
Three-dimensional Proxies for
Hand-drawn Characters

1

Carnegie Mellon University
1

Disney Research Pittsburgh2

1
Eakta Jain

1
Yaser Sheikh

1,2
Jessica Hodgins

2
Moshe Mahler

Monday, September 3, 2012

2

Hand-drawn animation 3D CG animation

Monday, September 3, 2012

2

Hand-drawn animation 3D CG animation

Monday, September 3, 2012

Differences between hand animation
and computer animation

Hand animator’s workdesk

3

Monday, September 3, 2012

Differences between hand animation
and computer animation

Hand animator’s workdesk 3D animation software

3

Monday, September 3, 2012

Input

4

Monday, September 3, 2012

Input

4

Monday, September 3, 2012

5

Monday, September 3, 2012

5

Monday, September 3, 2012

6

3D proxyHand-drawn character

Monday, September 3, 2012

6

3D proxyHand-drawn character

Geometry

Motion

Monday, September 3, 2012

Challenge: Inferring third dimension

Image
plane

Camera
center

Possible 3D points

2D points

7

Monday, September 3, 2012

Challenge: Composite motion ambiguity

8

Monday, September 3, 2012

Challenge: Composite motion ambiguity

8

Monday, September 3, 2012

Challenge: Composite motion ambiguity

8

Character turns,
camera in place

Monday, September 3, 2012

Challenge: Composite motion ambiguity

Camera turns,
character in place

8

Character turns,
camera in place

Monday, September 3, 2012

Challenge: Artistic license

Frame #1 Frame #40

9

Monday, September 3, 2012

Challenge: Artistic license

Frame #1 Frame #40

9

Monday, September 3, 2012

Challenge: Artistic license

Frame #1 Frame #40

9

Monday, September 3, 2012

Challenge: Artistic license

Frame #1 Frame #40 Overlaid

9

Monday, September 3, 2012

Challenge: Artistic license

Frame #1 Frame #40 Overlaid

9

Monday, September 3, 2012

Three-dimensional proxies with
different levels of detail

10

Joint hierarchy
based skeleton

3D Polygonal shapes
Single points
(3D markers)

Monday, September 3, 2012

Three-dimensional proxies with
different levels of detail

10

Joint hierarchy
based skeleton

3D Polygonal shapes
Single points
(3D markers)

Monday, September 3, 2012

Past work

Davis et al.
(2003)

Figure 11: Tracking of Baloo’s dance and retargeting to a flower.
c�Disney

Figure 12: Broom Retargeting Sequence. (The source is not shown
here – It is the famous sequence from the Sorcerer’s Apprentice in
Disney’s Fantasia)

single line running through the character, that represents the over-
all force and direction of each drawing. Generally, before drawing
the full character, an animator draws in the line-of-action to help
determine the position of the character. By simply changing the
line-of-action – making it more curved, sloped or arched in a dif-
ferent direction – the entire essence of the drawing can be changed.
We experiment with using the line-of-action as the source in order
to understand how much information we can get from a single con-
tour line and as a starting point for future work using minimal infor-
mation to achieve the greatest results. In this example, we track the
line-of-action from a classic Porky Pig sequence and retarget the
motion of the single contour onto a 2D character. Although there
is not enough information in this contour to solve for more com-
plex motion, such as how the legs move relative to each other, the
essence of the motion is still present in the retargeted output. Figure
13 illustrates this example.
We also create examples of cartoon captured motion, retargeted

onto 3D models. In the first example, we capture the motion from a
walking character and retarget to a 3D model of an otter. In Figure

Figure 13: Capturing line-of-action and retargeting of Porky Pig
images from Corny Concerto (1943), onto a new 2D character

Figure 14: Motion of walking cartoon character retargeted to 3D
model

Figure 15: Motion of jumping character retargeted to 3D model

9, we show some of the key poses.
Figure 14 shows some final rendered frames in the retargeted

sequence. Again, please consult the video for more information.
In the next example, we capture a cartoon character jumping in a

way that is impossible for an average human, and retarget onto the
same 3D model. Again, contour capture is used to estimate the mo-
tion parameters. Figure 15 shows some frames from the retargeted
sequence.
The video shows all results for the different target media. Our ex-

periments in cartoon capture provide an opportunity to test the car-
toon capture concept and technique. While the results have room
for technical improvement, they clearly demonstrate that the con-
cept has merit. The motion style from the captured cartoon is suc-
cessfully translated to the new image. The timing is preserved and
the key-shapes from the original animation are mapped onto the
new animation. The animations with the cartoon capture process
are expressive and compelling. The personalities of the original
cartoon characters are transferred to the target images.

