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Abstract

In late 2006, Nintendo released a new game controller, the Wiimote,
which included a three-axis accelerometer. Since then, a large vari-
ety of novel applications for these controllers have been developed
by both independent and commercial developers. We add to this
growing library with three performance interfaces that allow the
user to control the motion of a dynamically simulated, animated
character through the motion of his or her arms, wrists, or legs. For
comparison, we also implement a traditional joystick/button inter-
face. We assess these interfaces by having users test them on a set
of tracks containing turns and pits. Two of the interfaces (legs and
wrists) were judged to be more immersive and were better liked
than the joystick/button interface by our subjects. All three of the
Wiimote interfaces provided better control than the joystick inter-
face based on an analysis of the failures seen during the user study.
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1 Introduction

Mass market handheld controllers for interactive experiences and
video games had remained largely unchanged for a number of years
until the Wiimote controller was introduced in late 2006 [Nintendo
2006a]. With a three-axis accelerometer, distance sensing (via the
Sensor Bar) and a simple BlueTooth interface, the Wiimote con-
troller offered developers, both commercial and independent, the
opportunity to create many different types of novel interfaces. They
responded quickly to this challenge by using the Wiimote to cre-
ate a head tracker for desktop VR [Lee 2008], an industrial robot
that swings a tennis racket [USMechantronics 2008], gesture-based
controllers for a humanoid robot [Android Technologies, Inc. 2008]
and a music synthesizer [Youtube 2008]. These interfaces are novel
and have the potential to be pervasive because they are constructed
using cheap, readily available technology.

In this paper, we explore the utility of the acceleration sensing pro-
vided by the Wiimote for the control of physically simulated char-
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Figure 1: A user controlling a physically simulated bird character
with the three Wiimote interfaces: wrists, arms, and legs.

acters. We have designed three interfaces that use the signals from
the three-axis accelerometers in two or three Wiimotes for the con-
trol of a dynamically simulated creature that can walk, run, jump,
and turn (Figure 1). These are performance interfaces in that they
require users to imitate motions seen in human walking, running
and jumping. Because the resulting animation is physically cor-
rect and resembles the locomotion patterns we see in daily life, we
believe that imitating those patterns in the interfaces may be im-
mersive. In the first interface, the user moves his wrists rapidly to
specify the gait and speed of the character. Small, out-of-phase mo-
tions command a walk, larger, faster out-of-phase motions indicate
running, while in-phase motions specify a jump with the magnitude
controlling the height. In the second interface, the user moves his
arms back and forth as if he were walking (straight arms), running
(bent arms) or jumping (bent arms moving in phase). The third in-
terface allows the user to closely mimic the motions desired of the
character. Wiimotes are attached to the lower legs of the user and
the frequency and phase of the user’s motion determine whether
the character walks, runs, or jumps. The inclination of the head is
used for turning. The final interface is similar to that used in many
video games and was created to serve as a baseline comparison. It
uses the joystick on the Nunchuck and a button on a Wiimote to
command a jump.

We chose to use a physically simulated character in our experiments
because such characters offer the potential for natural responses to
rough terrain and other disturbances. Physically simulated charac-
ters are generally regarded as more difficult to control with a tra-
ditional joystick interface because the response to a commanded
action cannot occur instantaneously (the character has to plant the
correct foot in order to turn or push off the ground to generate the
vertical velocity for a jump, for example). We are interested in ex-
ploring whether performance-based interfaces such as those that we
have constructed with the Wiimote mitigate this problem.

Beyond just extending the space of possible interface designs for
the Wiimote, we had two goals with this research:

• explore different ways in which the Wiimotes can be used for
character control: what human actions can be measured reli-
ably with a set of three-axis accelerometers and how can those
measurements be mapped onto the control inputs of a charac-
ter?

• explore whether the latency to a commanded change in be-



havior that is inherent in a dynamically simulated character
degrades the user’s control when the interface allows the user
to move his or her limbs in a pattern that is reminiscent of the
behavior being controlled. Is the mapping from user actions
to character actions sufficiently strong that needed changes in
behavior can be anticipated?

We performed an assessment of user performance with each inter-
face on a set of test tracks containing turns and pits. We measured
time to completion, number of failures, and the answers to a set
of survey questions. Two of the interfaces (legs and wrists) were
judged to be more immersive and were better liked than the joy-
stick/button interface by our subjects. An analysis of the failures
seen during the user study showed that all three of the Wiimote in-
terfaces provided better control than the joystick interface.

