
A System for Rapid Exploration of Shader Optimization Choices

Yong He
Carnegie Mellon University

Theresa Foley
NVIDIA

Kayvon Fatahalian
Carnegie Mellon University

Abstract
We present Spire, a shading language and compiler framework that
facilitates rapid exploration of shader optimization choices (such
as frequency reduction and algorithmic approximation) afforded by
modern real-time graphics engines. Our design combines ideas
from rate-based shader programming with new language features
that expand the scope of shader execution beyond traditional GPU
hardware pipelines, and enable a diverse set of shader optimiza-
tions to be described by a single mechanism: overloading shader
terms at various spatio-temporal computation rates provided by the
pipeline. In contrast to prior work, neither the shading language’s
design, nor our compiler framework’s implementation, is specific to
the capabilities of any one rendering pipeline, thus Spire establishes
architectural separation between the shading system and the imple-
mentation of modern rendering engines (allowing different render-
ing pipelines to utilize its services). We demonstrate use of Spire
to author complex shaders that are portable across different render-
ing pipelines and to rapidly explore shader optimization decisions
that span multiple compute and graphics passes and even offline as-
set preprocessing. We further demonstrate the utility of Spire by
developing a shader level-of-detail library and shader auto-tuning
system on top of its abstractions, and demonstrate rapid, automatic
re-optimization of shaders for different target hardware platforms.

Keywords: shading languages, real-time rendering

Concepts: •Computing methodologies → Graphics systems and
interfaces;

1 Introduction
Developers of modern real-time rendering engines are faced with
many choices when determining the techniques that yield the best
performance-quality trade-offs for a given virtual world, target
hardware platform, or specific set of scene viewing conditions.
Many of these choices pertain to efficient implementation of shad-
ing calculations. For example, the process of optimizing a mod-
ern shading effect involves more than choosing a suitable material
model and writing good GPU shader code. In the context of the
entire rendering engine, optimization includes decisions such as
identifying when components of a shader can be “baked” into tex-
tures or parameter buffers during offline preprocessing, selecting
the spatial frequency (e.g., per-vertex or per-fragment) or coordi-
nate space (e.g., uniformly on screen or in object-space) in which to
evaluate the shading function, and deciding when to leverage multi-
resolution shading techniques or forms of temporal reuse. Deci-
sions can also span multiple objects: e.g., to constrain objects to
share GPU state, so they can be “batched” for efficient rendering.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org. © 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SIGGRAPH ’16 Technical Paper, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925923

Many of these choices have global impact on the design and imple-
mentation of a rendering pipeline used by an engine. Investigating a
single optimization choice may require rewriting GPU kernel pro-
grams, host CPU application logic and data structures, and even
code executed offline to prepare assets for the engine; the program-
ming effort is not only substantial, but is distributed across multi-
ple programming systems. This challenge is particularly acute for
modern AAA games, which can feature many unique shaders, im-
plementing a wide collection materials and multiple levels of ma-
terial detail. (For example, Bungie’s Destiny utilizes over 17,000
artist-authored materials compiled to over 180,000 unique vertex
and fragment programs [Bungie 2014].) In a well-tuned system,
many of these shaders may require different optimization choices.
Further, retargeting the application to a wide range of hardware
platforms (e.g., PC, console generation(s), mobile) requires new
optimization decisions for each target.

In this paper, we describe Spire a shading language and com-
piler framework that supports rapid exploration of a wide space of
shader optimization choices afforded by modern real-time graphics
engines. Our design combines concepts from prior work in rate-
based shader programming [Foley and Hanrahan 2011] with new
language features that:

• Expand the scope of rate-based shaders beyond GPU hard-
ware pipelines, to encompass further spatio-temporal rates for
computation and storage. In particular, we support engine-
specific pipelines that span multiple compute and graphics
passes, and even offline asset processing.

• Allow shader terms to be overloaded: take on multiple defi-
nitions that permit varying algorithmic approximations or dif-
ferent rates of evaluation. This design allows shader optimiza-
tion to be expressed as the choice of which term definition to
use in a compiled shader.

• Decouple optimization decisions from shader code, and allow
engine-specific optimization policies to be built as libraries
and applied to many shaders.

