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Fig. 1. A machine learning approach is used to learn a regression function mapping phoneme labels to speech animation. Our approach generates continuous,
natural-looking speech animation for a reference face parameterization that can be retargeted to the face of any computer generated character.

We introduce a simple and effective deep learning approach to automatically

generate natural looking speech animation that synchronizes to input speech.

Our approach uses a sliding window predictor that learns arbitrary non-

linear mappings from phoneme label input sequences to mouth movements

in a way that accurately captures natural motion and visual coarticulation

effects. Our deep learning approach enjoys several attractive properties: it

runs in real-time, requires minimal parameter tuning, generalizes well to

novel input speech sequences, is easily edited to create stylized and emotional

speech, and is compatible with existing animation retargeting approaches.

One important focus of our work is to develop an effective approach for

speech animation that can be easily integrated into existing production

pipelines. We provide a detailed description of our end-to-end approach,

including machine learning design decisions. Generalized speech animation

results are demonstrated over a wide range of animation clips on a variety

of characters and voices, including singing and foreign language input. Our

approach can also generate on-demand speech animation in real-time from

user speech input.
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1 INTRODUCTION
Speech animation is an important and time-consuming aspect of

generating realistic character animation. Broadly speaking, speech

animation is the task of moving the facial features of a graphics (or

robotic) model to synchronize lip motion with the spoken audio

and give the impression of speech production. As humans, we are

all experts on faces, and poor speech animation can be distracting,

unpleasant, and confusing. For example, mismatch between visual

and audio speech can sometimes change what the viewer believes

they heard [McGurk and MacDonald 1976]. High-fidelity speech

animation is crucial for effective character animation.

Conventional speech animation approaches currently used in

movie and video game production typically tend toward one of

two extremes. At one end, large budget productions often employ

either performance capture or a large team of professional anima-

tors, which is costly and difficult to reproduce at scale. For example,

there is no production level approach that can cost-effectively gen-

erate high quality speech animation across multiple languages. At

the other extreme, low-budget, high-volume productions may use

simplified libraries of viseme lip shapes to quickly generate lower-

quality speech animation.

More recently, there has been increasing interest in developing

data-driven methods for automated speech animation to bridge

these two extremes, for example [De Martino et al. 2006; Edwards

et al. 2016; Taylor et al. 2012]. However, previous work requires pre-

defining a limited set of viseme shapes that must then be blended

together. Simple blending functions limit the complexity of the

dynamics of visual speech that can be modeled. Instead, we aim to

leverage modern machine learning methods that can directly learn

the complex dynamics of visual speech from data.

We propose a deep learning approach for automated speech ani-

mation that provides a cost-effective means to generate high-fidelity
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speech animation at scale. For example, we generate realistic speech

animation on a visual effects production level face models with over

100 degrees of freedom. A central focus of our work is to develop

an effective speech animation approach that may be seamlessly

integrated into existing production pipelines.

Our approach is a continuous deep learning sliding window pre-

dictor, inspired by [Kim et al. 2015]. The sliding window approach

means our predictor is able to represent a complex non-linear re-

gression between the input phonetic description and output video

representation of continuous speech that naturally includes context

and coarticulation effects. Our results demonstrate the improvement

of using a neural network deep learning approach over the decision

tree approach in [Kim et al. 2015]. The use of overlapping sliding

windows more directly focuses the learning on capturing localized

context and coarticulation effects and is better suited to predicting

speech animation than conventional sequence learning approaches,

such as recurrent neural networks and LSTMs [Hochreiter and

Schmidhuber 1997].

One of the main challenges using machine learning is properly

defining the learning task (i.e., what are the inputs/outputs and

training set) in a way that is useful for the desired end goal. Our

goal is an approach that makes it easy for animators to incorporate

high-fidelity speech animation onto any rig, for any speaker, and

in a way that is easy to edit and stylize. We define our machine

learning task as learning to generate high-fidelity animations of

neutral speech from a single reference speaker. By focusing on a

reference face and neutral speech, we can cost-effectively collect a

comprehensive dataset that fully captures the complexity of speech

animation. The large training data set allows us to reliably learn

the fine-grained dynamics of speech motion using modern machine

learning approaches. In contrast to previous work on procedural

speech animation [De Martino et al. 2006; Edwards et al. 2016; Tay-

lor et al. 2012], our approach directly learns natural coarticulation

effects from data. Defining our input as text (as phoneme labels)

means we learn a speaker independent mapping of phonetic context

to speech animation. We require only off-the-shelf speech recogni-

tion software to automatically convert any spoken audio, from any

speaker, into the corresponding phonetic description. Our automatic

speech animation therefore generalizes to any input speaker, for

any style of speech, and can even approximate other languages. In

summary, our contributions include:

• A definition of a machine learning task for automatically gen-

erating speech animation that may be integrated into existing

pipelines. In particular, we define the task to be speaker inde-

pendent and generate animation that can be retargeted to any

animation rig.

