA-ES algo-
rithm is initialized as a normal distribution N(0;σ 2

0 ), where the
initial standard deviation σ0 is set to 0:03 in the first cycle and is
reduced to 0:01 in the following cycles as a good initial solution
becomes available. The sampled corrective offsets for wrists are
doubled to make the hands more flexible. The trajectory optimiza-
tion process stops when either (a) the number of CMA-ES iterations
exceeds 1000, (b) the optimization process stalls for 200 iterations,
or (c) the average distance between the ball and the player’s hands,
i.e. the first term of Equation 6, is shorter than 1 cm for skills (A–D),
and 2 cm for the dynamic skill (E).

The column labeled Topt in Table 1 lists the optimization time for
these skills. CMA-ES samples are independent, which allows us to
parallelize the optimization process by evaluating each sample in a
different working thread. The values listed underTopt are measured
with five working threads on a desktop with a 4-core, 8-thread CPU.

Figure 11 depicts the average length of the optimized corrective
offsets during the trajectory optimization of the dribbling skill (B).
We find that the length of the corrective offset can be large in
the first few optimization iterations, which often causes abrupt
movements in the resulting motion. The shrinkage factor effectively
forces the optimization process to use smaller corrective offsets in
the following iterations, thus producing smoother motion and more
stable dribbling cycles.

Linear control policy. Our system then learns stepwise linear arm
control policies from these optimized motion sequences using linear
regression. The first 20 cycles of each motion sequence are discarded
as they may contain unnecessarily large actions. The column labeled
with Nlinear in Table 1 shows the performance of these linear arm
control policies, measured as themaximumnumber of cycles that the
player can successfully perform a skill. This value is obtained based
on one hundred experiments, each starting from a state randomly
chosen from the optimized motion sequence.

0 40 80 120 160 200 240 280

Learning Steps (×104)

1

10

100

1000

10000

#
T
er
m
in
al

S
ta
te
s

(A) carrying while swinging arms

(B) dribbling w/ one hand

(C) rotating around the waist

(D) dribbling w/ both hands

(E) dribbling while running

Fig. 12. Learning curves of cyclic skills. Each data point represents the
number of terminal states in the past 10k transition tuples.

The learned linear control policy enables the player to repeatedly
swing the arms hundreds of times while executing the carrying-
a-ball skill (A). This skill is relatively easy to control because the
player carries the ball with both hands and thus can apply control
to the ball constantly. We can further improve the robustness of
the linear policy by removing unnecessary information from the
simulation state vector s . Specifically, using a 18-DoF state vector
that contains only the distance vectors between the ball and the
thumb, index, and pinky fingers of each hand, the learned linear
control policy allows the player to robustly perform this skill.
Our system cannot achieve robust control of the more complex

skills (B–E) with linear feedback policies. The linear policy works
the best for the dribbling in-place skill (B), where the ball is dribbled
with one hand and has limited horizontal movement. The player
can dribble the ball up to 99 times in our experiments. For the
other skills, the player only finishes one cycle of the skill in most
experiments. Despite significant experimentation, we did not find
a representation of simulation state that can significantly improve
the robustness of those linear policies.

Deep reinforcement learning. Our system then learns non-linear
arm control policies for the skills using theDDPG algorithm sketched
in Algorithm 1. During the learning process, our system monitors
the number of terminal states in the last 10k transition tuples, which
provides a measurement of the robustness of the control policy. Fig-
ure 12 depicts how the robustness of each control policy improves
during the learning process. When no more than five terminal states
occur in a 10k-transition interval, we check the robustness of the
learned control policy and stop the learning process when the player
can finish one thousand cycles of the target skill with the learned
control policy.

The learned non-linear arm control policies enable robust control
of all of these cyclic skills. The ball movement can change dramati-
cally when the player performs a dynamic skill such as dribbling
while running (E), where the highest position of the ball can change

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.