In contrast to prior work, neither the shading language’s design,
nor our compiler’s implementation, is specific to any one rendering
pipeline, and thus our system establishes interfaces against which
rendering engines may integrate to utilize its services.

We demonstrate use of this language and compiler framework to
interactively explore algorithmic choice, frequency reduction, and
texture data-layout optimizations for complex shaders, apply a con-
sistent optimization policy to multiple shaders to create families of
level-of-detail (LOD) shaders, and rapidly re-target shaders to al-
ternative multi-rate rendering pipelines. We also demonstrate that
Spire’s representations facilitate the development of powerful opti-
mization tools, such as a shader auto-tuning system that automati-
cally optimizes shaders for different target hardware platforms.

2 Related Work
Many popular game engines provide abstractions and tools that as-
sist shader authoring. For example, the Unreal Engine [Epic Games
2015a] provides a visual node-graph editing tool for defining ex-
pressions that compute input parameters for engine-defined mate-
rial models. Each node in the expression graph corresponds to a
pre-defined snippet of GPU shader (or engine) code, which is com-



posed with engine-provided material model code during compila-
tion. Such systems are specific to a particular rendering engine, do
little to assist the process of shader optimization, and do not pro-
vide advanced language features for building libraries of shaders.
Spire offers new shader representations that overcome these limi-
tations and facilitate development of powerful shader optimization
tools such as auto-tuners and shader level-of-detail libraries.

Systems such as GRAMPS [Sugerman et al. 2009] and Piko [Pat-
ney et al. 2015] allow developers to define custom graphics pipeline
topologies using general stream programming primitives and com-
pile them to different targets. These systems enable exploration of
the design space of rendering pipelines, but do not generate output
that is performance competitive with application specific solutions
hand-authored by engine developers using conventional program-
ming tools. Spire does not address the task of implementing effi-
cient rendering pipelines. Instead, Spire focuses on the problem of
efficiently targeting engine-specific pipelines with shaders.

Like EAGL [Lalonde and Schenk 2002], Spire shaders describe
both offline and runtime computations and enable rendering as-
sets to be specialized for shaders and stored for later runtime use.
Whereas EAGL supplied a fixed set of offline preprocessing rou-
tines to specialize geometry buffers for shader needs, Spire enables
shader-defined computations to be executed as part of a rendering
pipeline’s preprocessing phase. EAGL also leveraged knowledge
of shaders to minimize state-change overhead in rendering pipeline
draw loops. While Spire provides engine implementations with suf-
ficient information to make such optimizations (Section 6.2), by de-
sign Spire does not assume responsibility for synthesizing pipeline
implementations itself.

In contrast to Cg [Mark et al. 2003], GLSL [Kessenich et al.
2014], and HLSL [Microsoft 2016], which adopt a one-shader-per-
pipeline-stage model of shader programming, Spire is based on
the idea of rate-based programming, where a single shader de-
fines computations that occur at multiple spatio-temporal rates (cor-
responding to pipeline stages). Mixed-rate shaders (also called
pipeline shaders) are supported by RSL [Hanrahan and Lawson
1990] (via the uniform and varying rate qualifiers) and used in
RTSL [Proudfoot et al. 2001] to map computation to multiple pro-
grammable pipeline stages (e.g., primitive, vertex, fragment
qualifiers). Other mixed-rate shading systems do not require rate
qualifiers, and rely on compiler policies and optimizations to select
rates [McCool 2000; Austin and Reiners 2005]. Spire’s rate-based
dataflow programming model is most similar to that of Spark [Foley
and Hanrahan 2011]. However, Spire and Spark differ greatly in
implementation (Sections 4 and 5), and the two systems were mo-
tivated by different goals (Spire by shader optimization, and Spark
from code modularity and shader composition).

Spire’s component overloading features (Section 4.3) serve to sepa-
rate the definition of a shader program from the set of optimization
choices afforded by the shader and rendering pipeline. This design
echoes the separation of algorithm from schedule enforced by pro-
gramming languages for high-performance computing [Fatahalian
et al. 2006; Bauer et al. 2012] and image processing [Ragan-Kelley
et al. 2012]. However, since making shader optimization choices
not only impacts shader performance, but also changes output qual-
ity and the algorithms used to evaluate shading, the line between
the shader algorithm and its optimization decisions in Spire is less
distinct. As in PetaBricks [Ansel et al. 2009], optimizing a Spire
shader may involve choice of algorithm.