5 Discussion

We have demonstrated a new technique that can capture the motion
style of cartoons and retarget the same style to a different domain.
This is done by tracking affine motion and key-shape based interpo-
lation weights. We described two different versions of capture, one
starting with cartoon contours, and one that can be applied directly
to unlabeled video. Both techniques are based on least-squares
techniques similar to other estimation techniques commonly used
in computer vision. The new contribution of our technique is the
use of an extended linear warping space and additional constraints
on the interpolation weights. The extended PCA space allows us
to approximate any nonlinear warping function, without increasing
the complexity or lowering numerical robustness for the video cap-
ture. Furthermore, the linearized PCA space allows us to perform
multiway warping with more than two key-shapes, even if the non-

Bregler et al.
(2002)

(a) Hand-drawn art (b) 3-D model (c) Edges in model (d) Edges in art (e) Warped model (f) Final frame

Figure 2: The process of creating one texture mapped frame.

Our method fits into the existing production pipeline for cel ani-
mation [6, 18]. Steps (a) and (f) are stages in the current digital
production process, with the ink-and-paint stage between them. We
are offering, as an alternative to the constant colors of the ink-and-
paint stage, a process that applies complex textures to the drawings.
The problem of applying textures to hand-drawn artwork poses

a challenge: the line art must be interpreted as some kind of shape.
Given a set of black lines on white paper, the computer must acquire
at least a primitive model for the 3-D forms conveyed by the art.
This information is necessary if we are to provide 3-D effects for
the texture such as self-occlusion and foreshortening. (See, for
example, the difference in occlusion between Figures 2b and 2e or
the foreshortening shown in Figure 7.) Note that with the constant
colors of the traditional ink-and-paint stage, these 3-D effects are
unnecessary. The viewer does not expect the constant orange color
of the front of the carpet in Figure 1a to appear to recede as it
crosses over a silhouette; however the texture of the carpet in
Figure 1b must recede. Thus, some form of 3-D information must
be available to the algorithm. Since interpreting hand-drawn line
art as a 3-D figure is tantamount to the computer vision problem
(which has not as yet been solved), we resort to human intervention
for steps (b) and (d) above. These phases of our process can be
labor-intensive, and we believe that partial automation of these
tasks through heuristic methods is a critical area for future work.
In step (b) above, we create a simple 3-D model that corresponds

to the animated figure. As seen from a set of specific camera
perspectives, the model should have the approximate form of the
hand-drawn figure. By “approximate form” wemean that the model
projected into screen space should have a similar set of features in a
similar arrangement as the features of the line art. For example,
the artwork and 3-D model and in Figures 2a and 2b both have
four border edges and an upper and lower silhouette edge. Note
that in this example the warp succeeds even though the order of
the upper silhouette edge and the backmost edge of the carpet is
reversed between the hand-drawn artwork and the 3-D model. For
the animations shown in this paper, our models were represented by
tensor product B-spline patches [5]. However, before performing
the warp described in Section 5, we convert our models to polygon
meshes. Thus, the method should be applicable to any model
that can be converted to polygons, provided that the model has a
global parameterization, which is generally necessary for texture
mapping.

4 SPECIFYING MARKERS
In this section we show how we specify marker curves—curves that
identify features on the 3-D model and on the 2-D artwork. We call
feature curves on the model model markers and feature curves on
the drawing drawing markers. These curves will be used by the
warp described in Section 5 to deform the 3-D model so that it
matches the drawing.
Section 4.1 explains how we automatically find model markers

by detecting visible border edges and silhouette edges on the model.
Section 4.2 explains how these edges are converted to form smooth
curves on the model. Section 4.3 shows how to guarantee that these

edges can be safely used later as the input to the warp. Section 4.4
shows how to specify the edges on the 2-D drawing that correspond
to the edges found on the 3-D model.