142:12 • Liu, Libin and Hodgins, Jessica

0 40 80 120 160 200 240

Learning Steps (×104)

1

10

100

1000

10000

#
T
er
m
in
al
S
ta
te
s

(B) dribbling w/ one hand

initialized randomly

initialized w/ linear policy

0 100 200 300 400 500

Learning Steps (×104)

(D) dribbling w/ both hands

initialized randomly

initialized w/ linear policy

Fig. 13. Learning curves of skills (B) and (D) with different initialization
strategies. Each data point represents the number of terminal states in the
past 10k transition tuples. The learning process of skill (B) with random
initialization (blue curve) stops early because of divergence.

horizontally up to 20 cm across dribbling cycles, but the learned
control policy effectively handles the variation and produces robust
dribbles. Although the dribbling control policies are learned on the
ball with the coefficient of restitution of 0.8, the simulated player
can successfully dribble a different ball whose coefficient of restitu-
tion is in the range of [0.78, 0.82]. The simulated players can also
withstand some external pushes. For example, a player can keep
running and dribbling the ball after being pushed horizontally by an
up to 200Nx0.2s impulse. Larger pushes can cause dramatic change
in player’s state, and the player may fail to contact the ball again.
Initializing the replay buffers using the learned linear policies

is important to the learning of the non-linear arm control policies.
Figure 13 shows the learning processes of two in-place dribbling
skills (B) and (D) with different initialization strategies, where the
orange curves represent the learning processes that are initialized
with linear policies, and the blue curves represent the learning
processes that are initialized with the actions randomly sampled
from the exploration strategy. The learning algorithm fails to find a
successful control policy for skill (B) when it is initialized randomly,
and the learning process diverges in the first million steps. For skill
(D), the learning algorithm can eventually learn a robust policy from
random initialization, but the learning process is much longer than
the one initialized with the linear policy.

7.2 Control Graphs
We construct two control graphs, each containing one cyclic skill and
two noncyclic skills, that allow the player to perform two integrated
sets of basketball skills. The in-place skill graph consists of in-place
dribbling in front of the body, between the legs, and behind the
back. The running skill graph includes dribbling while running,
front crossover, and spin crossover. The first skill of each graph is
cyclic. All these skills and their mirrored counterparts are included
in the graphs. The same control policy is used for both a skill and
its reflection, where the states and actions are mirrored from left to
right.

The noncyclic skills in these control graphs are more complicated
than the cyclic skills and are difficult even for a skilled human player

Table 2. Robustness of noncyclic skills in the learned control graphs.

control graph noncyclic skill success rate

in-place skills dribbling between the legs 99.4%
dribbling behind the back 99.6%

running skills front crossover 98.1%
spin crossover 95.7%

to performwithout failing. To ensure that a successful control policy
can be found, we increase the standard deviation of the exploration
noise to σε = 0:1 for these skills. We further update the open-loop
arm control clips of the crossover moves by averaging the results of
the trajectory optimization, which improves the physical accuracy
of the control clips. In practice, the stopping criterion used in the
deep reinforcement learning experiments on the cyclic skills is hard
to satisfy on these noncyclic skills. Instead, our system performs
five million DDPG learning steps and chooses the control policy
corresponding to the learned step where the fewest terminal states
occur in the past 10k transitions.

To measure the robustness of these learned control graphs, we let
the player repeatedly perform a cyclic skill and a noncyclic skill from
a random starting state recorded during the trajectory optimization,
where the transition probability from the cyclic skill to the noncyclic
skill is 0:5. Table 2 lists the success rate of those noncyclic skills in
1000 transitions. In practice, the player never fails at the cyclic skill
and the transition, but may fail at the critical points of the noncyclic
skill. For example, the player may miss the ball after the spin when
performing the spin crossover skill.
We let the simulated basketball player perform the two learned

control graphs. For the in-place skill graph, the player randomly
chooses one of the skills to perform after finishing the current one.
For the running skill graph, a greedy planner is implemented to
enable interactive control of the direction of motion. The player drib-
bles the basketball while running and randomly performs one of the
crossover skills when the difference between the current direction
and the target direction is larger than 30 degrees. Figure 1 includes
several keyframes generated during the simulation. We refer readers
to the supplementary video for the animated performance.