In the next section, we discuss the most closely related work in in-
terfaces for on-line control of characters and techniques for dynam-
ically simulating the motion of characters. The following sections
briefly discuss the hardware of the Wiimote, the physical simula-
tion of the character, and then explain the measurement and control
techniques behind the three interfaces. We then describe the results
of our user study and an application that shows the potential advan-
tages of a physically simulated character.

2 Prior Work

In this section, we discuss prior work on interactive control of ani-
mated characters and physical simulations of animated characters.

2.1 Interactive Control of Animated Characters

There are many examples of both research and commercial games
that have explored input devices that might allow for good control
of an animated character. The control problem is not easy because,
in general, the animated character will have many more degrees of
freedom than can be specified directly.

One common input device is the mouse. Laszlo and col-
leagues [2000] developed an interactive system to control physi-
cally simulated planar characters by mapping mouse movements
to joint torque or to desired values for a PD servo. Users were able
to control jumping robots as well as a planar human character that
performed a ski jump [van de Panne and Lee 2003]. Neff and col-
leagues [2007] used correlation maps to allow the user to control
multiple joints simultaneously. Igarashi and colleagues [2005] pro-
posed a spatial keyframing technique. Unlike traditional keyframe
animation in which keyframes are specified at particular moments
in time, their users set up a correspondence between a 3D position
and the character’s posture. The user then dragged a 3D marker
to create a performance by interpolating among the corresponding
character poses.

Tablets have also been used to control animated characters. Thorne
and colleagues [2004] used these devices to design a character and
to animate it by drawing pre-defined strokes. The system had
pre-defined motion primitives which were modified by properties
such as the speed of the stroke. Oshita and colleagues [2005]
built a pen-based interface for animation control. They used pen
strokes to specify the trajectory of a character, pressure for a jump-
ing/squatting motion, and tilt for body attitude.

Capturing the user’s motion via a single camera is also an interest-
ing approach. Freeman and colleagues [1998] used computer vision
techniques such as image moment and optical flow to allow the user
to interact with a virtual character, or to directly map the user’s mo-
tion to the character’s motion. Sony produced the EyeToy [2003] to
take advantages of this class of approaches for commercial games.

A large database of motion capture data can be used as domain
knowledge to allow the control of more complicated motions with
low degree-of-freedom input devices. Motion graph techniques
have been controlled by sketching, keystrokes and performance in-
terfaces [Arikan and Forsyth 2002; Kovar et al. 2002; Lee et al.
2002]. Chai and Hodgins [2005] built a vision-based system to pro-
duce an animation of a human character based on two video streams
and a sparse marker set worn by the user. Their system learned local
models of segments of pre-recorded motion capture data that were
close neighbors to the input markers. An optimization in the space
of that local model was able to reconstruct the user’s motion with
reasonable accuracy.

Interesting systems have also been developed using unique de-
vices. Johnson and colleagues [1999] introduced the concept of
a sympathetic interface that used a plush toy with sensors such
as an accelerometer and gyroscope inside, and synthesized anima-
tion by recognizing gestures from the sensor data. Oore and col-
leagues [2002] developed motion layering using magnetic sensors
to determine the orientation of the input device. Dontcheva and
colleagues [2003] proposed a layering method that used widgets
whose location and orientation was known from real-time motion
capture. Yin and colleagues [2003] developed the FootSee system
that measured pressure between the feet and the ground, and used it
as a query to reconstruct the user’s motion based on a pre-existing
database. Nintendo has recently developed the Wii Fit [Nintendo
2008b], which recognizes some elements of the user’s motion based
on force measurements. Slyper and Hodgins [2008] demonstrated
that upper body motions could be reconstructed with input from
five three-axis accelerometers and a database of appropriate motion
capture data. In contrast, the commercial motion capture systems
based on accelerometer technology use inertial measurement units
(IMUs) that contain gyroscopes and magnetometers to allow the
accurate reconstruction of orientation [Xsens Technologies].