3 Design Goals
The design of Spire is motivated by the following goals.

Address a wide space of shader optimization options. Impor-

tant shader optimization choices (spatio-temporal frequency reduc-
tion, algorithm simplification/approximation, buffer storage layout,
coordinate space selection) affect code distributed throughout the
engine (including running in GPU compute, or during offline asset
processing.) To span a useful set of optimization choices, a system
must encompass shader-related logic spanning the entire pipeline
from art assets to pixels, not only the GPU rasterization pipeline.
Our focus is on enabling high-level shader optimization choices
that impact this end-to-end sequence of computations; exploring
the space of low-level intra-kernel optimizations (register alloca-
tion, instruction orderings, etc.) is a non-goal of our system.

Facilitate rapid exploration of shader optimization choices. We
seek to enable both manual (by a programmer) and automatic (by
auto-tuning tools) exploration of the performance-quality space for
a shader (e.g., to find the best trade-off for a given platform). For
example, a programmer should be able to express a high-level op-
timization choice, then have the system generate a full shader im-
plementation for the rendering pipeline, even if the choice induces
significant change in overall rendering pipeline logic. To further
support rapid choice exploration, the system should also support
mechanical application of choices (once they are made) to large
numbers of shaders (e.g., to optimize thousands of shaders at once).

Maintain rendering pipeline independence. Expanding the no-
tion of “rendering pipeline” to concerns beyond a single GPU draw
call, presents the challenge of targeting a multitude of rendering
pipelines tailored to the needs of particular applications. Rather
than seek a one-size-fits-all shading solution (i.e., a shading lan-
guage designed for a single, universal pipeline), the system must
allow each engine to expose a different, specialized interface to
shader programmers. The compiler must then be able to validate
and compile shader code without full knowledge of how the engine
will use it. Further, a framework that is independent of any specific
pipeline implementation has the added benefit of allowing multiple
engines to share the same language and compiler infrastructure, as
well as offers the possibility of reusing shaders and tools (e.g., for
auto-tuning) across engines.

Achieve high performance. The convenience of rapid exploration
cannot come at the cost of significant overhead in generated code;
the system must produce code that is competitive with expert de-
velopers making the same optimization choices by hand. Further,
the system should only generate code for shaders, and not attempt
to synthesize other parts of the engine; those tasks are left to highly
specialized solutions authored by engine programmers.

4 Spire Concepts
Figure 1 provides an overview of the process of compiling and opti-
mizing a Spire shader. In this section we describe the key concepts
in this process, in which responsibilities are divided among three
parties: the engine developer, the shader author, and the Spire com-
piler framework. As Spire adopts many mixed-rate shading lan-
guage abstractions featured in Spark [Foley and Hanrahan 2011],
we will relate concepts back to their Spark equivalents when possi-
ble, and make note of important differences in our model.

4.1 Defining Pipeline Topology
An important aspect of Spire’s design is that the shading lan-
guage and compiler do not dictate or assume any specific render-
ing pipeline structure. Instead, the engine developer is responsible
for providing a definition of an engine’s rendering pipeline(s) to the
compiler front-end. The front-end is then responsible for validat-
ing authored shaders against the capabilities of the corresponding
pipeline.

Figure 2 depicts an engine-specific rendering pipeline (named
EnginePipeline) as a graph. Each node in the graph (e.g.,



Engine pipeline
definition

Declares worlds and import
operators (pipeline topology)

Shader compiler
front-end

Shader
source

Shader graph

Choice maker

Shader compiler
back-end

Rendering
engine

Choice
file

enumerates allowed
optimization choices

for shader graph

Opt.
Decisions

generated kernels +
interface definitions
for shader variant

defines
shader variant

Import operator
plugins

implements worlds

implements import
operators

Figure 1: Overview of Spire shader compilation. The compiler front-end validates a shader against an engine-provided pipeline definition.
The shader’s space of component definition choices is exposed to a choice maker, which produces decisions that inform back-end code
generation. The engine executes the compiled kernels to provide the semantics of the pipeline definition.

