
Overall Sampling Process

Given: A set of visual concepts C, corresponding areas of the stage A, number of threads n, a global set of results R = ∅.

Algorithm 1: Search Initialization

1 Function startSearch(C, A)
2 S ← computeSchedule(C,A)
3 for i← 1 to n do
4 runSearchInThread(S)

computeSchedule returns a Schedule, which is an array of Samplers.
See Samplers section for how getSampler works.
getPinnedDevices returns two sets of ids: intensity pinned lights, and color pinned lights. See Pinning section for details.

Algorithm 2: Schedule Computation

1 Function computeSchedule(C, A)
2 S ← ∅
3 (intensityP ins, colorP ins)← getP innedDevices()
4 for i← 1 to size(C) do
5 S ← S ∪ getSampler(C[i], A[i], intensityP ins, colorP ins)

6 S ← S ∪ getP inSampler(intensityP ins, colorP ins)
7 return sort(S)

The samplers are sorted such that a sampler that is completely contained within the region of another sampler comes after
the containing sampler. Since things are sampled in order of the samplers in this array, we want things that affect the overall
picture to happen first. Also intensity samplers occur before color, as color is somewhat dependent on intensity samplers to
work properly.

See Samplers section for details on how getSample works.
getScores returns a map of scores resulting from evaluating the samplers’ scoring functions

Algorithm 3: Search Thread

1 Function runSearchInThread(S)
2 failures← 0
3 initThreshold← 20 // tunable param - initial JND threshold

4 thresholdDecayRate← 0.1 // tunable param - how quickly the threshold loosens

5 threshold← initThreshold
6 while not done do
7 s← getCurrentState()
8 for Si ∈ S do
9 s← Si.getSample(s)

10 if isDifferent(s,R, threshold) then
11 s.scores← getScores(s, S)
12 R← R ∪ s // see Display section for additional details (clustering)

13 else
14 failures+ = 1

15 threshold← max(
initThreshold

(failures ∗ thresholdDecayRate) + 1
, 0.1)

Note: s is initialized by getCurrentState() which returns the current state of the lighting configuration. s is always reini-
tialized to the current state before applying the schedule.

1

Visual Objective Implementation Details

Objectives will always sample by unpinned light groups. What this means is that if two devices are both unpinned and part
of the same light group, the objectives will make sure those two devices get the same value for whatever is being sampled.

Intensity

The brightness visual objective is a Gibbs Sampling process that returns a new lighting configuration based on the initial
configuration of the lighting when the search was started. Note that at the end of the Gibbs sampling process, the intensities
are normalized to account for how many pixels of the rendered image the light actually affects.

Parameters determined from image: mean - average brightness of all lights, brightMean - brigthness of key lights, k -
number of key lights. (The sampler accepts variance as well, but those are set to 10% of the full range as default for the
brightMean and 5% for the mean and not free parameters at the moment.)

Parameters set when the search starts: localDevices - set of devices affected by the objective, pinnedDevices - set of
devices that are pinned.

Intensity implements getSample as written in Algorithm 4 where s is the current state of the stage.

computeSensitivity() returns an array of the sensitivity values for each affected system. Sensitivity is computed by rendering
the lights in each system by themselves at 50% and 51%, taking the difference between those two images, calculating the
average difference in brightness, and multiplying that by 100. In the actual code this is a preprocess operation as we can
compute local systems before the sampler runs.

getAllSystems() returns a set of devices in the entire lighting rig such that each set contains lights in the same light
group.

GibbsSamplingGaussianMixturePrior() is the function that performs the Gibbs sampling process. Psuedocode found
in Algorithm 5.

Color

Parameters determined from image: colors - map of color to relative frequency of that color. Can also be changed by user.

Psuedocode found in Algorithm 6.

ClosureOverUnevenBuckets() Code listed in Algorithm 7.

2

Algorithm 4: Intensity Sampler

1 Function getSample(s)
2 localSystems = []
3 globalSystems = getAllSystems()
4 constraints = []
5 results = []

/* Compute local systems */

6

7 for system ∈ globalSystems do
8 local = {}
9 avg = 0

10 affectedDevices = 0
11 for device ∈ system do
12 if device ∈ localDevices then
13 affectedDevices+ = 1
14 if device 6∈ pinnedDevices then
15 local+ = device

16 avg+ = device.intensity

17 if affectedDevices > 0 then
18 if local.size > 0 then
19 constraints.append(FREE)

20 else
21 constraints.append(PINNED)

22 else
/* If there are no devices relevant to the system in this sampler, it’s neither pinned or

unpinned and is skipped */

23 continue

24 results.append(avg
system.size)

25 localSystems.append(local)

26 sensitivities← computeSensitivity(localSystems)
27 intensities←

GibbsSamplingGaussianMixturePrior(results, constraints, sensitivities, size(results), k, brightMean,mean)
/* Assign Intensities to System */