Locomotion interfaces for virtual navigation have been developed
using 6DOF magnetic sensors [Templeman et al. 1999], IMU track-
ers [Razzaque et al. 2002], or using a special pad that detects
foot contacts [Bouguila et al. 2004]. Usoh and colleagues [1999]
evaluated virtual navigation systems for Walking (real walking),
Walking-in-place, and Flying (face direction-based control), and
learned that walking was the best for human-scale spaces. These
systems do not reconstruct the full motion of the character but in-
stead, like our system, determine how it should locomote in the
virtual environment.

Many companies are exploring novel uses for the Wiimote. Wii
Sports [Nintendo 2006b] includes sports games such as boxing,
bowling, and tennis. The human motion of the character is spec-
ified when the user performs an action such as swinging a tennis
racket. Although the details of the input processing algorithms are
not publicly available, it is our understanding that most of the ex-
isting Wii games either obtain static measurements by inclining the
Wiimotes or dynamic measurements from detecting local min/max
or zero-crossings of acceleration. The inclination interface is gen-
erally used to control the direction or the speed of the charac-
ter (see, for example the mini games of Mario Party 8 [Nintendo
2007b] or Mario Kart Wii [Nintendo 2008a]). Dynamic measure-
ments are generally used just to control the speed or to specify
a jump with the Nunchuck without allowing the users to control
the direction/orientation of the character (see, for example Donkey
Kong Barrel Blast [Nintendo 2007a] and Rayman Raving Rabbids
2 [Ubisoft 2007]). Our interfaces provide a finer level of control
over the locomotion patterns of our dynamically simulated charac-
ter.
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Figure 2: Overview of control for a biped character using the Wii-
motes.

2.2 Physical Simulation of Animated Motion

Controllers for the running of a two-legged character were first de-
veloped by Raibert and colleagues [Raibert 1986; Raibert and Hod-
gins 1991; Hodgins 1991]. Their basic idea was to construct a finite
state machine (FSM) for each gait based on the contact states seen
in that gait. Each state then contained control laws for each joint
of the system. This strategy was first applied to a running human
character by Hodgins and colleagues [1995]. SIMBICON devel-
oped by Yin and colleagues [2007] was motivated by this earlier
work. They realized a simple controller to synthesize robust, physi-
cally valid motion of a human character. FSM-based controllers for
biped gaits have proven to be very robust and ours follows a similar
design to that used in this earlier work.

3 Approach

We chose to use an indirect mapping from the motion of the Wii-
motes to the control inputs for the simulated character. The inter-
face measures the frequency of the user’s motion, the phase dif-
ference between two Wiimotes, and in some cases the inclination
of the Wiimote or the magnitude of the oscillation. These actions
are then used to select the gait and the velocity and turning rate
with which it should be performed (Figure 2). These commands
are implemented via a control system which is similar in spirit to
that presented by Raibert and Hodgins [1991]. We now briefly de-
scribe the hardware in the Wiimote and the physical simulation of
the character before describing the input that we obtain from the
Wiimote and how that information is used to control the character’s
locomotion pattern.

4 Wiimote

The Wiimote has eight buttons, a three-axis accelerometer, and an
IR receiver to measure distance from the Sensor Bar. The attach-
able Nunchuck has a continuous directional controller (joystick)
and also a three-axis accelerometer for input. For output, the Wii-
mote has a speaker, a vibration generator and four LEDs. A con-
nection between the Wiimote and the host computer is established
via BlueTooth. The price per unit is around $40, and approximately
30 million copies have been sold worldwide (as of June 2008).

Our interfaces rely on the three-axis accelerometer in each Wii-

x
y

z

Figure 3: The Wiimote. Arrows show local coordinates of the three-
axis accelerometer.

Segment Mass [kg] Moment of inertia [kgm2]

body 9

2

4

0.5 0 0

0 1.2 0

0 0 1

3

5

hip 1

2

4

0.1 0 0

0 0.1 0

0 0 0.001

3

5

knee 1

2

4

0.1 0 0

0 0.1 0

0 0 0.001

3

5

Figure 4: Our hopper model has fourteen DOFs. The knees tele-
scope rather than bending.

mote. The x-, y-, and z-axes of the accelerometer point toward
the left, front, and downwards (Figure 3). The accelerometer can
capture the net force acting on the Wiimote between −3g to 3g,
where g is gravitational acceleration. The three acceleration values
are quantized to 8 bits.