• A deep learning approach that directly learns a non-linear

mapping from the phonetic representation to visual speech in a

way that naturally includes localized context and coarticulation

effects, and can generate high-fidelity speech animation.

• An empirical evaluation comparing against strong baselines.

We include both quantitative and qualitative evaluations demon-

strating the improved performance of our approach.

• A demonstration of the ease with which our approach can be

deployed. We provide a wide range of animation clips on a vari-

ety of characters and voices, including examples of singing and

foreign languages, as well as a demonstration of on-demand

speech animation from user input audio.

2 RELATED WORK
Production quality speech animation is often created manually by

a skilled animator, or by retargeting motion capture of an actor.

The advantage of hand animation is that the artist can precisely

style and time the animation, but it is extremely costly and time

consuming to produce. The main alternative to hand animation is

performance-driven animation using facial motion capture of an

actor’s face [Beeler et al. 2011; Cao et al. 2015, 2013; Fyffe et al. 2014;

Huang et al. 2011; Li et al. 2013; Weise et al. 2011; Weng et al. 2014;

Zhang et al. 2004]. Performance-driven animation requires an actor

to perform all shots, and may generate animation parameters that

are complex and time consuming for an animator to edit (e.g. all

parameters are keyed on every frame). In contrast, our goal is to

automatically generate production quality animated speech for any

style of character given only audio speech as input.

Prior work on automated speech animation can be categorized

into three broad classes: interpolating single-frame visual units, con-

catenating segments of existing visual data, and sampling generative

statistical models.

Single-frame visual unit interpolation involves key-framing static

target poses in a sequence and interpolating between them to gener-

ate intermediate animation frames [Cohen and Massaro 1994; Ezzat

et al. 2002]. One benefit of this approach is that only a small number

of shapes (e.g. one per phoneme) need to be defined. However, the

realism of the animation is highly dependent on how well the inter-

polation captures both visual coarticulation and dynamics. One can

either hand-craft such interpolation functions [Cohen and Massaro

1994] which are time consuming to refine and ad-hoc, or employ a

data-driven approach based on statistics of visual speech parame-

ters [Ezzat et al. 2002]. These approaches make strong assumptions

regarding the static nature of the interpolant and do not address

context-dependent coarticulation. This issue is partially considered

in [Ezzat et al. 2002], which uses covariance matrices to define how

much a particular lip shape is allowed to deform, but the covariance

matrices themselves are fixed which can lead to unnatural deforma-

tions. In contrast, our method generates smooth animation without

making strong assumptions about the distribution of visual speech.

Sample-based synthesis stitches together short sequences of exist-

ing speech data that correspond either to fixed-length (e.g. words or

phonemes) [Bregler et al. 1997; Cao et al. 2005; Liu and Ostermann

2012; Mattheyses et al. 2013; Theobald and Matthews 2012; Xu et al.

2013] or variable length [Cosatto and Graf 2000; Edwards et al. 2016;

Ma et al. 2006; Taylor et al. 2012] units. Unit selection typically

involves minimizing a cost function based on the phonetic context

and the smoothness. One limitation is that the context typically

considers only the phoneme identity, and so a large amount of data

is required to ensure sufficient coverage over all contexts. Sample-

based animation is also limited in that it can only output units seen

in the training data. In contrast, our approach is significantly more

data efficient, and is able to learn complex mappings from phonetic

context to speech animation directly from training data.

A more flexible approach is to use a generative statistical model,

such as GMMs [Luo et al. 2014], switching linear dynamical systems
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[Englebienne et al. 2007], switching shared Gaussian process dynam-

ical models [Deena et al. 2010], recurrent neural networks [Fan et al.

2015], or hidden Markov models (HMMs) and their variants [An-

derson et al. 2013; Brand 1999; Fu et al. 2005; Govokhina et al. 2006;

Schabus et al. 2011; Wang et al. 2012; Xie and Liu 2007]. During

training of a HMM-based synthesiser, context-dependent decision

trees cluster motion data and combine states with similar distribu-

tions to account for sparsity of the phonetic contexts in the training

set. Synthesis involves first traversing the decision trees to select

appropriate models and then generating the maximum likelihood pa-

rameters from the models. Models are typically trained using static

features augmented with derivatives to constrain the smoothness of

the HMM output by ensuring that the velocity and acceleration of

the generated static features match the maximum likelihood veloc-

ity and acceleration. However, HMM-based synthesis may appear

under articulated because of the limited number of states and the

smoothness constraints on the parameters [Merrit and King 2013].

Within the context of previous work, our sliding window deep

learning approach addresses all the above limitations. We employ

a complex non-linear predictor to automatically learn the impor-

tant phonetic properties for co-articulation and context. Our ap-

proach directly learns to predict a sequence of outputs (i.e., an

animation sequence), and so we can directly model local dynamics

of visual speech while making minimal assumptions. As such, our

approach avoids the need for ad-hoc interpolation by directly learn-

ing a mapping of arbitrary phonetic (sub-)sequences to animation

(sub-)sequences.

