Three-dimensional Proxies for Hand-drawn Characters

Eakta Jain Yaser Sheikh Moshe Mahler Jessica Hodgins

1 Carnegie Mellon University

²Disney Research Pittsburgh

Hand-drawn animation

3D CG animation

Hand-drawn animation

3D CG animation

Differences between hand animation and computer animation

Hand animator's workdesk

Differences between hand animation and computer animation

Hand animator's workdesk

3D animation software

Input

Input

Hand-drawn character

3D proxy

Hand-drawn character

Geometry Motion

3D proxy

Challenge: Inferring third dimension

Frame #1

Frame #40

Frame #1

Frame #40

Frame #1

Frame #40

Three-dimensional proxies with different levels of detail

Single points (3D markers)

3D Polygonal shapes

Joint hierarchy based skeleton

Three-dimensional proxies with different levels of detail

Joint hierarchy based skeleton

Past work

Correa et al. (1998)

Petrovic et al. (2000)

Davis et al. Li et al. (2003)

(2003)

Johnston (2002)

Bregler et al. (2002)

User Input

Virtual markers

Limb bounding boxes

Color coded body parts

User Input

Virtual markers

Limb bounding boxes

Color coded body parts

Motion capture segment with similar depth information, time-warped via Dynamic Time Warping

Camera Estimation

$$\underset{x}{\operatorname{arg\,min}}(e_a(x) + e_m(x) + e_s(x))$$

$$\underset{x \text{ input-matching}}{\min(e_a(x) + e_m(x) + e_s(x))}$$

$$\underset{x \text{ input-matching depth prior}}{\operatorname{arg\,min}(e_a(x) + e_m(x) + e_s(x))}$$

$$\underset{x \text{ input-matching depth prior smoothing term}}{\operatorname{arg\,min}(e_a(x) + e_m(x) + e_s(x))}$$

$$\operatorname*{arg\,min}(e_a(x) + e_m(x) + e_s(x)) \\ x \qquad \text{input-matching depth prior smoothing term}$$
 Linear system: least squares solution

$$\operatorname*{arg\,min}(e_a(x) + e_m(x) + e_s(x)) \\ x \qquad \text{input-matching depth prior smoothing term}$$
 Linear system: least squares solution

$$\operatorname*{arg\,min}(e_a(x) + e_m(x) + e_s(x)) \\ x \qquad \text{input-matching depth prior smoothing term}$$
 Linear system: least squares solution

$$\operatorname*{arg\,min}(e_a(x) + e_m(x) + e_s(x)) \\ x \qquad \text{input-matching depth prior smoothing term}$$
 Linear system: least squares solution

$$\underset{x \text{ input-matching depth prior smoothing term}}{\operatorname{arg\,min}(e_a(x) + e_m(x) + e_s(x))}$$

Linear system: least squares solution

$$\underset{x}{\operatorname{arg\,min}}(e_a(x) + e_m(x) + e_s(x))$$

Linear system: least squares solution

$$\underset{x \text{ input-matching depth prior smoothing term}}{\operatorname{arg\,min}(e_a(x) + e_m(x) + e_s(x))}$$

Linear system: least squares solution

Rendered image

Rendered image

Depth map for rendered image

Rendered image

Depth map for rendered image

Depth map for hand drawing

Rendered image

Depth map for rendered image

Depth map for hand drawing

Composited frame

Hand-drawn

Motion capture

Ground truth

Output

Motion capture: happy walk

3D Polygonal shapes

3D Polygonal shapes

3D Polygonal shapes

3D Joint hierarchy skeleton

3D Polygonal shapes

Hand animator modifies physical simulation?

3D Joint hierarchy skeleton

3D Polygonal shapes

3D Joint hierarchy skeleton

Hand animator modifies physical simulation?

Learn cartoon physics?

Extra Slides

Camera Estimation

Camera rotation and translation

$$\rho(i) = (\theta_x(i), \theta_y(i), \theta_z(i), t_x(i), t_y(i), t_z(i))^T$$

$$\rho^*(i) = \underset{\rho}{\operatorname{arg\,min}}(w_1 e_g + w_2 e_l + w_3 e_o + w_4 e_s)$$

Camera Estimation

Camera rotation and translation

$$\rho(i) = (\theta_x(i), \theta_y(i), \theta_z(i), t_x(i), t_y(i), t_z(i))^T$$

$$\rho^*(i) = \underset{\rho}{\operatorname{arg\,min}}(w_1 e_g + w_2 e_l + w_3 e_o + w_4 e_s)$$

Geometric projection error

$$e_g = \sum_{t=-K/2}^{K/2} || ilde{\mathbf{x}}_{i+t} - \mathbf{x}_{i+t}^{proj} ||$$

where
$$\mathbf{x}_{i+t}^{proj} \cong \mathbf{M}_i \tilde{\mathbf{X}}_{i+t}$$
Motion capture poses

$$\underset{x}{\operatorname{arg\,min}}(\lambda_a e_a(x) + \lambda_m e_m(x) + \lambda_s e_s(x))$$