5 Physical Control of a Biped Character

The three-dimensional (3D) robot model for the physical simula-
tion (Figure 4) consists of a body that is free to rotate or trans-
late (six uncontrolled DOFs), two hip joints with three DOFs, and
two telescoping joints with one translational DOF. Unlike the stan-
dard biological kinematic structure with rotary knees, this model
has telescoping knees. The character’s leg length is about 1 m so it
is similar in size to a human and therefore has a similar running and
walking pace [McMahon 1984].

The biped control system consists of four gaits and the transitions
between them: stepping in place (stopping), walking, running, and
jumping with both legs. We control these motions with finite state
machines (FSM) which determine the desired angle for each con-
trolled joint for each state in each gait. Force or torque is then ap-
plied to each joint using a proportional-derivative (PD) controller

τ = kp(θd − θ)− kdθ̇, where θd is the desired joint position and θ

and θ̇ are the current joint angle or joint length and angular or lin-
ear velocity respectively. The gains for the PD servos are tuned by
hand initially and then fine tuned via optimization once a working
controller is obtained.

Walking Controller: As shown in Figure 5, the walking controller
has three states for each leg: Double Support, Rise (the first half
of swing/single support), and Fall (the second half of swing). The
transitions between states occur based on changes in contact or the
movement of the rear leg.

During Rise, the controller applies a torque about the hip joint of
the supporting leg to control the pitch (nose up and down) and roll
(side-to-side) attitude of the body. The desired angle, φW

d for pitch
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Figure 5: State machine for walking.

and roll in walking is calculated from the current body velocity v:

φW
d = φo + kW (vd − v), (1)

where vd is the desired body velocity, φo is an offset angle and kW

is a feedback coefficient for walking. The rear leg is swung forward
to reach φd during this state and held short to clear the ground. The
stance leg tries to maintain the touchdown length.

In Fall, the supporting leg begins to extend to restore forward ve-
locity lost during the stance phase. The body attitude is controlled
as in the Rise state. The swing leg is extended to make contact with
the ground and the hip is positioned for touchdown.

In Double Support, both of the hip joints apply torques to control
the body attitude. The front supporting leg maintains its touchdown
length while the rear supporting leg extends to add energy.

Stepping Controller: The controller for stepping in place is only
a minor modification of the walking controller. Because the body
is not moving forward, the rear leg is explicitly picked up off the
ground after a certain amount of time has elapsed in double support
rather than being pulled up off the ground by the forward movement
of the body. The transition from Rise to Fall occurs when the foot of
the swing leg reaches a specified height and the sideways velocity
of the hip is greater than a threshold.

Running Controller: The running controller has four states for
each leg: Upward Flight, Downward Flight, Compression, Ex-
tension (Figure 6). The transitions between states occur based on
changes in contact, the vertical velocity of the body, or the move-
ment of the stance leg as shown in Figure 6.

During Upward Flight, the controller positions the front leg for
touchdown and shortens the rear leg that has just left the ground.
The desired angle φR

d for pitch and roll in running is calculated as:

φR
d =

vT

2
+ kR(vd − v), (2)

where T is the predicted duration of the next support period and kR

is a feedback coefficient for running. During Downward Flight, the
front leg is lengthened for landing. The rear leg mirrors the motion
of the front leg to reduce disturbances to the body. Compression
and Extension both use the stance leg to maintain the body attitude
(using the same equation as in walking). In Extension the stance
leg is extended to add energy to the system. In both states, the idle
leg maintains its length and orientation.

Jumping Controller: Jumping is similar to running except that
now the two legs must operate in phase. A single copy of the
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Figure 6: State machine for running.

state machine for running controls both legs in jumping. If one
leg reaches the ground before the other, the second leg is extended
to make contact. Similarly, if one leg leaves the ground first, the
second leg is retracted to initiate flight. These control laws are an
implementation of Raibert’s concept of virtual legs [Raibert et al.
1986].

Optimization: The parameters for each physical controller are
tuned through a gradient descent optimization. The objective func-
tion evaluates the time until failure, the length of the flight or swing
and stance durations, the stride length, and the error in forward
speed. The optimization tunes the spring and damper coefficients
for the PD servos, the constant values used in the equation (1), and
the landing length of the telescoping legs. Once parameter sets for
slow and fast speeds of walking and running are obtained, param-
eters for intermediate speeds can be obtained by interpolating the
parameter sets. This is similar to Yin and colleagues’ work [2008].