Recently, deep learning has been successfully applied to problems

in the domains of computer vision [Krizhevsky et al. 2012], natural

language processing [Collobert et al. 2011], and speech recognition

[Graves and Jaitly 2014]. It has also been very effective in sequence

generation problems, including: image-caption generation [Xu et al.

2015], machine translation [Bahdanau et al. 2014], and speech syn-

thesis [van den Oord et al. 2016].

From a machine learning perspective, our setting is an instance

sequence-to-sequence prediction [Fan et al. 2015; Kim et al. 2015;

Sutskever et al. 2014]. There are two high level approaches tomaking

sequence-to-sequence predictions, slidingwindowmodels [Kim et al.

2015] versus recurrently defined models [Fan et al. 2015; Sutskever

et al. 2014]. The former emphasizes correctly modeling the local con-

text and ignores long-range dependences, whereas the latter empha-

sizes capturing long-range dependences using a low-dimensional

state that gets dynamically updated as the model processes the in-

put sequence. We employ a sliding window architecture, inspired

by [Kim et al. 2015], which better fits the requirements of speech

animation. We discuss this further in Section 5.1.

3 APPROACH OVERVIEW
We make the following requirements for our speech animation ap-

proach in order for it to be easily integrated into existing production

pipelines:

(1) High Fidelity. The generated animations should accurately

reflect complex speaking patterns present in visible speech

motion, such as co-articulation effects.
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Fig. 2. An overview of our system. See Section 4 for details for dataset,
Section 5 for details of training and prediction, and Section 6 for details of
the retargeting.

(2) Speaker Independent. The system should not depend on the

specific speaker, speaking style, or even the language being

spoken. Rather, it should be able to generate speech anima-

tion synchronized to any input speech.

(3) Retargetable and Editable. The system should be able to retar-

get the generated animations to any facial rig. Furthermore,

the retargeted animations should be easy to edit and stylize

by animators.

(4) Fast. The system should be able to generate animations

quickly, ideally in real-time.

Figure 2 depicts an overview of our approach. To satisfy high

fidelity (Requirement 1), we take a data-driven approach to accu-

rately capture the complex structure of natural speech animation. To

keep the learning problem compact, we train a predictor to generate

high-fidelity speech animation for a single reference face model.

By learning for a single face, we can control for speaker-specific

effects, and focus the learning on capturing the nuances of speech

animation. One practical benefit of this approach is that we can cost-

effectively collect an appropriate training set (i.e., for just a single

speaker) that comprehensively captures a broad range of speech

patterns. This approach also satisfies being retargetable and editable

(Requirement 3), since it is straightforward to retarget high-quality

speech animation from a single reference face to any production

rig, as well as import the animation into editing software such as

Autodesk Maya. We discuss in Section 5 specific design decisions of

our machine learning approach in order to learn to generate high

fidelity animations in real-time (Requirement 4).

To satisfy being speaker independent (Requirement 2), we train

our predictor to map input text (as a phoneme transcript) to speech

animation, rather than mapping directly from audio features. After

training, we can use any off-the-shelf speech recognition software
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to convert spoken audio into a phonetic transcript. We describe in

Section 5.2 our extended input phoneme representation.

More formally, let x denote an input phoneme sequence that we

wish to animate. Our goal is to construct a predictor h(x) := y that

can predict a realistic animation sequence y for any input x. Note
that y corresponds to the specific reference face model. A training

set of (x,y) pairs collected from the reference speaker is used for

training (see Section 4). In general, h can be complex and learn

complex non-linear mappings from x to y (see Section 5).

After h is learned, one can perform a one-time pre-computation
of any retargeting function from the reference face model to any

character CG model of any rig parameterization. Afterwards, we

can automatically and quickly make predictions to the retargeted

face for any input phoneme sequence. In summary, our pipeline is

described as follows:

Training:
(1) Record audio and video of a reference speaker reciting a

collection of phonetically-balanced sentences.

(2) Track and parameterize the face of the speaker to create the

reference face animation model y.
(3) Transcribe the audio into phoneme label sequences x.
(4) Train a predictor h(x) to map from x to the corresponding

animation parameters y.
(5) Pre-compute a retargeting function to a character CG model

(e.g., using existing retargeting techniques).

Animation:
(1) Transcribe input audio into a phoneme sequence x (e.g., via

off-the-shelf speech recognition software). The input can be

from any language and any speaker.

(2) Use h(x) to predict the animation parameters y of the refer-

ence face model corresponding to x.
(3) Retarget y from the reference face model to a target CG

model (can be repeated for multiple target rigs).

Note that Steps 1-4 during Training are performed only once for

all use cases. Step 5 needs to be pre-computed once for each new

target face model. Given a transcribed audio sequence (Step 1 dur-

ing Animation), our approach can then automatically generate the

accompanying visual speech animation in real-time.