Fragment) corresponds to a world: a logical place and time at
which values can be computed and/or stored by the pipeline. For ex-
ample, in EnginePipeline, the Fragment world represents con-
ventional GPU fragment shading, while PrebakeTex represents
precomputations whose results are stored into texels during offline
asset processing. Worlds correspond to stages in the logical render-
ing pipeline of an engine, and to the notion of rates of computation
in RTSL and Spark. Our use of a new term reflects the expanded
scope of worlds in Spire; they express not just the rates of sampling
or execution in a GPU hardware pipeline, but a myriad of places
and times (spanning multiple frames, or even machines) at which
an engine might compute or store shading results.

Abstract worlds are used to declare shader inputs provided from
outside the language. Shaders cannot define computations at ab-
stract worlds. EnginePipeline features three abstract worlds,
shown as gray nodes in Figure 2. The MeshVertex world rep-
resents per-vertex attributes associated with geometry fed into the
(asset processing and rendering) pipeline. The MaterialUniform
world provides non-time-varying inputs (e.g., material parameters),
while FrameUniform represents per-frame uniform shader param-
eters provided by the engine at runtime.

The directed edges that connect worlds in the pipeline graph corre-
spond to import operators, which define how values are allowed to
flow between worlds. For example, values computed in the Vertex
world can be imported into Fragment computation (but not vice
versa). Time-varying inputs from the FrameUniform world are
not available to offline PrebakeTex computations. Import opera-
tors express a dependency relationship between worlds, such that
some worlds are transitively reachable from others.

The pipeline topology only declares what worlds and dataflow paths
a pipeline supports. The engine is responsible for defining and im-
plementing the semantics of the worlds and import operators of
its pipeline(s). For example, EnginePipeline could be imple-
mented via two rendering passes. The first pass is an offline pre-
process that renders a mesh, executing PrebakeTex computations
in the GPU’s fragment shader (with inputs from the MeshVertex
and MaterialUniform worlds supplied via vertex attributes and
uniform buffers respectively) and storing outputs in texture space of
the mesh (as texels in texture buffers). The second pass is executed
per-frame at runtime, mapping computations in the Vertex and
Fragment worlds to the vertex- and fragment-processing stages of
the GPU pipeline. In this pass FrameUniform data is now avail-
able via uniform buffers, and the outputs of PrebakeTex are avail-
able as textures bound to the GPU pipeline.

4.2 Defining Shaders
In Spire a shader is a function defined over an engine-defined do-
main. In the case of EnginePipeline, the domain is the surface
of a mesh, and a shader computes the values of one or more sig-
nals on that surface (e.g., surface appearance) [Wang et al. 2014].
A shader author cannot express computations that depend on mul-
tiple points in the domain; in the terminology of Spark, a shader
comprises only point-wise code. Operations which span multiple
domain points (e.g., interpolation or resampling) are implemented
by the rendering engine and typically exposed to the shader as im-
port operators (e.g., interpolation of data imported from Vertex to
Fragment).

From the point of view of the compiler, a shader is represented as a
shader graph: a DAG of computation, defined against a particular
pipeline. The nodes of a shader graph are components, correspond-
ing to inputs, outputs, or intermediate computations of the shader.
Spire components are similar to shader attributes in Spark.

Listing 1 defines a shader Terrain for the EnginePipeline,
which computes the appearance of a terrain model by blending
multiple layers of albedo and normal maps according to spatially
varying weights encoded in a texture map. The body of this
shader defines several components. Components placed in the
MaterialUniform and FrameUniform worlds constitute shader
input parameters that must be provided from outside of the shading
language, on a per-material or per-frame basis, respectively. The
remaining components in Terrain are given definitions. The def-
inition of mixFactor is a simple expression, so it is written as an
initializer. The computation of albedo is more involved, and is
therefore written as a block-structured body statement which sam-
ples two texture maps and blends between the results. Similar to
the restrictions in the Spark language, we allow use of control flow
and mutable variables inside the definition of a single component,
but not at the top level of a shader declaration.

A pipeline may also declare components, which are inherited by all
shaders using the pipeline; these represent values that the pipeline
either provides or requires. In Listing 1, the vert_uv component is
provided by EnginePipeline, while the definitions of projPos
and output are required by the pipeline. We discuss the definition
of EnginePipeline later, in Section 5.1.