Gait Transitions: Gait transitions occur when the user changes his
or her command via the user interface and the model subsequently
reaches a state where it can effect the gait transition. Changing from
walking to running or jumping requires that the control system add
energy to create a flight phase by extending the support leg during
Fall. The controller is changed from walking to running or jumping
when the support leg leaves the ground. This strategy is similar to
Hodgins’s work [1991]. The same is true for changing from running
to jumping.

During running, the horizontal velocity is much faster than during
walking and a gait transition from running to walking or stepping
requires reducing the speed as well as eliminating the flight phase.
This reduction in energy is accomplished by extending the support
leg during Compression. The controller is also changed from run-
ning to the walking or stepping controller during that state.

Jumping has a slower forward velocity than running but energy
must still be absorbed in a transition to walking or stepping. The
support legs shorten to reduce the vertical velocity and keep the feet
on the ground. The controller is then changed to Double Support
of stepping. If the user commands walking, the controller is im-
mediately changed from stepping to walking. This strategy is also
similar to the approach used by Hodgins [1991]. There is no transi-
tion from jumping to running implemented.

Graphical Display: Because telescoping legs evoke a robot rather
than a biological creature, we chose a creature with a kinematic
structure for the legs that mimic those of a bird to display the sim-
ulated motion. The ankle joints on the character bend backward as
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Figure 8: x component of the Wiimote acceleration during vertical
periodic movement without inclination (left) and with inclination
(right). The horizontal blue dotted lines represent the mean of the x
component during one cycle.

they do on a bird and kinematically replace the telescoping joints
that were dynamically simulated. The forces that would be exerted
by such a structure do not match the actual forces applied to the
body after this kinematic change but the motion remains physically
plausible.

6 Wiimote Acceleration Analysis

We use a Kalman filter to reduce noise [Rasco 2008], and extract a
set of features from two or three Wiimotes: 1) whether the Wiimote
is moving or not, 2) frequency, 3) phase difference between two
Wiimotes, 4) amplitude, and 5) direction of inclination. Figure 7
illustrates the process of extracting features from the acceleration
data.

The first step of the analysis is to determine whether the Wiimote is
moving. We make this determination by thresholding the variance
of the recent acceleration measurements.

Because the user’s basic action is swinging the Wiimotes with the
arms or legs, the acceleration sequences are periodic and we can
measure the frequency with an auto-correlation, Ra:

Ra(τ) =
T

X

t=T−tp

W (t) (a(t) · a(t − τ)) , (3)

where T is a current time, tp is the period for auto-correlation, a(t)
is the acceleration at time t and W (t) = 1−(T−t)/tp is a window-
ing function that reduces the effect of older data points. By picking
the peak of the auto-correlation, we can estimate the frequency of
the Wiimote movement.

Whether the two Wiimotes are in phase or not is also an impor-
tant feature for our interfaces. We calculate the phase difference
between two Wiimotes using cross-correlation, Rc:

Rc(τ) =
T

X

t=T−tp

W (t) ((aL(t) − āL) · (aR(t − τ) − āR)) ,

(4)
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Figure 9: Motion controller transitions with the Wiimotes. Arrows
indicate a transition between controllers. During walking/running,
the speed changes based on the frequency of the Wiimotes.

where aL and aR denote the acceleration vectors of the Wiimotes
on the left and right hands, and āL and āR denote the mean ac-
celeration vectors in one cycle, respectively. Because the phase
difference should be within [0, 2π], we search for the peak of the
cross-correlation using the inverse of the estimated frequency as the
cross-correlation period.

We calculate the amplitude of the acceleration from one cycle.
Spikes that are caused by rapid motion will be smoothed by the
Kalman filter, and we therefore use raw acceleration data to com-
pute the amplitude.

If an accelerometer is not moving, we can easily calculate the pitch
and roll from the direction of gravity. For example, we calculate
the roll angle θR of the Wiimote: θR = asin(ax/g) where ax

is the x component of the acceleration, and g is the gravitational
acceleration represented in Wiimote coordinates.

If the Wiimote is moving, we cannot extract the exact orientation
of the accelerometer because of inertia forces. However, as long as
the motion is cyclic and the Wiimote is not moving too fast, we can
estimate the inclination from the mean acceleration in one cycle.
Figure 8 shows an example sequence of acceleration with/without
inclination. While mean acceleration without inclination is nearly
zero, mean acceleration with inclination is non-zero.