Section 4 describes the training data. Section 5 describes our deep

learning sliding window approach. Section 6 describes retargeting

approaches. For speech-to-text transcription, we used either off-the-

shelf software such as the Penn Phonetics Lab Forced Aligner [Yuan

and Liberman 2008] that is based on the HTK toolbox [Young et al.

2009], or manual transcription in special cases.

4 AUDIO-VISUAL SPEECH TRAINING DATA
For our training set, we use the existing KB-2k dataset from [Taylor

et al. 2012]. KB-2k is a large audio-visual dataset containing a single

actor reciting 2543 phonetically diverse TIMIT [Garofolo et al. 1993]

sentences in neutral tone. The face in the video is front facing

and captured at 1080p29.97. All sentences in the dataset have been

manually annotated in the Arpabet phonetic code.

�3� +3�

1

2

3

�3� +3�

Shape model Combined model
(a) (b) (c)

Fig. 3. (a) The 34 vertices of the AAM shape component. (b) The first three
modes of variation (highest energy) in the AAM shape component shown
at ±3 standard deviations about the mean. (c) The first three modes of
variation of the combined AAM model shown at ±3 standard deviations
about the mean.

The TIMIT corpus was designed as a phonetically diverse speech

training dataset and achieves high coverage of the relevant coartic-

ulation effects while minimizing the amount of speech recording

required.

4.1 Reference Face Parameterization
The video data of KB-2k is compactly parameterized using the coef-

ficients of linear models of lower facial shape and appearance that

an Active Appearance Model (AAM) optimizes to track the video

frames [Cootes et al. 2001; Matthews and Baker 2004]. The shape

component represents N = 34 vertices of the lower face and jaw, s =
{u1,v1,u2,v2, ...,uN ,vN }T , as the linear model, s = s0 +

∑m
i=1 sipi ,

using m = 16 modes to capture 99% of shape variation, see Fig-

ure 3(b). The mean shape is s0, each si is a shape basis vector, and
the shape parameters are pi .
The appearance model is separated into k = 2 non-overlapping

regions Ak (u), where u represents the set of 40 thousand (u,v)
pixel coordinates sampled at s0. Using two regions allows the pixels
within the inner mouth area (when visible) to vary independently

of the remaining face pixels of the lips and jaw, Ak (u) = Ak
0
(u) +∑n

i=1 λ
k
i A

k
i (u). The mean appearance of each region is Ak

0
, the basis

vectors Aki , and appearance parameters λki .
The reference face representation, y, is a q = 104 dimensional de-

scription of both deformation and intensity changes of a human face

during speech described as a linear projection of concatenated shape

and appearance parameters. An appropriate weight,w , balances the

energy difference of intensity and shape parameters [Cootes et al.

2001],

©­«
wp
λ1

λ2

ª®¬ = U yVT =

q∑
i=1

jiyi . (1)

The first three modes of joint variation, ji, are shown in Figure 3(c).

Complete details are included in [Taylor et al. 2012].
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Fig. 4. Depicting our deep learning sliding window regression pipeline. We
start with a frame-by-frame sequence of phonemes x as input (a).We convert
x into a sequence of overlapping fixed-length inputs (x̂1, x̂2, . . .) (b). We
apply our learned predictor to predict on each x̂i (c), which results in a
sequence of overlapping fixed-length outputs (ŷ

1
, ŷ

2
, . . .) (d). We blend

(ŷ
1
, ŷ

2
, . . .) by averaging frame-wise to arrive at our final output y (e). Note

the center frame of ŷi is highlighted, but all predicted values contribute to
y. Only the first predicted parameter value is shown for clarity.

5 DEEP LEARNING SLIDING WINDOW REGRESSION
Our sliding window neural network deep learning approach is in-

spired by [Kim et al. 2015], and is motivated by the following as-

sumptions.

Assumption 1. Coarticulation effects can exhibit a wide range
of context-dependent curvature along the temporal domain. For ex-
ample, the curvature of the first AAM parameter, Figure 4(e), can
vary smoothly or sharply depending on the local phonetic context,
Figure 4(a).

Assumption 2. Coarticulation effects are localized, and do not
exhibit very long range dependences. For example, how one articulates
the end of “prediction” is effectively the same as how one articulates the
end of “construction”, and does not depend (too much) on the beginning
of either word.

These assumptions motivate the main inductive bias in our learn-

ing approach, which is to train a sliding window regressor that learns
to predict arbitrary fixed-length subsequences of animation. Figure 4

depicts our prediction pipeline, which can be summarized as:

(1) Decompose the input phonetic sequence x into a sequence of

overlapping fixed-length inputs (x̂1, x̂2, . . . , x̂T ) of window
size Kx (Figure 4(b)).

(2) For each x̂j , predict using h, resulting in a sequence of over-

lapping fixed-length outputs (ŷ
1
, ŷ

2
, . . . , ŷT ), each of win-

dow size Ky (Figure 4(c) and Figure 4(d)).

(3) Construct the final animation sequence y by blending to-

gether (ŷ
1
, ŷ

2
, . . . , ŷT ) using the frame-wise mean (Figure

4(e)).