4.1 Silhouette Detection
In this section we describe a scheme for finding visible silhouette
and border edges in a 3-D model represented by a polygon mesh.
These features are likely to correspond to features in the hand-
drawn line art; such correspondences are the primary input to the
warp we describe in Section 5. We also allow the user to specify
model markers by drawing them directly on the 3-D model, but it
would be cumbersome to have to specify all model marker curves
this way. Thus, we automatically construct model markers for all
visible border and silhouette edges, and allow the user to pick the
useful marker curves (often, all of them).
To get started, we need to define some terminology, consistent

with that of Markosian et al. [14]. A border edge is an edge adjacent
to just one polygon of the mesh. A silhouette edge is an edge shared
by a front-facing polygon and a back-facing polygon (relative to the
camera).
Standard silhouette detection algorithms will identify the subset

of edges in the mesh that are silhouette edges. Treated as a group,
these edges tend to form chains. Unfortunately, in regions of the
mesh where many of the faces are viewed nearly edge-on, the
chains of silhouette edges can bifurcate and possibly re-merge in
a nasty tangle. For our warp, we are interested in finding a smooth,
continuous curve that traces the silhouette on the model, rather than
identifying the exact, discrete set of silhouette edges in the mesh.
Furthermore, we are only interested in visible silhouettes because
they tend to correspond to features that appear in the drawing.
Finally, we want to distinguish border edges from other silhouette
edges.
To detect the border and silhouette edges of a 3-Dmodel, we pro-

ceed as follows. Using Gouraud shading (without lighting effects or
antialiasing) we render the 3-D model over a black background as a
polygon mesh whose vertices are colored ID ,
where and are the parametric coordinates of each vertex, and ID
identifies the texture (Figure 3b). Let us call the resulting image the
-image. The method accommodates models with multiple tex-

ture maps, but so far in our animations all of our models have only
used a single texture, whose ID is 1. The ID 0 is reserved for the
background.
When a pixel on the -image corre-

c2

c1e
p1 p2

Figure 4: A few pixels.

sponds to a point on the surface of the
model, we say that the pixel is covered by
the model. Also, a pixel corner is one of
the four corners of a pixel, while a pixel
boundary is the line segment joining two
pixel corners shared by two adjacent pix-
els. For example, in Figure 4, and
are pixels, and are pixel corners,
and is a pixel boundary.
Borders and silhouettes generate color discontinuities in the

resulting image (Figure 3c). To find these discontinuities, we
construct a directed graph , where are the vertices

(a) Hand-drawn art (b) 3-D model (c) Edges in model (d) Edges in art (e) Warped model (f) Final frame

Figure 2: The process of creating one texture mapped frame.

Our method fits into the existing production pipeline for cel ani-
mation [6, 18]. Steps (a) and (f) are stages in the current digital
production process, with the ink-and-paint stage between them. We
are offering, as an alternative to the constant colors of the ink-and-
paint stage, a process that applies complex textures to the drawings.
The problem of applying textures to hand-drawn artwork poses

a challenge: the line art must be interpreted as some kind of shape.
Given a set of black lines on white paper, the computer must acquire
at least a primitive model for the 3-D forms conveyed by the art.
This information is necessary if we are to provide 3-D effects for
the texture such as self-occlusion and foreshortening. (See, for
example, the difference in occlusion between Figures 2b and 2e or
the foreshortening shown in Figure 7.) Note that with the constant
colors of the traditional ink-and-paint stage, these 3-D effects are
unnecessary. The viewer does not expect the constant orange color
of the front of the carpet in Figure 1a to appear to recede as it
crosses over a silhouette; however the texture of the carpet in
Figure 1b must recede. Thus, some form of 3-D information must
be available to the algorithm. Since interpreting hand-drawn line
art as a 3-D figure is tantamount to the computer vision problem
(which has not as yet been solved), we resort to human intervention
for steps (b) and (d) above. These phases of our process can be
labor-intensive, and we believe that partial automation of these
tasks through heuristic methods is a critical area for future work.
In step (b) above, we create a simple 3-D model that corresponds