7 Mapping of Wiimote Features to Physical

Simulation

Our goal in the design of these interfaces was to mimic the motions
seen in human walking, running, and jumping. Our hope was that
this correspondence would make users feel a connection between
their actions and that of the character. For example, the motion of
the feet in running is faster than in walking and the legs move out-
of-phase in walking and running but in-phase for jumping. These
observations led us to design the gait transitions based on frequency
and phase of motion of the Wiimotes (Figure 9). When the Wii-
motes are moving in phase, the character jumps. When the Wiimote
motions are out-of-phase, the character either walks or runs depend-
ing on whether the frequency is low or high. Within a gait, the de-
sired speed of locomotion is also determined by the frequency. If
the Wiimotes are not moving, the stepping controller is used as a
default behavior. The jump height is controlled by the amplitude of
the acceleration. We use the inclination (lean) of the Wiimotes to
control the rate of turning. The character changes direction with a
constant increment of 5◦ for each step using a PD servo on the yaw
of the body.

Through informal user studies, we obtained the comfortable range
of actions (frequency, for example) for the interfaces. Similarly, the



Figure 10: The wrist, arm, and leg interfaces and an animated
character (top to bottom). Each column shows the gesture of each
interface: walking, running, jumping and turning (left to right).

stable range of speeds and jumping heights were determined ex-
perimentally for the biped simulation. We then computed a set of
constant scaling factors to map the comfortable range of the user in-
terface to the stable range for the simulation. No further calibration
of the Wiimotes or of the interfaces was necessary.

Wrist Interface: In the wrist interface, the user imitates the foot
motions seen in locomotion by swinging two Wiimotes with his or
her wrists. The motions used in this interface are illustrated in the
first row of Figure 10. For walking and running, the user swings the
Wiimotes out-of-phase. As the frequency increases, the interface
commands first a higher desired walking speed, then a gait change
from walking to running at 2 Hz and then a faster running speed.
When the user swings the Wiimotes in phase, the character jumps.
The user commands the character to turn by twisting the wrists and
inclining the Wiimotes.

Arm Interface: In the arm interface, the user imitates the arm mo-
tion seen in walking and running (second row of Figure 10). For
walking, the user swings his or her arms forward and backward
while keeping the arms straight, much like the arm motions seen
in natural walking. The arms are bent to indicate running and the
transition between walking and running is based on a change in ori-
entation of the swinging arms rather than frequency as was used
in the wrist interface. For jumping, the user swings the arms in
phase. For turning while walking, the user twists both arms, while
continuing to swing them forward and backward. For turning while
running, the user inclines the Wiimotes sideways and swings them
diagonally.

Leg Interface: In the leg interface, the user attaches the Wiimotes

RightLe�

Forward

Run

Walk

Turn 

in place

Step 

in place

Figure 11: The joystick interface. The half circle is used for con-
trolling the character, and is divided into three regions to indicate
turning left, right and proceeding straight. The radius of the area
for walking is set to 0.6 (the maximum radius is 1.0). A button on
the Wiimote is used to specify jumping (right).

to both legs with socks or wrist bands, and steps in place (the third
row of Figure 10). Slow stepping commands the character to walk,
and faster stepping commands a run. We use 2 Hz as the thresh-
old for the gait transition as in the wrist interface. An additional
Wiimote is attached to the user’s head with a head band and used
to control turning through head inclination. We experimented with
other methods for specifying direction changes. We tried chang-
ing the foot height in stepping, but found that it created a different
rhythm for each leg which did not seem natural. We tried attaching
a Wiimote to the body, and inclining the body for direction changes
but this also caused an asymmetry and also did not feel natural. Of
these three options, head inclination was judged the most natural in
our informal user studies.

Joystick Interface: This interface is similar to a traditional game
controller with running specified by a larger forward angle of the
joystick and turning specified by pushing the joystick to the side
(Figure 11). A button on the Wiimote is used to specify jumping.