28

29 for i = 0→ localSystems.size do
30 local = localSystems[i]
31 for device ∈ local do
32 deivce.intensity = intensities[i]

3

Algorithm 5: Gibbs Sampler

1 Function GibbsSamplingGaussianMixturePrior(resultsIn, constraints, sensitivities, n, k, brightMean, mean,
sigmaHigh = 0.05, sigmaLow = 0.05)

2 sampleMean = 0
3 sampleK = 0
4 nSampled = 0
5 results = resultsIn

/* For pinned systems, factor in unchangable intensities */

6

7 for i = 0→ results.size do
8 if constraints[i] == PINNED then
9 currentSample = results[i]

10 if currentSample > brightMean−mean then
11 sampleK+ = 1

12 nSampled+ = 1

13 sampleMean = ((nSampled− 1) ∗ sampleMean + currentSample
nSampled)

14

15 unconstrainedSamples = [0] ∗ (n− nSampled)
16 for i = 0→ unconstrainedSamples.size do
17 if constraints[i] == FREE then
18 nLeft = n− nSampled
19 targetK = max((k − sampleK), 0) // Target number of directed lights

20 targetWH = min(targetK
nLeft , 1) // Target high mixture weight

21 targetMA = n∗mean−nSampled∗sampleMean
nLeft // Target mean for rest of lights

22 targetML = nLeft∗targetMA−targetK∗brightMean
nLeft−targetK // Target mean for low intensity gaussian

23

24 currentSample = 0
25 currentMixture = U(0, 1)
26

27 if sampleK ≥ k then
28 currentMixture = 1 // Enough bright lights

29 else if k − sampleK ≥ nLeft then
30 currentMixture = 0 // Not enough bright lights

31 if currentMixture < targetWH then
32 currentSample = N(brightMean, sigmaHigh)

33 else
34 currentSample = N(targetML, sigmaLow)

35 currentSample = clamp(currentSample, 0, 1)
36 if currentSample > brightMean− sigmaHigh then
37 sampleK+ = 1

38 unconstrainedSamples[i] = currentSample
39 nSampled+ = 1

40 sampleMean = ((nSampled− 1) ∗ sampleMean + currentSample
nSampled)

41 shuffle(unconstrainedSamples)
42 j = 0
43 for i = 0→ unconstrainedSamples.size do
44 if constraints[i] == FREE then
45 result[i] = unconstrainedSamples[j]
46 j+ = 1

/* Adjust intensities according to sensitivity values */

47 invS = map(f : x→ 1
x , sensitivities)

48 sumInvS =
∑

invS
49 invS = map(f : x→ x

sumInvS ∗ n, invS)
50 results = min(results · invS, 1)
51 return results

4

Algorithm 6: Color Sampler

1 Function getSample(s)
2 intensity = []
3 bins = [0] ∗ colors.size
4 localSystems = []
5 globalSystems = getAllSystems()
6

/* Compute local systems and fill in color buckets with pinned colors */

7 for system ∈ globalSystems do
8 localSystem = {}
9 for device ∈ system do

10 if device ∈ localDevices and device 6∈ pinnedDevices then
11 localSystem+ = device

12 else
13 bins[closestColorBin(device.color)]+ = device.intensity

14 intensity.append(
∑

localSystem.intensity)
15 localSystems.append(localSystem)

16 weights = normalizeWeights(colors.weights)
17 results = ClosureOverUnevenBuckets(intensitiy, weights, colors, bins)
18

/* Assign Colors to System */

19 for i = 0→ localSystems.size do
20 local = localSystems[i]
21 for device ∈ local do
22 deivce.color = results[i] + N(0, 0.1)

Algorithm 7: Closure Over Uneven Buckets

1 Function ClosureOverUnevenBuckets(object, bucket, colors, preFill)
2 sumV alues = 0
3 closureDripOrder = []
4 for i = 0→ object.size do
5 sumV alues+ = object[i]
6 closureDripOrder[i] = i

7 sumV alues+ =
∑

preF ill
8 remainingBucketCapacity = [0] ∗ bucket.size
9

/* Remove prefilled bucket values from remaining capacity */

10 remainingBucketCapacity = sumV alues · bucket− preF ill
11 shuffle(closureDripOrder)
12 currentBucket = 0
13

/* Now drip into buckets */

14 for i = 0→ object.size do
15 if object[closureDripOrder[i]] < remainingBucketCapacity[currentBucket] then
16 colors[closureDripOrder[i]] = currentBucket
17 currentBucket = (currentBucket + 1) mod bucket.size

18 else
19 colors[closureDripOrder[i]] = maxRemainingCapacityBucket(remainingBucketCapacity)

20 remainingBucketCapacity[colors[closureDripOrder[i]]]− = object[closureDripOrder[i]]

21

/* It’s not entirely clear from this code right now but colors constains the id of the color

that ends up getting assigned to the system at index i in the colors vector */

22 return colors

5