8 DISCUSSION
Creating physics-based controllers for basketball skills is a challeng-
ing task. In this paper, we have proposed a framework for efficient
learning of these skills from motion capture data. To the best of our
knowledge, this is the first time that a variety of dribbling skills
has been synthesized in realtime using a physics-based method.
The learned basketball controllers can produce physically accurate
ball movement and coordinated arm motion. Some motion details,
such as that the ball may keep spinning for a while when it lightly
contacts with the player’s hands, can be difficult to create using
kinematics approaches. Although our framework is designed for
basketball skills, we believe that it can be extended to other motions,
such as juggling, where the interaction between a simulated char-
acter and the manipulated object does not significantly affect the
balance of the character. In future work, we are also interested in

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.



Learning Basketball Dribbling Skills Using Trajectory Optimization and Deep Reinforcement Learning • 142:13

investigating other sports like soccer where the balance control is
tightly coupled to the sports maneuvers.
Learning an arm control policy to realize robust control of the

ball in a dynamic basketball skill is difficult, because the control
task requires accurate control of the state of the ball but the ball is
only in contact with the hand for a short period of time. We find
that deep reinforcement learning is an effective way to achieve this
goal, while trajectory optimization and learning of the linear control
policies are both key components to the success and efficiency of
our framework.

The trajectory optimization component of our framework can be
used as an independent tool to construct physically plausible ball
movement for a given locomotion sequence. Including fewer frames
in the contact information setH and loosening the requirements on
the distance between the ball and the player’s hands can significantly
reduce the total optimization time, but the resulting motions can
be less natural because the ball may not move with the player’s
hands. We choose CMA-ES as our trajectory optimization method
because it is derivative free, easy to implement, and independent
from the choice of physics engine. When information such as the
Jacobians and Hessians of the system can be easily obtained, our
method can be extended to usemore efficient trajectory optimization
approaches such as differential dynamic programming (DDP) and
iterative linear-quadratic regulator (iLQR).
Deep reinforcement learning is known to be a computationally

costly process. It often takes millions of update steps to find a good
control policy. Our medium-sized network structure works well
with the full state vector, ensuring that the learning process can
finish in a reasonable time. We note that the update of the neural
network parameters is a bottleneck of the learning process with our
CPU-based implementation. A speedup can be achieved via code
optimization and a high performance GPU-based implementation
of the learning algorithm.

Supervised learning can be an alternative to our method for learn-
ing control policies. Combining trajectory optimization and neural
network policy regression has been shown to be an effective method
for learning robust control of a diverse range of motions [Mordatch
et al. 2015]. However, when learning a complicated non-linear con-
trol policy, a large amount of data are often necessary for supervised
learning to prevent over-fitting. Obtaining such training data will
need multiple runs of trajectory optimization, which can be a time-
consuming process.
Directly optimizing the control policy is another alternative to

reinforcement learning. A number of previous works learned suc-
cessful control of a wide range of motions [Ding et al. 2015; Tan et al.
2014; Wang et al. 2010]. However, when learning a complex control
policy with a large number of parameters, the optimization prob-
lem can be hard to solve and prone to poor local minima. Recently,
Salimans et al. [2017] reported a method for directly optimizing
complicated neural network policies using an enhanced evolution
strategy and a distributive setting, which provides a possible way
to solve this problem.
Similar to the sampling based method of [Liu et al. 2016], our

framework learns static control graphs from input motion capture
data. The use of reference motions greatly facilitates the learning
and ensures the naturalness of the results, and potentially enable a

user to alter a learned skill by providing a new reference motion or
by modifying the current one, which is easier and more intuitive
than tuning the hyperparameters of learning algorithms. However, a
potential limitation of this approach is that the controllers can track
the reference motions too rigidly. For example, a learned control
graph in our system only allows a player to perform the skills
via predefined transitions, while the locomotion component of a
learned basketball controller does not allow the length of the steps
to be changed at runtime. This limitation makes our framework not
capable of learning controllers for the skills that require accurate
control of steps, such as layups and slam dunks. Integrating more
motions into control graphs can mitigate this problem by allowing
the player to transition to other skills when necessary. In addition,
combining the learning of arm control policies with other types
of locomotion controllers and parameterizing the learned control
graphs is a very interesting topic for future investigation.