8 Experimental Results

We used a process of iterative refinement and informal user studies
to refine the design of the user interfaces. After the performance of
all four interfaces was judged to be good in these informal experi-
ments, we ran a full user study using tests of each specific behavior
(walking straight and a gait change from walking to running, for ex-
ample) and a set of four test tracks with curves and pits. To further
demonstrate the power of these interfaces for controlling a simu-
lated character, we constructed a competitive game in which one
user attempted to trip up the simulation by constructing terrain with
slopes, curves, and steps while a second user attempted to control
the biped as it walked, ran, and jumped on the terrain immediately
after it was constructed.

8.1 Results of User Study

We recruited fifteen volunteer subjects from the university commu-
nity who were not associated with the research project. Seven of the
fifteen subjects were studying computer science. Each of the fifteen
subjects operated each user interface on a set of straight tracks and
one of the four test tracks shown in Figure 12. The straight tracks
contained a line and when the biped crossed that line, the subjects
commanded it to jump, to stop or to switch from walking to run-
ning (or vice versa). For each interface, we demonstrated all the
commands to the subjects, and they practiced the interfaces for five
minutes before the test. Then, we asked the subjects to complete
the straight track task twice and the test track task once. The order
in which the subjects saw the interfaces was randomized as was the
order of the straight track tasks and the test tracks.

We recorded the number of failures that occurred for each inter-



Figure 12: The four test tracks used in the user study.

face. When a failure occurred, the character was placed back on
the track a few meters behind its previous location and the user
was allowed to start again. All users successfully completed all
the straight tracks and their randomly assigned test track with each
interface.

During the user test, we logged the input from the Wiimotes, the
resulting motion of the character, and the number of failures. After
using all four interfaces, the subjects also completed a survey which
required them to rank each interface with a score from one to five
for “fun”, “ease of use”, “stress”, “familiarity”, “immersion” and
“like”, and to list good and bad aspects of each interface.

Straight Track Completion: Users experienced two types of fail-
ures on the straight tracks. On the first half of the track, they some-
times failed to maintain straight running and walking and the biped
would fall off the track. The second failure occurred when users at-
tempted to change gaits (from walking to running, from running
to walking, and from running or walking to jumping). A non-
parametric multiple-comparisons with Steel’s test considering the
joystick as a control group1 [Hoppe and Dunnett 1993] showed
that all of our wrist, arm, and leg interfaces had significantly fewer
failures for straight walking on the first part of the track than the
joystick interface (all p<0.05). A multiple-comparisons with Dun-
nett’s test [Hoppe and Dunnett 1993] showed that the oscillation of
the character’s orientation with our wrist, arm, leg interfaces was
significantly smaller than with the joystick interface (all p<0.001).

There was no significant difference in the number of failures for
straight running or gait changes.

Test Track Completion: On the four test tracks, we saw three
different kinds of failures. Subjects lost control of the character
when the simulation controller was not robust enough to handle
their commands. For example, the subject might command a tran-
sition from running to walking when the character was running very
quickly and the controller might not be able to successfully accom-
plish that transition, causing the character to fall down. The second
type of failure occurred when a subject did not negotiate a turn cor-
rectly. The tracks contained gaps that the character must jump over
and a badly timed jump resulted in the third type of failure.

According to a multiple-comparisons with Steel’s test considering
the joystick as a control group, there was a significant difference in
the ability of the subjects to negotiate curves with the four different
interfaces. The leg interface had fewer failures than the joystick
interface (p<0.05). There were no significant differences in the
number of simulation and jump failures. We also analyzed the time

1 In general, count data are analyzed using a Poisson-based model or χ
2

test. In our experiment, however, each failure case occurs independently,

and the count increases until the subject reaches the goal. The failures are

uncorrelated. Therefore, we can consider the failure count as a measure of

the difficulty of each task, and analyze the count data with a non-parametric

multiple-comparisons.

Figure 13: Terrain editing with the Wiimote. Inclining the Wiimote
sideways specifies a curve, vertically without button A creates a
slope, and vertically with button A makes a step (left to right).

to completion for the track and the mean time to failure with Steel’s
test, but found no significant differences.

Rating Score: According to a multiple-comparisons with Steel’s
test considering the joystick as a control group, the wrist and leg
interfaces had significantly better scores for “immersion” than the
joystick interface (all p<0.05). Steel’s test also found that the wrist
and leg interfaces had significantly better scores for “like” than the
joystick interface (all p<0.05). There were no significant differ-
ences for “fun”, “ease of use”, “stress” and “familiarity”.