4.3 Component Overloading
Through the mechanism of component overloading, Spire shaders
can be authored to describe a rich space of evaluation choices. The
component normal in Listing 1 is explicitly overloaded: it has
different definitions for the Vertex and Fragment worlds. The
first definition simply uses the per-vertex normal attribute of the



shader Terrain using EnginePipeline {
@MaterialUniform sampler2D mixMap;
@MaterialUniform sampler2D albedoMap1, albedoMap2;
@MaterialUniform sampler2D normalMap1, normalMap2;
@FrameUniform vec3 lightDir;
@FrameUniform mat4 matMVP;

float mixFactor = texture(mixMap, vert_uv).x;
vec4 albedo {
vec4 c1 = texture(albedoMap1,vert_uv*5);
vec4 c2 = texture(albedoMap2,vert_uv*5);
return mix(c1, c2, mixFactor);

}
@Vertex vec3 normal = vert_normal;
@Fragment vec3 normal {
vec4 n1 = texture(normalMap1,vert_uv*5);
vec4 n2 = texture(normalMap2,vert_uv*5);
vec3 n = mix(n1, n2, mixFactor).xyz;
return n * 2.0 - 1.0;

}
float lighting:basic = phong(lightDir, normal, ...);
float lighting:ggx = ggx(lightDir, normal, ...);
vec4 projPos = matMVP * vec4(vert_pos,1);
vec4 output = albedo * lighting;

}

Listing 1: A shader written against EnginePipeline from Fig-
ure 2 and Listing 3). The shader composes two layers of albedo
and normal texture maps (normal map compositing is optional),
then computes surface reflectance using one of two techniques.

model being rendered, while the per-fragment definition samples
and mixes two layers of normal maps.

Figure 3 (top) depicts the shader graph for Terrain. Graph nodes
correspond to components, while the colored boxes within some
nodes correspond to overloaded definitions. For example, the node
for normal contains two definitions, each color-coded according
to the Vertex and Fragment worlds for which it is defined (colors
are consistent with those in Figure 2). The different definitions of a
component may have different dependencies; we depict this using
dashed lines. For example, the Fragment definition of normal
depends on vert_uv, mixFactor, and the normal maps, whereas
the Vertex definition only depends on vert_normal.

Although albedo has only a single declaration in Listing 1, the
shader graph includes three definitions (one for each world). This
is a key feature of Spire’s design: a component declared without
an explicit world is overloaded with a definition in every possi-
ble world allowed by its dependencies. (Observe projPos has
no explicit world qualifier but is only defined in the Vertex and
Fragment worlds, due to its dependence on the per-frame matrix
matMVP.) Previous multi-rate languages either disallow component
declarations without an explicit world qualifier, or automatically in-
fer a single world during compilation. Implicit overloading defers
these decisions until later, so that even simple shaders can expose
many world placement optimization choices via overload selection.

While the overloading of normal provided unique definitions at
different worlds, lighting is explicitly overloaded with multiple
definitions for the same world. Terrain provides two (named)
definitions of lighting, differentiated by variation name: one
(basic) evaluates simple Phong shading, and the other (ggx) eval-
uates a more complex GGX specular lighting model on the surface.
Thus intra-world overloading provides a mechanism for describing
potential algorithmic approximations in the shader’s definition. In
this example, since the two definitions of lighting are not explic-
itly associated with specific worlds, they are implicitly defined at

MeshVertex

PrebakeTex Vertex Fragment

MaterialUniform

FrameUniform
EnginePipeline Topology 

Figure 2: An example engine-defined pipeline topology, consisting
of worlds and their dataflow connections (import operators).