REFERENCES
Mazen Al Borno, Martin de Lasa, and Aaron Hertzmann. 2013. Trajectory Optimization

for Full-Body Movements with Complex Contacts. IEEE Trans. Visual. Comput.
Graph. 19, 8 (Aug 2013), 1405–1414.

Sheldon Andrews and Paul G. Kry. 2013. Goal directed multi-finger manipulation:
Control policies and analysis. Comput. Graph. 37, 7 (2013), 830 – 839.

Yunfei Bai, Kristin Siu, and C. Karen Liu. 2012. Synthesis of Concurrent Object Manip-
ulation Tasks. ACM Trans. Graph. 31, 6, Article 156 (Nov. 2012), 9 pages.

Georg Bätz, Kwang-Kyu Lee, Dirk Wollherr, and Martin Buss. 2009. Robot basketball:
A comparison of ball dribbling with visual and force/torque feedback. In 2009 IEEE
International Conference on Robotics and Automation. 514–519.

Georg Bätz, Uwe Mettin, Alexander Schmidts, Michael Scheint, Dirk Wollherr, and
Anton S. Shiriaev. 2010. Ball dribbling with an underactuated continuous-time
control phase: Theory & experiments. In 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2890–2895.

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2009. Robust Task-based
Control Policies for Physics-based Characters. ACM Trans. Graph. 28, 5, Article 170
(Dec. 2009), 9 pages.

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2010. Generalized Biped
Walking Control. ACM Trans. Graph. 29, 4, Article 130 (July 2010), 9 pages.

Kai Ding, Libin Liu, Michiel van de Panne, and KangKang Yin. 2015. Learning Reduced-
order Feedback Policies for Motion Skills. In Proceedings of the 14th ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation (SCA ’15). ACM, 83–92.

Gaël Guennebaud, Benoît Jacob, and others. 2010. Eigen v3. http://eigen.tuxfamily.org.
(2010).

Sehoon Ha, Yuting Ye, and C. Karen Liu. 2012. Falling and Landing Motion Control for
Character Animation. ACM Trans. Graph. 31, 6, Article 155 (Nov. 2012), 9 pages.

Sami Haddadin, Kai Krieger, and Alin Albu-Schäffer. 2011. Exploiting elastic energy
storage for cyclic manipulation: Modeling, stability, and observations for dribbling.
In 2011 50th IEEE Conference on Decision and Control and European Control Conference.
690–697.

Nikolaus Hansen. 2006. The CMA Evolution Strategy: A Comparing Review. In Towards
a New Evolutionary Computation. Studies in Fuzziness and Soft Computing, Vol. 192.
Springer Berlin Heidelberg, 75–102.

Matthew J. Hausknecht and Peter Stone. 2015. Deep Reinforcement Learning in Param-
eterized Action Space. CoRR abs/1511.04143 (2015). http://arxiv.org/abs/1511.04143

Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien. 1995.
Animating Human Athletics. In Proceedings of SIGGRAPH. 71–78.

Sumit Jain and C. Karen Liu. 2009. Interactive Synthesis of Human-object Interaction.
In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA ’09). 47–53.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

Paul G. Kry and Dinesh K. Pai. 2006. Interaction Capture and Synthesis. ACM Trans.
Graph. 25, 3 (July 2006), 872–880.