to the animated figure. As seen from a set of specific camera
perspectives, the model should have the approximate form of the
hand-drawn figure. By “approximate form” wemean that the model
projected into screen space should have a similar set of features in a
similar arrangement as the features of the line art. For example,
the artwork and 3-D model and in Figures 2a and 2b both have
four border edges and an upper and lower silhouette edge. Note
that in this example the warp succeeds even though the order of
the upper silhouette edge and the backmost edge of the carpet is
reversed between the hand-drawn artwork and the 3-D model. For
the animations shown in this paper, our models were represented by
tensor product B-spline patches [5]. However, before performing
the warp described in Section 5, we convert our models to polygon
meshes. Thus, the method should be applicable to any model
that can be converted to polygons, provided that the model has a
global parameterization, which is generally necessary for texture
mapping.

4 SPECIFYING MARKERS
In this section we show how we specify marker curves—curves that
identify features on the 3-D model and on the 2-D artwork. We call
feature curves on the model model markers and feature curves on
the drawing drawing markers. These curves will be used by the
warp described in Section 5 to deform the 3-D model so that it
matches the drawing.
Section 4.1 explains how we automatically find model markers

by detecting visible border edges and silhouette edges on the model.
Section 4.2 explains how these edges are converted to form smooth
curves on the model. Section 4.3 shows how to guarantee that these

edges can be safely used later as the input to the warp. Section 4.4
shows how to specify the edges on the 2-D drawing that correspond
to the edges found on the 3-D model.

4.1 Silhouette Detection
In this section we describe a scheme for finding visible silhouette
and border edges in a 3-D model represented by a polygon mesh.
These features are likely to correspond to features in the hand-
drawn line art; such correspondences are the primary input to the
warp we describe in Section 5. We also allow the user to specify
model markers by drawing them directly on the 3-D model, but it
would be cumbersome to have to specify all model marker curves
this way. Thus, we automatically construct model markers for all
visible border and silhouette edges, and allow the user to pick the
useful marker curves (often, all of them).
To get started, we need to define some terminology, consistent

with that of Markosian et al. [14]. A border edge is an edge adjacent
to just one polygon of the mesh. A silhouette edge is an edge shared
by a front-facing polygon and a back-facing polygon (relative to the
camera).
Standard silhouette detection algorithms will identify the subset

of edges in the mesh that are silhouette edges. Treated as a group,
these edges tend to form chains. Unfortunately, in regions of the
mesh where many of the faces are viewed nearly edge-on, the
chains of silhouette edges can bifurcate and possibly re-merge in
a nasty tangle. For our warp, we are interested in finding a smooth,
continuous curve that traces the silhouette on the model, rather than
identifying the exact, discrete set of silhouette edges in the mesh.
Furthermore, we are only interested in visible silhouettes because
they tend to correspond to features that appear in the drawing.
Finally, we want to distinguish border edges from other silhouette
edges.
To detect the border and silhouette edges of a 3-Dmodel, we pro-

ceed as follows. Using Gouraud shading (without lighting effects or
antialiasing) we render the 3-D model over a black background as a
polygon mesh whose vertices are colored ID ,
where and are the parametric coordinates of each vertex, and ID
identifies the texture (Figure 3b). Let us call the resulting image the
-image. The method accommodates models with multiple tex-

ture maps, but so far in our animations all of our models have only
used a single texture, whose ID is 1. The ID 0 is reserved for the
background.
When a pixel on the -image corre-

c2

c1e
p1 p2

Figure 4: A few pixels.

sponds to a point on the surface of the
model, we say that the pixel is covered by
the model. Also, a pixel corner is one of
the four corners of a pixel, while a pixel
boundary is the line segment joining two
pixel corners shared by two adjacent pix-
els. For example, in Figure 4, and
are pixels, and are pixel corners,
and is a pixel boundary.
Borders and silhouettes generate color discontinuities in the

resulting image (Figure 3c). To find these discontinuities, we
construct a directed graph , where are the vertices