Vertex

Fragment

PrebakeTex Vertex Fragment

PrebakeTex Vertex Fragment

PrebakeTex Vertex Fragment

PrebakeTex Vertex Fragment

projPos

mixFactor

normal

albedo

lighting output

vert_pos
vert_normal

vert_uv

matMVP

albedoMap1
albedoMap2

normalMap1
normalMap2

mixMap

lighting:ggx

normal
albedo

projPos

mixFactor

lightDir

FrameUniform inputs

MeshVertex inputs
MaterialUniform inputs

= only if normal placed at Vertex 
= only if normal placed at Fragment

ggx
basic
ggx

basic

normal

albedo projPos

mixFactor

lighting:
basicalbedo projPos

mixFactor

FrameUniform inputs

MeshVertex inputs
MaterialUniform inputs

output

normal

Variant 3 (pre-baked albedo, no normal mapping, basic lighting)

Variant 2 (pre-baked albedo, per-fragment normals, ggx lighting)

Variant 1 (per-fragment albedo and normal mapping, ggx lighting)

Terrain : Shader graph

lighting:
ggx output

output

FrameUniform inputs

MeshVertex inputs
MaterialUniform inputs

Figure 3: Shader graph and three graph variants that result from
making different optimization decisions for Terrain in Listing 1.



Terrain.mixFactor = {PrebakeTex,Vertex,Fragment}
Terrain.albedo = {PrebakeTex,Vertex,Fragment}
Terrain.normal = {Vertex,Fragment}
Terrain.lighting = {Vertex:basic,Fragment:basic,

Vertex:ggx, Fragment: ggx}
Terrain.projPos = {Vertex,Fragment}
---------------------------------------------------
Terrain.mixFactor = PrebakeTex
Terrain.albedo = PrebakeTex
Terrain.normal = Vertex
Terrain.lighting = Fragment:basic
Terrain.projPos = Vertex

Listing 2: Top: choice file for the shader Terrain (Listing 1).
Each line specifies the set of available definitions for a component.
(The definition specifies the world in which the component is placed
and how to compute its value.) Bottom: optimization decision file
corresponding to the last variant of Terrain shader in Figure 3.

all permitted worlds. (There are four definitions of lighting in
Terrain’s shader graph.)

4.4 Making Optimization Choices
Since components may be overloaded with multiple definitions, a
shader graph represents a space of possible choices for how to eval-
uate a shader (it represents a set of valid DAGs). The compiler
front-end exposes the space of optimization choices afforded by a
shader as a choice file, which enumerates overloaded components
and their possible definitions. Listing 2-top shows a choice file for
the Terrain shader.

In Spire, making shader optimization decisions is achieved by plac-
ing components in worlds (deciding when and where particular
shader components should be computed or stored) and choosing
which definition of the component to evaluate in that world. For
example, Terrain presents the choice of blending albedo layers
per fragment, per vertex, or baking the results of blending into a
texture as a preprocess. Placing the albedo computation amounts
to choosing one of its overloaded definitions.

The ability to explicitly overload component definitions (such as
normal and lighting in the Terrain shader) means that choos-
ing a component definition serves to both select a rate of compu-
tation and also algorithmic approximation as well (two forms of
performance-quality trade-offs). For example, the user may provide
an explicit overload for albedo in PrebakeTex world to offset the
contrast bias when sampling at lower spatial rate.

In prior work, world placement choices were made either by the
shader author (via explicit rate qualifiers) or the compiler (inferred
rates). Spire models both world placement and algorithmic choices
as overloaded definition selection, and the responsibility for mak-
ing overload selection choices is given to a choice maker external
to the compiler, as shown in Figure 1. The choice maker can be
an automated tool, a programmer, or an interactive UI for engine
developers or shader authors; we demonstrate implementations of
each of these options in Section 7.

The output of the choice maker is a set of optimization decisions,
specifying which definitions of the components should be used.
Listing 2-bottom shows an example set of optimization decisions
for the Terrain shader. When applied to the shader graph, the opti-
mization decisions define a shader variant: a graph with only a sin-
gle definition for each overloaded component. Figure 3 shows three
variants of the Terrain shader. The first variant computes both
albedo and normal per-fragment and the GGX lighting model
(achieving high-quality output, but at high cost). The second com-
posites the albedo texture layers offline in the PrebakeTex world,

reducing run-time per-fragment evaluation of albedo to a single
texture fetch. The final variant, corresponding to the decisions in
Listing 2, further simplifies the computation to use per-vertex nor-
mals and employs a simple lighting model.