$$egin{aligned} e_a &= || \mathbf{ ilde{x}}_{ij} - \mathbf{x}_{ij}^{proj} || | | | \\ \mathbf{x}_{ij}^{proj} &\cong \mathbf{M}_i \mathbf{X}_{ij}^w \\ \mathbf{ ilde{x}}_{ij} &\times \mathbf{M}_i \mathbf{X}_{ij}^w = 0 \end{aligned}$$
 $\mathbf{C}\mathbf{M}_i \begin{bmatrix} X_{ij}^w \\ Y_{ij}^w \\ Z_{ij}^w \\ 1 \end{bmatrix} = 0$
 $\mathbf{M} = \begin{bmatrix} \mathbf{m}_1^T \\ \mathbf{m}_2^T \\ \mathbf{m}_2^T \end{bmatrix}$

$$\underset{x}{\operatorname{arg\,min}}(\lambda_a e_a(x) + \lambda_m e_m(x) + \lambda_s e_s(x))$$

$$e_a = ||\tilde{\mathbf{x}}_{ij} - \mathbf{x}_{ij}^{proj}||$$

$$\mathbf{x}_{ij}^{proj} \cong \mathbf{M}_i \mathbf{X}_{ij}^w$$

$$\tilde{\mathbf{x}}_{ij} \times \mathbf{M}_i \mathbf{X}_{ij}^w = 0$$

$$egin{array}{c} egin{array}{c} X_{ij}^w \ Y_{ij}^w \ Z_{ij}^w \ 1 \end{array} = 0 \end{array}$$

$$\mathbf{M} = egin{bmatrix} \mathbf{m}_1^T \ \mathbf{m}_2^T \ \mathbf{m}_3^T \end{bmatrix}$$

$$e_a = ||\tilde{\mathbf{x}}_{ij} - \mathbf{x}_{ij}^{proj}||$$

$$e_m = ||\mathbf{m}_3^T \mathbf{X}_{ij}^w - \mathbf{m}_3^T \tilde{\mathbf{X}}_{ij}||$$

$$\mathbf{m}_3^T \mathbf{X}_{ij}^w = \mathbf{m}_3^T \tilde{\mathbf{X}}_{ij}$$

$$\mathop{\arg\min}_{x}(\lambda_a e_a(x) + \lambda_m e_m(x) + \lambda_s e_s(x))$$
 input-matching motion prior smoothing term

$$e_a = ||\tilde{\mathbf{x}}_{ij} - \mathbf{x}_{ij}^{proj}||$$

$$\mathbf{x}_{ij}^{proj} \cong \mathbf{M}_i \mathbf{X}_{ij}^w$$

$$\tilde{\mathbf{x}}_{ij} \times \mathbf{M}_i \mathbf{X}_{ij}^w = 0$$

$$\mathbf{CM}_i \left[egin{array}{c} X_{ij}^w \ Y_{ij}^w \ Z_{ij}^w \ 1 \end{array}
ight] = 0$$

$$\mathbf{M} = egin{bmatrix} \mathbf{m}_1^T \ \mathbf{m}_2^T \ \mathbf{m}_3^T \end{bmatrix}$$

$$e_a = ||\tilde{\mathbf{x}}_{ij} - \mathbf{x}_{ij}^{proj}||$$

$$e_m = ||\mathbf{m}_3^T \mathbf{X}_{ij}^w - \mathbf{m}_3^T \tilde{\mathbf{X}}_{ij}||$$

$$\mathbf{m}_3^T \mathbf{X}_{ij}^w = \mathbf{m}_3^T \tilde{\mathbf{X}}_{ij}$$

$$e_s = ||\mathbf{X}_{ij}^w - \mathbf{X}_{(i+1)j}^w||$$

$$\mathop{\arg\min}_{x}(\lambda_a e_a(x) + \lambda_m e_m(x) + \lambda_s e_s(x))$$
 input-matching motion prior smoothing term

$$e_a = ||\tilde{\mathbf{x}}_{ij} - \mathbf{x}_{ij}^{proj}||$$

$$\mathbf{x}_{ij}^{proj} \cong \mathbf{M}_i \mathbf{X}_{ij}^w$$

$$\tilde{\mathbf{x}}_{ij} \times \mathbf{M}_i \mathbf{X}_{ij}^w = 0$$

$$\mathbf{CM}_i \left[egin{array}{c} X_{ij}^w \ Y_{ij}^w \ Z_{ij}^w \ 1 \end{array}
ight] = 0$$

$$\mathbf{M} = egin{bmatrix} \mathbf{m}_1^T \ \mathbf{m}_2^T \ \mathbf{m}_3^T \end{bmatrix}$$

$$e_a = ||\tilde{\mathbf{x}}_{ij} - \mathbf{x}_{ij}^{proj}||$$

$$e_m = ||\mathbf{m}_3^T \mathbf{X}_{ij}^w - \mathbf{m}_3^T \tilde{\mathbf{X}}_{ij}||$$

$$\mathbf{m}_3^T \mathbf{X}_{ij}^w = \mathbf{m}_3^T \tilde{\mathbf{X}}_{ij}$$

$$e_s = ||\mathbf{X}_{ij}^w - \mathbf{X}_{(i+1)j}^w||$$

$$\left[egin{array}{cccc} \mathbf{I} & -\mathbf{I} \end{array}
ight] \left[egin{array}{c} \mathbf{X}_{ij}^w \ \mathbf{X}_{(i+1)j}^w \end{array}
ight] = \left[egin{array}{c} \mathbf{0} \end{array}
ight]$$

$$\mathbf{W}\mathbf{A}_i\mathbf{X}_i^w=\mathbf{b}_i$$

Hand-drawn

Time warped motion capture

