Three-dimensional Proxies for Hand-drawn Characters

Eakta Jain ${ }^{1}$ Yaser Sheikh ${ }^{1}$ Moshe Mahler ${ }^{2}$ Jessica Hodgins ${ }^{1,2}$
1
Carnegie Mellon University
${ }^{2}$ Disney Research Pittsburgh

Hand-drawn animation
3D CG animation

Differences between hand animation and computer animation

Differences between hand animation and computer animation

Hand animator's workdesk

3D animation software

Input

Input

J

Hand-drawn character

3D proxy

Hand-drawn character

3D proxy

Challenge: Inferring third dimension

Challenge: Composite motion ambiguity

Challenge: Artistic license

Frame \#1

Frame \#40

Overlaid

Challenge: Artistic license

Frame \#1

Frame \#40

Overlaid

Three-dimensional proxies with different levels of detail

Single points (3D markers)

3D Polygonal shapes

Joint hierarchy based skeleton

Three-dimensional proxies with different levels of detail

Single points (3D markers)

3D Polygonal shapes

Joint hierarchy based skeleton

Past work

Correa et al. (1998)

Petrovic et al. (2000)

Davis et al. Li et al. (2003) (2003)

Johnston
(2002)

Bregler et al. (2002)

User Input

Virtual markers

Limb bounding boxes

Color coded body parts

User Input

Virtual markers

Limb bounding boxes

Color coded Motion capture segment with body parts similar depth information, time-warped via Dynamic Time Warping

Camera Estimation

$\arg \min \left(e_{a}(x)+e_{m}(x)+e_{s}(x)\right)$

$\arg \min \left(e_{a}(x)+e_{m}(x)+e_{s}(x)\right)$ $x \quad$ input-matching

$\arg \min \left(e_{a}(x)+e_{m}(x)+e_{s}(x)\right)$
 x input-matching depth prior

$$
\underset{x}{\arg \min } \underset{\text { input-matching }}{ }\left(e_{a}(x)+\underset{\text { depth prior }}{e_{m}(x)}+\underset{\text { smoothing term }}{e_{s}}(x)\right)
$$

$$
\left.\underset{x \quad \arg \min (}{\arg } e_{a}(x)+e_{m}(x)+e_{s}(x)\right)
$$

Linear system: least squares solution

$$
\underset{x \quad \arg \min }{\min \left(e_{a}(x)\right.}+\underset{\text { int-matching }}{e_{\text {depth prior }}(x)}+\underset{\text { smoothing term }}{ }
$$

Linear system: least squares solution

$$
\underset{x \quad \arg \min }{\min \left(e_{a}(x)\right.}+\underset{\text { int-matching }}{e_{\text {depth prior }}(x)}+\underset{\text { smoothing term }}{ }
$$

Linear system: least squares solution

$$
\underset{x \quad \arg \min }{\min \left(e_{a}(x)\right.}+\underset{\text { int-matching }}{e_{\text {depth prior }}(x)}+\underset{\text { smoothing term }}{ }
$$

Linear system: least squares solution

$$
\left.\underset{x \quad \arg \min }{\min \left(e_{a}(x)\right.}(x)+\underset{\text { depth prior }}{e_{m i n g}(x)}+e_{s}(x)\right)
$$

Linear system: least squares solution

$$
\left.\underset{x \quad \arg \min }{\min \left(e_{a}(x)\right.}(x)+\underset{\text { depth prior }}{e_{m i n g}(x)}+e_{s}(x)\right)
$$

Linear system: least squares solution

$\arg \min \left(e_{a}(x)+e_{m}(x)+e_{s}(x)\right)$ x input-matching depth prior smoothing term

Linear system: least squares solution

Depth compositing

Rendered image

Depth compositing

Rendered image

Depth compositing

Rendered image

Depth map for rendered image

Depth map for hand drawing

Depth compositing

Rendered image

Depth map for rendered image

Depth map for hand drawing

Composited frame
J

Monday, September 3, 2012

Hand-drawn

Motion capture

Motion capture: happy walk

Summary

3D Polygonal shapes

Summary

3D Polygonal shapes

Summary

3D Polygonal shapes

3D Joint hierarchy skeleton

Summary

3D Polygonal shapes

Hand animator modifies physical simulation?