Since the mapping from phonetic subsequences to animation sub-

sequences can be very complex, we instantiate h using a deep neural

network. Our learning objective is minimizing square loss between

the ground truth fixed-length subsequence and its corresponding

prediction outputs among training data.

5.1 Deep Learning Details & Discussion
Deep learning approaches have become popular due to their ability

to learn expressive representations over raw input features, which

can lead to dramatic improvements in accuracy over using hand-

crafted features [Krizhevsky et al. 2012].

For our experiments, we use a fully connected feed forward neu-

ral network with a (sliding window) input layer connected to three

fully connected hidden layers and a final output layer. There are

3000 hidden units per hidden layer, each using a hyperbolic tangent

transfer function. We employ standard mini-batch stochastic gradi-

ent descent for training, with mini-batch size of 100. To counteract

overfitting, we use dropout [Srivastava et al. 2014] with 50% prob-

ability. The final output layer is standard multi-linear regression

trained to minimize the squared loss. One can train this model using

any off-the-shelf deep learning platform.
1

As mentioned earlier, the key property of our deep learning slid-

ingwindow approach is that it can jointly predict for multiple frames

simultaneously, which is directly motivated by the assumption that

we should focus on capturing local temporal curvature in visual

speech. One can equivalently view our sliding window predictor as

a variant of a convolutional deep learning architecture.

In contrast, many recent deep learning approaches to sequence-

to-sequence prediction use recurrent neural networks (and their

memory-based extensions) [Fan et al. 2015; Sutskever et al. 2014],

and model such dependencies indirectly by propagating information

from frame to frame via hidden unit activations and, in the case of

LSTMs, a state vector. While RNNs and LSTMs have the capacity

to capture complex temporal curvature, their inductive bias is not

necessarily aligned with our modeling assumptions, thus potentially

requiring a large amount of training data before being able to reliably

learn a good predictor. Instead, we focus the learning on capturing

neighborhoods of context and coarticulation effects. We show in

our experiments that the sliding window architecture dramatically

outperforms LSTMs for visual speech animation.

Our approach has two tuning parameters, Kx and Ky . The input
window length Kx must be large enough to capture the salient

coarticulation effects, and the output window length Ky must be

large enough to capture the salient local curvature of y. For example,

making Kx too small will not allow the model to disambiguate

between two plausible coarticulations (due to the disambiguating

phoneme lying outside the input window), and having Ky be too

small can lead to noisy predictions. However, the larger that Kx
and Ky are, the more training data is required to learn an accurate

model since the intrinsic complexity of the model class (and thus

risk of overfitting to a finite training set) increases with Kx and Ky .

1
We used Keras (http://keras.io/) with Theano [Bastien et al. 2012]
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• Does phone /s/ span L input frames of the subsequence

starting from the k-th frame? (position, identification and

length of span)

• Is the phone at k-th input frame a nasal consonant? (at-

tribute)

• Are the phones atk-th andk+1-th input frames in a specific

cluster of consonant-vowel pairs? (transition category)

Fig. 5. Example linguistically motivated indicator features used to augment
the phoneme label input features.

We find that Kx and Ky are straightforward to tune, in part due

to how quickly our model trains. From our experiments, we find

Kx = 11 and Ky = 5 give the best results on our training and test

sets.

5.2 Feature Representation
The final major design decision is the choice of feature representa-

tion. The most basic representation is simply a concatenated feature

vector of phoneme identity indicator variables per input frame. Be-

cause our dataset contains 41 phonemes, this would result in a

41 × Kx dimensional input feature vector to represent each input

subsequence x̂. We call this the raw feature representation.
We also incorporated a linguistically motivated feature represen-

tation. These are all indicator features that correspond to whether a

certain condition is satified by the input subsequence x̂. We proce-

durally generate three groups of features:

• Phoneme identification spanning specific locations. Ev-
ery feature in this group corresponds to an indicator function

of whether a specific phone spans a specific set of frames. E.g.,

“Does the phone /s/ span frames j through k of the input subse-

quence?”

• Phoneme attribute category at a specific location. Every
feature in this group corresponds to an indicator function of

whether a phone belonging to a specific category at a specific

frame location. E.g., “Is the phone at frame j of the input a

nasal consonant?”

• Phoneme transitions at specific locations. Every feature

in this group corresponds to an indicator function of whether

two adjacent frames correspond to a specific type of phoneme

transition. E.g., “Are the phones at k-th and k + 1-th input

frames in a specific cluster of consonant-vowel pairs?”

Figure 5 shows some example queries. In our experiments, we found

that using linguistically-motivated features offered a small improve-

ment over using just the raw features. The supplementary material

contains a full expansion of all the linguistic features.

6 RIG-SPACE RETARGETING
To generalize to a new output face model the predicted animation

must be retargeted. The AAM reference face representation de-

scribed in Section 4.1 captures both shape and appearance changes

(e.g. teeth and tongue visibility) during speech and any potentially

complex and content-dependent retargeting function may be used
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Fig. 6. a) Four modes of the reference shape model at ±3σ from the mean
create eight speech retargeting shapes. b) Corresponding poses transferred
to a variety of face rigs by an artist.

to compute animation parameters for any rig implementation and

character style.