Each shader variant in Figure 3 corresponds to the notion of a
“shader” in RTSL or Spark. These prior systems do not allow com-
ponent definitions to be overloaded (whether explicitly or implic-
itly); thus no placement choices are left to make after compilation.

4.5 Generating Kernels
Given a shader variant (a shader graph plus optimization choices)
defined against a particular pipeline, the engine requires an exe-
cutable kernel which it can run to perform all the shader’s compu-
tations for a given world. For example, if an engine implement-
ing EnginePipeline needed to render a mesh using one of the
Terrain shader variants in Figure 3, it might request kernels for
the Vertex and Fragmentworlds to execute in the vertex and frag-
ment shading stages of a GPU hardware rasterization pipeline.

In Figure 3 (bottom), the blue box for the Fragment world en-
capsulates the logic of the GPU fragment-stage kernel. The nodes
(component definitions) inside the box will become instructions in
the kernel; dependency edges entering or leaving the box corre-
spond to kernel inputs and outputs, respectively. These inputs and
outputs correspond to (implicit) uses of import operators.

The compiler back-end is responsible for generating kernel code
for a shader variant. Our code generation approach is similar to
RTSL and Spark, with additional features to support engine-defined
pipelines, which we will discuss in Section 5.1.

Given the generated kernels and information about their inputs and
outputs, the engine orchestrates execution of a shader by invoking
the various kernels at the appropriate places and times. The en-
gine is responsible for storing any kernel outputs that will be used
in downstream worlds. For example, the engine will need to allo-
cate textures to store the outputs of a PrebakeTex kernel and bind
these textures so that they are available as inputs to correspond-
ing Fragment kernel invocations. The format and size of these
required buffers is conveyed to the engine with the kernel.

5 Compiler Implementation
5.1 Defining and Generating Code for a Pipeline
While the definition of a pipeline and the generation of executable
kernel code appear at opposite ends of Figure 1, these steps are in-
timately linked. For example, the abstract topology of a pipeline
only determines what import operators exist, but code must be gen-
erated to interface with the engine that implements them. Does a
given kernel input come via a buffer, texture, or preceding stage?
Each of these options requires different kernel code.

In Spire, an engine programmer exposes both the capabilities of
a pipeline (used when validating shaders) and important infor-
mation about its behavior (used when generating code) by writ-
ing a pipeline definition. Listing 3 provides the definition of
EnginePipeline corresponding to the topology illustrated in Fig-
ure 2. Each of the worlds in the pipeline topology is introduced with
a world declaration, and some worlds are marked abstract. The
definition also includes import operators declared between pairs of
worlds: e.g., Vertex->Fragment. Finally, the pipeline declares
components that all shaders using the pipeline will inherit. The
abstract components must be defined by every concrete shader
using this pipeline. The output component is marked export to
indicate that it represents an output of the entire pipeline.

Spark also allows new worlds and rate-conversion operators to be
declared in the language, and the capabilities of pipelines are ex-



pipeline EnginePipeline {
abstract world FrameUniform;
abstract world MaterialUniform;
abstract world RootVertex;
world PrebakeTex : "GLSL" export standardExport;
world Vertex : "GLSL" export vertexExport(projPos);
world Fragment : "GLSL" export standardExport;

import MaterialUniform->PrebakeTex
using uniformImport;

import MaterialUniform->Vertex
using uniformImport;

import MaterialUniform->Fragment
using uniformImport;

import FrameUniform->Vertex using uniformImport;
import FrameUniform->Fragment using uniformImport;
import MeshVertex->Vertex using standardImport;
import MeshVertex->PrebakeTex using standardImport;
import Vertex->Fragment using standardImport;
import PrebakeTex->Fragment

using textureImport(vert_uv);

@MeshVertex vec3 vert_pos;
@MeshVertex vec3 vert_uv;
@MeshVertex vec3 vert_normal;

abstract @Vertex vec4 projPos;
abstract export @Fragment vec4 output;

}

Listing 3: Pipeline definition for EnginePipeline, with topology
as depicted in Figure 2

posed with definitions not unlike EnginePipeline. However,
Spark worlds must either have their semantics fully implemented
in the shading language, or be implemented with built-in logic in
the compiler. That is, worlds that are translated to GPU kernels in
GLSL or HLSL are all special-cased in the Spark compiler. There
is no way for a user of Spark to add a world like PrebakeTex.