Taesoo Kwon and Jessica K. Hodgins. 2017. Momentum-Mapped Inverted Pendulum
Models for Controlling Dynamic Human Motions. ACM Trans. Graph. 36, 1, Article
10 (Jan. 2017), 14 pages.

Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010a. Data-driven Biped Control. ACM
Trans. Graph. 29, 4, Article 129 (July 2010), 8 pages.

Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović.
2010b. Motion Fields for Interactive Character Locomotion. ACM Trans. Graph. 29,
6, Article 138 (Dec. 2010), 8 pages.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.

http://arxiv.org/abs/1511.04143
http://arxiv.org/abs/1412.6980


142:14 • Liu, Libin and Hodgins, Jessica

Sergey Levine and Vladlen Koltun. 2013. Guided Policy Search. In Proceedings of the
30th International Conference on Machine Learning, Vol. 28(3). 1–9.

Sergey Levine and Vladlen Koltun. 2014. Learning Complex Neural Network Policies
with Trajectory Optimization. In Proceedings of the 31st International Conference on
Machine Learning, Vol. 32(2). 829–837.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with deep
reinforcement learning. CoRR abs/1509.02971 (2015). http://arxiv.org/abs/1509.02971

C. Karen Liu. 2009. Dextrous Manipulation from a Grasping Pose. ACM Trans. Graph.
28, 3, Article 59 (July 2009), 6 pages.

C. Karen Liu, Aaron Hertzmann, and Zoran Popović. 2006. Composition of Com-
plex Optimal Multi-character Motions. In Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA ’06). 215–222.

Libin Liu and Jessica Hodgins. 2017. Learning to Schedule Control Fragments for
Physics-Based Characters Using Deep Q-Learning. ACM Trans. Graph. 36, 3, Article
29 (June 2017), 14 pages.

Libin Liu, Michiel van de Panne, and KangKang Yin. 2016. Guided Learning of Control
Graphs for Physics-Based Characters. ACM Trans. Graph. 35, 3, Article 29 (May
2016), 14 pages.

Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. 2013. Simulation and Control of
Skeleton-driven Soft Body Characters. ACM Trans. Graph. 32, 6 (2013), Article 215.

Adriano Macchietto, Victor Zordan, and Christian R. Shelton. 2009. Momentum control
for balance. ACM Trans. Graph. 28, 3 (2009).

JamesMcCann and Nancy Pollard. 2007. Responsive Characters fromMotion Fragments.
ACM Trans. Graph. 26, 3, Article 6 (July 2007).

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015b.
Human-level control through deep reinforcement learning. Nature 518, 7540 (26
Feb 2015), 529–533. Letter.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, and
et al. 2015a. Human-level control through deep reinforcement learning. Nature 518,
7540 (26 Feb 2015), 529–533. Letter.

Igor Mordatch, Martin de Lasa, and Aaron Hertzmann. 2010. Robust Physics-based
Locomotion Using Low-dimensional Planning. ACM Trans. Graph. 29, 4, Article 71
(July 2010), 8 pages.

Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, and Emanuel V. Todorov.
2015. Interactive Control of Diverse Complex Characters with Neural Networks. In
Advances in Neural Information Processing Systems 28. 3114–3122.

Igor Mordatch, Zoran Popović, and Emanuel Todorov. 2012a. Contact-invariant Opti-
mization for Hand Manipulation. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA ’12). 137–144.

Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012b. Discovery of Complex
Behaviors Through Contact-invariant Optimization. ACMTrans. Graph. 31, 4, Article
43 (July 2012), 8 pages.

Uldarico Muico, Yongjoon Lee, Jovan Popović, and Zoran Popović. 2009. Contact-aware
nonlinear control of dynamic characters. ACM Trans. Graph. 28, 3 (2009).

Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017. DeepLoco:
Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning. ACM
Trans. Graph. 36, 4, Article 41 (July 2017), 13 pages.