Retargeting approaches that are of particular interest are those

that can be pre-computed once by exploiting the known subspace of

facial motion captured by the AAM representation. To accomplish

this, the retargeting function must be well-defined over the entire

range of poses that the reference face model can take. One effective

approach is to use piece-wise linear retargeting where a small set

of poses is manually mapped from the reference face model to the

target face model. However, we note that any other retargeting

approach may be used.

Our implementation pre-computes a retargeting function that

spans the animation space of the neural network bymanually posing

a subset of the shape bases, si , of the reference AAM representation

and the mean shape, s0, on a target character. We use the first four

shape modes for retargeting as these modes describe the most sig-

nificant motion (91% energy) of the lower face and are interpretable

by an animator.

To better represent non-linear behavior on the target rig we pose

the output character at both +3 and −3 standard deviations from the

mean, resulting in a set of eight poses, s−3
1
, s+3

1
, . . . , s−3

4
, s+3

4
, where

suk = s0 + sk ∗ u
√
pk is relative to the mean pose, s0.
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Figure 6 depicts an example retargeting process. For each of eight

retargeting poses of the reference face, we create a one-time corre-

sponding pose on each of the target rigs.We find that it is straightfor-

ward to pose these shapes manually, largely due to the fact that the

basis shapes in the reference face are easy to interpret. For example,

the first mode corresponds to how open the mouth is.

The rig parameters corresponding to the eight poses (effectively

rig eigenvectors) are stored, giving R = {r−3
1
, r+3

1
, . . . , r−3

4
, r+3

4
}, rel-

ative to the mean pose r0. Subsequently predicted speech animation

from the neural network can be directly transferred to the target

rig by forming linear combinations of columns of R (i.e. rig-space

interpolation). The 8-dimensional weight vector,w, that determines

the contribution of each pose is calculated by:

wu
k = max(

p̂k
u
√
pk
, 0) (2)

where p̂k is the shape component of the neural network prediction

and u ∈ {−3,+3} dependent on whether the pose is associated with

a negative or positive deviation from the mean. To retarget the

predicted pose to a character, the rig parameters are combined as

follows:

Rt = (R − r0)w + r0 (3)

The initial character setup is only performed once for each new

character and is independent of how the rig is implemented (for

example, blend-shapes, deformer based, etc.). Afterwards the ani-

mation pipeline is fully automatic. Examples of animation created

using this rig-space retargeting approach are shown in the supple-

mentary video. Rig-space retargeting is a simple pre-computable

approach that captures the energy of speech articulation and yields

consistently high quality animation. For well rigged characters it is

easy for an animator to edit the resulting neutral speech animation,

for example to overlay an emotional expression.

Other retargeting approaches are possible, and by design, indepen-

dent of our speech animation prediction approach. Mesh deforma-

tion transfer [Sumner and Popović 2004] may be used to automate

retargeting of reference shapes for rig-space deformation for exam-

ple. Deformation transfer could also be used per-frame to transfer

prediction animation to an un-rigged character mesh.

7 RESULTS
For visual inspection we include frames of example predicted speech

animations. Please refer to the supplementary video for animation

results.

Figure 7 shows how well our neural network model performs in

predicting the speech animation of the original reference speaker.

The input is one of the held-out sentences of the reference speaker.

The resulting predicted speech animation can be directly compared

to the (unseen) original video. We see that our approach is able to

accurately capture the salient lip and jaw movements. In general,

our approach tends to slightly under articulate compared to the

original video
2
– however this may be compensated for by scaling

up the motion during retargeting if required (we do not).

Figure 8 shows the full sequence of intermediate animations

within the prediction pipeline. The first row shows the input speaker

2
This is common to all machine learning approaches due to the need for regularization

to prevent overfitting and enable generalizing to new inputs.

(who is not the reference speaker used for training). The second row

shows the generated speech animation on the reference face model,

and the final rows show the animation retargeted to the example

face rigs.

Figure 9 shows neutral speech animation to a target rig with

expression stylization added as a post-process by an animator. It is

straightforward to import our speech animations into standard ani-

mation editing software such as Maya to create edited and stylized

final animations.

8 EVALUATION
We present an empirical analysis evaluating our approach using

both quantitative and subjective measures against several strong

baselines. We test on not only the held-out test sentences from the

KB-2k training dataset, but also on completely novel speech from

different speakers. Traditionally, machine learning approaches are

evaluated on test examples drawn from the same distribution as the

training set. However, testing on novel speakers is a much stronger

test of generalizability, and is required for production quality speech

animation. Because we do not have ground truth, we evaluate that

setting solely via subjective evaluation (i.e., a user preference study).

8.1 Baselines
We compare against a variety of state-of-the-art baselines selected

based on their performance and availability, or ease of implementa-

tion.