Correa et al.
(1998)

Petrovic et al.
(2000)

Li et al.
(2003)

11

Johnston
(2002)

Monday, September 3, 2012

User Input

12

Virtual
markers

Color coded
body parts

Limb
bounding
boxes

Monday, September 3, 2012

User Input

12

Motion capture segment with
similar depth information,
time-warped via Dynamic
Time Warping

Virtual
markers

Color coded
body parts

Limb
bounding
boxes

Monday, September 3, 2012

Image plane

3D points

Motion capture poses

Hand drawings

Estimated camera

Camera Estimation

Monday, September 3, 2012

Estimated camera

Image plane

z-depth

3D points

2D points

Back-projected rays

14

Monday, September 3, 2012

Estimated camera

Image plane

z-depth

3D points

2D points

Back-projected rays

argmin
x

(ea(x) + em(x) + es(x))

14

Monday, September 3, 2012

Estimated camera

Image plane

z-depth

3D points

2D points

Back-projected rays

argmin
x

(ea(x) + em(x) + es(x))
input-matching

14

Monday, September 3, 2012

Estimated camera

Image plane

z-depth

3D points

2D points

Back-projected rays

argmin
x

(ea(x) + em(x) + es(x))
input-matching depth prior

14

Monday, September 3, 2012

Estimated camera

Image plane

z-depth

3D points

2D points

Back-projected rays

argmin
x

(ea(x) + em(x) + es(x))
input-matching depth prior smoothing term

14

Monday, September 3, 2012

Estimated camera

Image plane

z-depth

3D points

2D points

Back-projected rays

argmin
x

(ea(x) + em(x) + es(x))
input-matching depth prior smoothing term

Linear system: least squares solution

14

Monday, September 3, 2012

Estimated camera

Image plane

z-depth

3D points

2D points

Back-projected rays

argmin
x

(ea(x) + em(x) + es(x))
input-matching depth prior smoothing term

Linear system: least squares solution

14

Monday, September 3, 2012

Estimated camera

Image plane

z-depth

3D points

2D points

Back-projected rays

argmin
x

(ea(x) + em(x) + es(x))
input-matching depth prior smoothing term

Linear system: least squares solution

14

Monday, September 3, 2012

Estimated camera

Image plane

z-depth

3D points

2D points

Back-projected rays

argmin
x

(ea(x) + em(x) + es(x))
input-matching depth prior smoothing term

Linear system: least squares solution

14

Monday, September 3, 2012

Estimated camera

Image plane

z-depth

3D points

2D points

Back-projected rays

argmin
x

(ea(x) + em(x) + es(x))
input-matching depth prior smoothing term

Linear system: least squares solution

14

Monday, September 3, 2012

Estimated camera

Image plane

z-depth

3D points

2D points

Back-projected rays

argmin
x

(ea(x) + em(x) + es(x))
input-matching depth prior smoothing term

Linear system: least squares solution

14

Monday, September 3, 2012

Estimated camera

Image plane

z-depth

3D points

2D points

Back-projected rays

argmin
x

(ea(x) + em(x) + es(x))
input-matching depth prior smoothing term

Linear system: least squares solution

14

Monday, September 3, 2012

Rendered image

15

Depth compositing

Monday, September 3, 2012

Rendered image Depth map for
rendered image

15

Depth compositing

Monday, September 3, 2012

Rendered image Depth map for
rendered image

15

Depth map for
hand drawing