Xue Bin Peng and Michiel van de Panne. 2017. Learning Locomotion Skills Using
DeepRL: Does the Choice of Action Space Matter?. In Proceedings of the ACM
SIGGRAPH / Eurographics Symposium on Computer Animation (SCA ’17). Article 12,
13 pages.

Nancy S. Pollard and Victor Brian Zordan. 2005. Physically Based Grasping Control
from Example. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (SCA ’05). 311–318.

Philipp Reist and Raffaello D’Andrea. 2012. Design and Analysis of a Blind Juggling
Robot. IEEE Trans. Robot. 28, 6 (Dec 2012), 1228–1243.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017. Evolution
Strategies as a Scalable Alternative to Reinforcement Learning. ArXiv e-prints (March
2017). arXiv:stat.ML/1703.03864

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. 2015a.
Trust Region Policy Optimization. In The 32nd International Conference on Machine
Learning. 1889–1897.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel.
2015b. High-Dimensional Continuous Control Using Generalized Advantage Esti-
mation. CoRR abs/1506.02438 (2015). http://arxiv.org/abs/1506.02438

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. 2014. Deterministic Policy Gradient Algorithms. In The 31st International
Conference on Machine Learning. 387–395.

Jie Tan, Yuting Gu, C. Karen Liu, and Greg Turk. 2014. Learning Bicycle Stunts. ACM
Trans. Graph. 33, 4, Article 50 (July 2014), 12 pages.

Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu. 2011. Articulated Swimming Creatures.
ACM Trans. Graph. 30, 4, Article 58 (July 2011), 12 pages.

Theano Development Team. 2016. Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016). http:
//arxiv.org/abs/1605.02688

Adrien Treuille, Yongjoon Lee, and Zoran Popović. 2007. Near-optimal Character
Animation with Continuous Control. ACM Trans. Graph. 26, 3, Article 7 (July 2007).

Hado van Hasselt. 2012. Reinforcement Learning in Continuous State and Action Spaces.
Springer, Berlin, Heidelberg, 207–251.

Kevin Wampler and Zoran Popović. 2009. Optimal gait and form for animal locomotion.
ACM Trans. Graph. 28, 3 (2009), Article 60.

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. 2010. Optimizing Walking
Controllers for Uncertain Inputs and Environments. ACM Trans. Graph. 29, 4,
Article 73 (July 2010), 8 pages.

Nkenge Wheatland, Yingying Wang, Huaguang Song, Michael Neff, Victor Zordan, and
Sophie Jörg. 2015. State of the Art in Hand and Finger Modeling and Animation.
Comput. Graph. Forum 34, 2 (May 2015), 735–760.

Yuting Ye and C. Karen Liu. 2012. Synthesis of detailed hand manipulations using
contact sampling. ACM Trans. Graph. 31, 4 (2012), Article 41.

KangKang Yin, Kevin Loken, and Michiel van de Panne. 2007. SIMBICON: Simple Biped
Locomotion Control. ACM Trans. Graph. 26, 3 (2007), Article 105.

Wenping Zhao, Jianjie Zhang, Jianyuan Min, and Jinxiang Chai. 2013. Robust Realtime
Physics-basedMotion Control for Human Grasping. ACM Trans. Graph. 32, 6, Article
207 (Nov. 2013), 12 pages.

Victor Zordan, David Brown, Adriano Macchietto, and KangKang Yin. 2014. Control of
Rotational Dynamics for Ground and Aerial Behavior. IEEE Trans. Visual. Comput.
Graph. 20, 10 (Oct 2014), 1356–1366.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 142. Publication date: August 2018.

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/stat.ML/1703.03864
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Simulation Framework
	3.2 Control Fragments
	3.3 Review of Sampling-based Motion Control Method

	4 Learning of Locomotion Control
	5 Learning of Arm Control
	5.1 Trajectory Optimization
	5.2 Learning of the Linear Control Policy
	5.3 Deep Reinforcement Learning

	6 Learning of Control Graphs
	7 Results
	7.1 Cyclic Skills
	7.2 Control Graphs

	8 Discussion
	References