HMM-based Synthesis. The current state-of-the-art appoach
is the (HTS) HMM-based synthesizer [Zen et al. 2007]. We trained

this model using the same reference face parameters y as our ap-

proach. The HMM synthesizer uses context-dependent decision tree

clustering [Odell 1995] to account for the sparseness of (quinphone)

contexts in the training data by tying states with similar properties.

The query set used in clustering is a subset of the indicator features

used by our approach (Section 5.2). There are 749 queries which

relate to the identity of the phonemes forming the context, and their

place and manner of articulation (e.g., vowels, consonants, voiced,

voiceless, nasal, etc.) The clustering criterion is the minimum de-

scription length (MDL) and each cluster must contain no fewer than

50 observations, which produces 11893 leaf nodes. We use typical

left-to-right phone models with five emitting states and a single

mixture component per state [Zen et al. 2007].

DynamicVisemeAnimation. Dynamic visemeswere proposed

as a data-derived visual speech unit in contrast to traditional visemes.

Dynamic visemes are defined as speech-related movements of the
face, rather than static poses. They are identified by segmenting

the reference face parameters y into sequences of non-overlapping,

visually salient short gestures which are then clustered. Each cluster

represents visually similar lip motions that map to many strings of

acoustic phonemes, each of variable length. In [Taylor et al. 2012]

animation is predicted using dynamic programming to find the best

match. The best dynamic viseme sequence is evaluated by minimiz-

ing a cost function which accounts for the probability of producing

the phoneme sequence, the smoothness of the resulting animation,

and for variable speaking rate. We use the implementation described

in [Taylor et al. 2012].
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Fig. 7. Comparison of held-out video of the reference speaker compared with AAM reference model rendered predictions. Predicted mouth regions are
rendered onto the original face for visual comparison.

/  ay      l      ay      k      t      uw      s      p      iy      k      ih      n      m      uw      v      iy      k      w      ow      t      s   /
“I like to speak in movie quotes”

a)

b)

c)

Fig. 8. Animation is transferred from the shape component of the AAM to CG characters using rig-space retargeting. (a) Reference video of the input speech
(unseen speaker). (b) Visualization of the predicted animation as AAM. (c) The corresponding rig-space retargeted animation on a selection of face rigs.

Long Short-Term Memory Networks. LSTMs are a memory-

based extension of recurrent neural networks, and were recently

applied to learning photorealistic speech animation [Fan et al. 2015],

which demonstrated some modest improvements over basic HMMs

using a small dataset. We follow the basic setup of [Fan et al. 2015],

and trained an LSTM network [Bastien et al. 2012] on the KB-2k

dataset. We use three hidden layers, a fully-connected layer, and two

LSTM layers. We experimented with 100 to 3000 hidden units for

each layer, finding 500 achieves the best performance. Mini-batch

size was 10, and to prevent overfitting we use dropout with 50%

probability [Srivastava et al. 2014].
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Fig. 9. Expression and stylization can be added to the predicted speech animation using standard animation techniques. (Top row) Frames of neutral speech
animation generated using our approach for the sentence “I’ll finally be the hero I’ve always dreamed of being". (Bottom row) The same neutral speech
animation with expression and upper facial motion added by an artist.
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Fig. 10. Showing the mean square error of the KB-2k held out test sentences
in the AAM parameter space, the predicted mesh vertex locations (shape),
and appearance pixel intensities. We see that our approach consistently
achieves the lowest mean squared error.

Decision Tree Regression. Decision trees remain amongst the

best performing learning approaches [Caruana and Niculescu-Mizil

2006] and make minimal distributional assumptions on the training

data (e.g., no smoothness assumption). We use the sliding window

decision tree implementation described in [Kim et al. 2015] with

Kx = 11 and Ky = 5 and set the minimum leaf size to 10.

8.2 Benchmark Evaluation
In our benchmark evaluation, we evaluate all approaches on the

fifty KB-2k held out test sentences. Because we have the ground

truth for this data, we evaluate using squared loss of the various

approaches. Figure 10 shows the results when measuring squared

error in the reference AAM model parameter space, in the predicted

shape vertex positions, and in predicted appearance pixel inten-

sities. Decision tree regression is denoted “Dtree”, and dynamic

visemes is denoted “DV”. We see that our approach consistently

achieves the lowest squared error. We also see that LSTMs perform

significantly worse on our data, which agrees with our intuition

as discussed in Section 5.1. The most competitive baselines are the

1-1 3-1 7-3 11-5 15-7 19-9
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Fig. 11. Showing the mean square error of our approach as we vary the
sliding window input-output sizes (Kx and Ky ). We see that performance
flattens as we increase the window sizes, indicating that there is little to be
gained from modeling very long-range coarticulation effects.

decision tree and HMM-based approaches, which still perform no-

ticeably poorer.
3
These results suggest that our sliding window

neural network approach achieves state-of-the-art performance in

visual speech animation. Of course, squared error is not perfectly

correlated with perceived quality, and modest differences in squared

error may not be indicative of which approach produces the best

speech animation. To address perceptual issues, Section 8.3 shows

user study results.