Depth compositing

Monday, September 3, 2012

Rendered image Depth map for
rendered image

Composited frame

15

Depth map for
hand drawing

Depth compositing

Monday, September 3, 2012

16

Monday, September 3, 2012

16

Monday, September 3, 2012

17

Monday, September 3, 2012

17

Monday, September 3, 2012

18

Monday, September 3, 2012

18

Monday, September 3, 2012

19

Monday, September 3, 2012

20

Monday, September 3, 2012

21

Monday, September 3, 2012

22

Monday, September 3, 2012

22

Monday, September 3, 2012

23

Monday, September 3, 2012

23

Monday, September 3, 2012

24

Monday, September 3, 2012

24

Monday, September 3, 2012

25

Monday, September 3, 2012

25

Monday, September 3, 2012

26

3D Polygonal shapes

Summary

Monday, September 3, 2012

26

3D Polygonal shapes

Summary

Monday, September 3, 2012

26

3D Polygonal shapes 3D Joint hierarchy skeleton

Summary

Monday, September 3, 2012

26

3D Polygonal shapes 3D Joint hierarchy skeleton

Hand animator modifies
physical simulation?

Summary

Monday, September 3, 2012

26

3D Polygonal shapes 3D Joint hierarchy skeleton

Hand animator modifies
physical simulation?

Summary

Learn cartoon physics?

Monday, September 3, 2012

Extra Slides

27

Monday, September 3, 2012

Camera Estimation

28

ρ(i) = (θx(i), θy(i), θz(i), tx(i), ty(i), tz(i))
T

Camera rotation
and translation ρ∗(i) = argmin

ρ
(w1eg + w2el + w3eo + w4es)

Monday, September 3, 2012

Camera Estimation

28

ρ(i) = (θx(i), θy(i), θz(i), tx(i), ty(i), tz(i))
T

Camera rotation
and translation ρ∗(i) = argmin

ρ
(w1eg + w2el + w3eo + w4es)

Geometric
projection error eg =

K/2�

t=−K/2

||x̃i+t − xproj
i+t ||

xproj
i+t

∼= MiX̃i+twhere

Motion capture poses

Hand drawings

Monday, September 3, 2012

29

input-matching motion prior smoothing term

argmin
x

(λaea(x) + λmem(x) + λses(x))

ea = ||x̃ij − xproj
ij ||

CMi





Xw
ij

Y w
ij

Zw
ij

1



 = 0

xproj
ij

∼= MiXw
ij

x̃ij ×MiXw
ij = 0

M =




mT

1

mT
2

mT
3





Monday, September 3, 2012

29

input-matching motion prior smoothing term

argmin
x

(λaea(x) + λmem(x) + λses(x))

ea = ||x̃ij − xproj
ij ||

CMi





Xw
ij

Y w
ij

Zw
ij

1



 = 0

xproj
ij

∼= MiXw
ij

x̃ij ×MiXw
ij = 0

em = ||mT
3 X

w
ij −mT

3 X̃ij ||

mT
3 X

w
ij = mT

3 X̃ij

M =




mT

1

mT
2

mT
3





Monday, September 3, 2012

29

input-matching motion prior smoothing term

argmin
x

(λaea(x) + λmem(x) + λses(x))

ea = ||x̃ij − xproj
ij ||

CMi





Xw
ij

Y w
ij

Zw
ij

1



 = 0

xproj
ij

∼= MiXw
ij

x̃ij ×MiXw
ij = 0

em = ||mT
3 X

w
ij −mT

3 X̃ij ||

mT
3 X

w
ij = mT

3 X̃ij

es = ||Xw
ij −Xw

(i+1)j ||

�
I −I

� � Xw
ij

Xw
(i+1)j

�
=

�
0

�

M =




mT

1

mT
2

mT
3





Monday, September 3, 2012

29

input-matching motion prior smoothing term

argmin
x

(λaea(x) + λmem(x) + λses(x))

ea = ||x̃ij − xproj
ij ||

CMi





Xw
ij

Y w
ij

Zw
ij

1



 = 0

WAiXw
i = bi

xproj
ij

∼= MiXw
ij

x̃ij ×MiXw
ij = 0

em = ||mT
3 X

w
ij −mT

3 X̃ij ||

mT
3 X

w
ij = mT

3 X̃ij

es = ||Xw
ij −Xw

(i+1)j ||

�
I −I

� � Xw
ij

Xw
(i+1)j

�
=

�
0

�

M =




mT

1

mT
2

mT
3





Monday, September 3, 2012

30

Monday, September 3, 2012

30

Monday, September 3, 2012