8.2 Application

One potential advantage to using a physically simulated character is
that it can respond naturally to external disturbances such as rough
terrain. To test this idea, we designed a competitive game in which
one player constructs the terrain and the second player controls the
character as it runs across the newly constructed terrain. Figure 13
illustrates how a player can use the terrain editor to interactively
create a slope by inclining the Wiimote vertically, a curve by in-
clining the Wiimote sideways, and a step by pushing button A and
inclining the Wiimote vertically. To avoid making the terrain too
difficult, we made the terrain width 4 m, and limited the slope to
±5◦, curves to ±15◦, and the height of a step to 10 cm. An exam-
ple of two people playing this game is shown in the accompanying
video. The user controlling the character successfully went over the
terrain made by the other user.

9 Discussion

We designed and tested three intuitive interfaces for the control of a
physically simulated character using input from the accelerometers
in the commercially available Wiimote. We evaluated these inter-
faces with a user study and found several metrics under which the
interfaces outperformed a traditional joystick interface and none in
which the joystick was superior.

The statistical analysis of the straight track completion showed
that all three Wiimote-based interfaces provided easier control of
straight walking than the joystick interface. Straight walking with
the joystick was achieved by keeping the joystick in the middle of
the green area of Figure 11. Although this interface is an imple-
mentation of one that has been used in many commercial games,
perhaps this fine level of control with the joystick was too difficult.
In contrast, the turning commands for our interfaces seemed intu-
itive and do not require the precise manipulation of the Wiimotes.
The significant difference of the curve negotiation failures in the
test track completion likely resulted from these differences in the



interfaces.

According to the survey results, the leg interface was more immer-
sive and better liked than the joystick interface. We hypothesize
that this was because this interface was the closest to a performance
interface in that the user’s actions were quite similar to actual hu-
man locomotion and closely corresponded to the resulting motion
of the character. A few subjects commented that they felt that there
was not a tight coupling between the character’s running speed and
their stepping speed with the leg interface, although the parameters
of the running controller are the same as other interfaces and the
stepping frequency of the running command is almost the same as
that of the character.

Some subjects said that turning was easiest with the leg interface
because a separate Wiimote (on the head) was used to command a
turn. All three subjects who rated the leg interface as the least fun
said that inclining the head also inclined their view point, making
play more difficult.

The wrist interface was also rated as more immersive and better
liked than the joystick. Many subjects commented that specifying
walking and running with this interface was very easy. Perhaps this
comment came from the narrower range of motion required with
this interface. The arm and leg interfaces require approximately as
big a range of motion as actual locomotion, but the wrist interface
requires only relatively small wrist motions.

Although a few subjects said that the arm interface was very
easy and intuitive, most subjects said that this interface was dif-
ficult to control. We believe that this problem arose because
some subjects used a different grasp for the Wiimote and per-
haps because the swinging motion for the arms was less dynami-
cally constrained than the wrist or leg motion Refining the ampli-
tude/frequency/inclination measurements to be more robust to the
style of an individual user might help with this problem.

Some subjects pointed out that the leg interface was tiring to oper-
ate. This feature might be an advantage for a system such as the
Wii Fit that is aimed at exercise but is probably not advantageous
for hours of consecutive game play.

Our initial hypothesis was that the greater physical immersion cre-
ated by the user’s actions might mitigate the effect of the delay
between a command and the character’s response. This delay is
caused by two factors. Because the character in these experiments
was physically simulated, it cannot respond to a jump or a turn
until the next time that the feet are in contact with the ground (un-
like most game characters that do not necessarily conserve angular
momentum during flight). Delay also occurs because of the time
needed to interpret the accelerometer data. We are using auto/cross-
correlation functions for frequency and phase estimation, and they
both require taking measurements over a window of time. The joy-
stick interface does not need the acceleration analysis phase and
therefore has a shorter delay. However, most subjects did not com-
plain about the lag in the Wiimote-based interfaces. A few subjects
complained about the lag of all the interfaces including the joystick
indicating that the lag in the actions of the physical simulation was
likely the bigger factor. Our leg and wrist interfaces were rated as
more immersive than the joystick, providing some support for our
hypothesis that immersive, performance interfaces might mitigate
the effect of the delay in response because the user intuitively un-
derstands delays in the actions that the character can perform when
he or she is simultaneously performing similar actions.
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