Figure 11 shows the comparison of our approach as we vary the

sliding window input/output sizes (Kx and Ky ). We see that the

performance converges as we increase the window sizes, indicating

that there is little to be gained from modeling very long-range

coarticulation effects.

In terms of computational cost, our approach evaluates predic-

tions at ∼1000 video frames per second. Training the model takes

just a couple of hours on an Nvidia Tesla K80 GPU.

3
Additional results and detailed analysis are included in the supplemental material.
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Table 1. Showing user study results for the fifty KB-2k held out test sen-
tences. For each test sentence, we ran a side-by-side comparison between
two methods, and collected 25 pairwise judgments per comparison. A
method wins the comparison if it receives the majority of the pairwise
judgments for that test sentence. All results except comparison with ground
truth AAM are statistically significant with 95% confidence.

Ours vs AAM HMM DV LSTM Dtree

W / L 27 / 23 39 / 11 50 / 0 50 / 0 38 / 12

Table 2. Showing user study results for the 24 novel speaker test sentences.
The setup is the same as Table 1. All results are statistically significant with
95% confidence.

Ours vs HMM DV LSTM Dtree

W / L 19 / 5 24 / 0 24 / 0 15 / 9

8.3 User Preference Study
We conducted a user preference study to complement our quan-

titative experiments. We compared our approach to the baseline

implementations using two sets of test sentences. The first are the

fifty KB-2k test sentences, which is the same speaker as the training

set. The second is a set of 24 sentences each spoken by a different

speaker not contained in the training set and represents a challeng-

ing generalization test. Note that for the second set of sentences

we do not have ground truth parameterized reference video and so

there is no analogous AAM benchmark evaluation for them.

We conducted the user preference study on Amazon Mechanical

Turk. For each sentence we showed two animations side-by-side

and asked the subject to make a forced choice of which animation

seems more natural. We collected 25 judgments per sentence and

comparison case. A method “wins” the comparison if it receives a

majority of the preference judgments (i.e., at least 13). The raw user

study results are available in the supplementary material.

Table 1 shows the aggregate results for the fifty KB-2k test sen-

tences. We see that our approach is preferred to the baselines, and

is comparable to the ground truth AAM reference representation.

Table 2 shows analogous results for the 24 novel speaker test sen-

tences. We again see the same pattern of preferences. These results

suggest that our approach enjoys robust perceptual performance

gains over previous baselines.

9 SUMMARY
We introduce a deep learning approach using sliding window re-

gression for generating realistic speech animation. Our framework

has several advantages compared to previous work on visual speech

animation:

• Our approach requires minimal hand-tuning, and is easy to

deploy.

• Compared to other deep learning approaches, our approach

exploits a key inductive bias that the primary focus should

be on jointly predicting the local temporal curvature of visual

speech. This allows our approach to generalize well to any

speech content using a relatively modest training set.

• The compact reference parameterization means our approach

is easy to retarget to new characters.

• It is straightforward to edit and stylize the retargeted animation

in standard production editing software.

We demonstrate using both quantitative and subjective evalua-

tions that our approach significantly outperforms strong baselines

from previous work. We show that these performance gains are

robust by evaluating on input from novel speakers and in novel

speaking styles not contained in the training set.

9.1 Limitations & Future Work
The main practical limitation is that our animation predictions are

made in terms of the reference face AAM parameterization. This

enables the generalization of our approach to any content, but retar-

geting to a character introduces a potential source of errors. Care

must be taken when posing the initial character setup for the retar-

geting shapes to preserve the fidelity of the predicted animation.

Fortunately, this is a precomputation step that only needs to be

performed once per character. Moving forward, one interesting di-

rection for future work is to use real animation data to develop a

data-driven retargeting technique tailored for automated speech

animation.

By learning from only neutral speech we are able to learn a

robust model of speech animation that generalizes to any speech

content. It is currently the role of the artist to add expression and

emotion. An interesting future direction would be to train a much

larger neural network on training data from multiple emotional

contexts (e.g., angry, sad, etc.) to make the predicted facial motion

closer to the emotional intent. One major challenge is how to cost-

effectively collect a comprehensive dataset for training. Without

a sufficiently comprehensive training set, it can be challenging to

employ modern machine learning techniques, because methods

such as deep learning are typically highly underconstrained. Possible

directions including collecting “messy” data at scale (e.g., from public

video repositories), or developing active learning approaches that

adaptively selects which video data to collect in order to minimize

total collection costs.

A further generalization could train a speech animation model

from multiple speakers possessing a variety of facial characteristics

(male, female, round, square, fleshy, gaunt etc.) and select the char-

acteristics most closely matching the character model at prediction

time. This approach could generalize different facial dynamics for

different face shapes according to the talking style of the character.

Again, there is a major challenge of how to effectively collect a

comprehensive training set.
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