3D Joint hierarchy skeleton

Summary

3D Polygonal shapes

Hand animator modifies physical simulation?

3D Joint hierarchy skeleton

Learn cartoon physics?

Monday, September 3, 2012

Extra Slides

Camera Estimation

Camera rotation

$$
\begin{aligned}
& \rho(i)=\left(\theta_{x}(i), \theta_{y}(i), \theta_{z}(i), t_{x}(i), t_{y}(i), t_{z}(i)\right)^{T} \\
& \rho^{*}(i)=\underset{\rho}{\arg \min }\left(w_{1} e_{g}+w_{2} e_{l}+w_{3} e_{o}+w_{4} e_{s}\right)
\end{aligned}
$$

Camera Estimation

Camera rotation and translation

$$
\begin{aligned}
& \rho(i)=\left(\theta_{x}(i), \theta_{y}(i), \theta_{z}(i), t_{x}(i), t_{y}(i), t_{z}(i)\right)^{T} \\
& \rho^{*}(i)=\underset{\rho}{\arg \min }\left(w_{1} e_{g}+w_{2} e_{l}+w_{3} e_{o}+w_{4} e_{s}\right)
\end{aligned}
$$

$$
e_{g}=\sum_{t=-K / 2}^{K / 2}\left\|\tilde{\mathbf{x}}_{i+t}-\mathbf{x}_{i+t}^{p r o j}\right\|
$$

$$
\text { where } \mathbf{x}_{i+t}^{p r o j} \cong \mathbf{M}_{i} \tilde{\mathbf{X}}_{i+t}
$$

Motion capture poses

$$
\underset{x}{\arg \min }\left(\lambda_{a} e_{a}(x)+\underset{\text { input-matching }}{\lambda_{m} e_{m}(x)}+\underset{\text { motion prior }}{\left.\lambda_{s} e_{s}(x)\right)}\right.
$$

$$
e_{a}=\left\|\tilde{x}_{i j}-\mathbf{x}_{i j}^{p r o j}\right\|
$$

$$
\mathbf{x}_{i j}^{p r o j} \cong \mathbf{M}_{i} \mathbf{X}_{i j}^{w}
$$

$$
\tilde{\mathbf{x}}_{i j} \times \mathbf{M}_{i} \mathbf{X}_{i j}^{w}=0
$$

$$
\mathbf{C M}_{i}\left[\begin{array}{c}
X_{i j}^{w} \\
Y_{i j}^{w} \\
Z_{i j}^{w} \\
1
\end{array}\right]=0
$$

$$
\mathbf{M}=\left[\begin{array}{l}
\mathbf{m}_{1}^{T} \\
\mathbf{m}_{2}^{T} \\
\mathbf{m}_{3}^{T}
\end{array}\right]
$$

$\underset{x}{\arg \min }\left(\lambda_{a} e_{a}(x)+\underset{\text { input-matching }}{\lambda_{m} e_{m}(x)}+\underset{\text { motion prior }}{\left.\lambda_{s} e_{s}(x)\right)}\right.$

$$
e_{a}=\left\|\tilde{\mathbf{x}}_{i j}-\mathbf{x}_{i j}^{p r o j}\right\|
$$

$$
\mathbf{x}_{i j}^{p r o j} \cong \mathbf{M}_{i} \mathbf{X}_{i j}^{w}
$$

$$
\tilde{\mathbf{x}}_{i j} \times \mathbf{M}_{i} \mathbf{X}_{i j}^{w}=0
$$

$\mathbf{C M}_{i}\left[\begin{array}{c}X_{i j}^{w} \\ Y_{i j}^{w} \\ Z_{i j}^{w} \\ 1\end{array}\right]=0$
$\mathbf{M}=\left[\begin{array}{l}\mathbf{m}_{1}^{T} \\ \mathbf{m}_{2}^{T} \\ \mathbf{m}_{3}^{T}\end{array}\right]$

$$
e_{m}=\left\|\mathbf{m}_{3}^{T} \mathbf{X}_{i j}^{w}-\mathbf{m}_{3}^{T} \tilde{\mathbf{X}}_{i j}\right\|
$$

$$
\mathbf{m}_{3}^{T} \mathbf{X}_{i j}^{w}=\mathbf{m}_{3}^{T} \tilde{\mathbf{X}}_{i j}
$$

$\underset{x}{\arg \min }\left(\lambda_{a} e_{a}(x)+\underset{\text { input-matching }}{\lambda_{m} e_{m}(x)}+\underset{\text { motion prior }}{\left.\lambda_{s} e_{s}(x)\right)}\right.$ smoothing term

$$
e_{a}=\left\|\tilde{x}_{i j}-\mathbf{x}_{i j}^{p r o j}\right\|
$$

$$
\mathbf{x}_{i j}^{\text {proj }} \cong \mathbf{M}_{i} \mathbf{X}_{i j}^{w}
$$

$$
\tilde{\mathbf{x}}_{i j} \times \mathbf{M}_{i} \mathbf{X}_{i j}^{w}=0
$$

$\mathbf{C M}_{i}\left[\begin{array}{c}X_{i j}^{w} \\ Y_{i j}^{w} \\ Z_{i j}^{w} \\ 1\end{array}\right]=0$
$\mathbf{M}=\left[\begin{array}{l}\mathbf{m}_{1}^{T} \\ \mathbf{m}_{2}^{T} \\ \mathbf{m}_{3}^{T}\end{array}\right]$

$$
\begin{aligned}
& e_{m}=\left\|\mathbf{m}_{3}^{T} \mathbf{X}_{i j}^{w}-\mathbf{m}_{3}^{T} \tilde{\mathbf{X}}_{i j}\right\| \\
& \mathbf{m}_{3}^{T} \mathbf{X}_{i j}^{w}=\mathbf{m}_{3}^{T} \tilde{\mathbf{X}}_{i j} \\
& e_{s}=\left\|\mathbf{X}_{i j}^{w}-\mathbf{X}_{(i+1) j}^{w}\right\| \\
& {\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X}_{i j}^{w} \\
\mathbf{X}_{(i+1) j}^{w}
\end{array}\right]=[\mathbf{0}]}
\end{aligned}
$$

$\underset{x}{\arg \min }\left(\lambda_{a} e_{a}(x)+\underset{\text { input-matching }}{\lambda_{m} e_{m}(x)}+\underset{\text { motion prior }}{\left.\lambda_{s} e_{s}(x)\right)}\right.$ smoothing term

$$
e_{a}=\left\|\tilde{\mathbf{x}}_{i j}-\mathbf{x}_{i j}^{p r o j}\right\|
$$

$$
\mathbf{x}_{i j}^{\text {proj }} \cong \mathbf{M}_{i} \mathbf{X}_{i j}^{w}
$$

$$
\tilde{\mathbf{x}}_{i j} \times \mathbf{M}_{i} \mathbf{X}_{i j}^{w}=0
$$

$\mathbf{C M}_{i}\left[\begin{array}{c}X_{i j}^{w} \\ Y_{i j}^{w} \\ Z_{i j}^{w} \\ 1\end{array}\right]=0$
$\mathbf{M}=\left[\begin{array}{l}\mathbf{m}_{1}^{T} \\ \mathbf{m}_{2}^{T} \\ \mathbf{m}_{3}^{T}\end{array}\right]$

$$
\begin{aligned}
& e_{m}=\left\|\mathbf{m}_{3}^{T} \mathbf{X}_{i j}^{w}-\mathbf{m}_{3}^{T} \tilde{\mathbf{X}}_{i j}\right\| \\
& \mathbf{m}_{3}^{T} \mathbf{X}_{i j}^{w}=\mathbf{m}_{3}^{T} \tilde{\mathbf{X}}_{i j} \\
& e_{s}=\left\|\mathbf{X}_{i j}^{w}-\mathbf{X}_{(i+1) j}^{w}\right\| \\
& {\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X}_{i j}^{w} \\
\mathbf{X}_{(i+1) j}^{w}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0}
\end{array}\right]} \\
& \quad \mathbf{W} \mathbf{A}_{i} \mathbf{X}_{i}^{w}=\mathbf{b}_{i}
\end{aligned}
$$

Hand-drawn

Time warped motion capture

$C \cdot(t+1$
$f_{c 2}$
$f_{c 3}$