A key contribution of Spire is that engine-specific pipelines can in-
troduce new worlds and implement the semantics of these worlds
without having to modify the compiler. A non-abstract world dec-
laration includes a language specifier; kernel code for this world
will be output in the specified language. Our implementation cur-
rently supports GLSL kernels for both graphics and compute.

The semantics of an import operator typically involve generating
specialized code in both the producing kernel and consuming ker-
nel, for each component on which the operator is invoked: i.e., each
component to be propagated between worlds. This is consistent
with Spark, where user-defined plumbing operators are viewed as
templates to be instantiated on demand. While Spark plumbing op-
erators only generate more Spark code, Spire import operators gen-
erate kernel code (e.g., GLSL). An engine programmer specifies
how this kernel code should be generated by selecting from built
in strategies for import and export code generation in the compiler.
Table 1 lists the strategies supported by our GLSL code generator.

To help explain how strategies impact code generation, consider
the example where component albedo in the Terrain shader
is placed in the PrebakeTex world, and used by the compu-
tation of output in the Fragment world. In this case, the
PrebakeTex->Fragment import operator is invoked on albedo.
The compiler back-end must export the value of albedo from
PrebakeTex and import it into the Fragment world; this requires
suitable code to be generated in each world.

Strategy GLSL Code Generation Behavior
uniformImport Declare imported components in a

uniform block
standardImport Declare imported components with

in qualifier
textureImport(uv) For each component, declare a

uniform sampler2d and sample
at texture coordinate uv

bufferImport Declare imported components in a
shader storage buffer

standardExport Declare exported components with
out qualifier

vertexExport(v) Same as standardExport, but also
assign v to gl_Position

bufferExport Declare exported components in a
shader storage buffer

Table 1: Code generation strategies for import and export of com-
ponents, supported by our GLSL back-end. A pipeline definition
uses these strategies to specify code generation behavior.

The declaration of the PrebakeTex world specifies that the
standardExport strategy should be used when exporting compo-
nents. In this case, the compiler generates a GLSL out declaration:

out vec4 albedo;

The declaration of the PrebakeTex->Fragment import operator
specifies that the textureImport strategy should be used when
components are imported. This strategy generates code to import
albedo by declaring a texture sampler:

uniform sampler2D albedo_sampler;

and then emitting code to fetch the value of albedo:

vec4 albedo = texture(albedo_sampler, vert_uv);

Additional parameters required by the code generator (e.g., the tex-
ture coordinate in this example) are specified as arguments to the
import strategy (e.g., textureImport(vert_uv)).

The export strategy of a world may also specify component to use
for stage-specific outputs; e.g., the Vertex world specifies that
projPos be assigned to the built-in GLSL variable gl_Position.

While new worlds and import operators can easily be declared by
engine developers, our system does not currently allow new output
languages or import/export strategies to be added as easily: new
import or export strategies need to be defined via compiler plugins.
An alternative would be to define new strategies as compile-time
code, using an explicit metaprogramming interface.

While the import and export strategies, running in the compiler, are
responsible for generating appropriate code for kernel inputs and
outputs, the engine is responsible for any allocation, buffering, or
movement of data required at runtime (e.g., filling in and binding a
uniform buffer). To assist the engine, the compiler generates reflec-
tion data for kernels, allowing inputs and outputs to be enumerated.

5.2 Overloading Component Definitions
As described in Section 4.4, Spire exposes performance-quality op-
timization as overload selection choices: that is, choices between
the definitions of overloaded components.

The Spire compiler represents each component in a shader as a set
of definitions, each associated with a world. A component may
have zero or multiple definitions for a given world; in the latter case
we say that it is defined in that world. A component declaration with



an explicit world qualifier simply adds a definition, associated with
the specified world, to the set for the named component.

Deciding on the set of worlds for an implicitly overloaded compo-
nent (one without an explicit world) is more involved. Data depen-
dencies limit the set of worlds for which a valid definition can be
generated. The compiler restricts an implicitly-overloaded compo-
nent to the set of non-abstract worlds where all of the components it
depends on are available. A component is available in every world
that is reachable (via zero or more import operators) from one of the
worlds where it is defined. We also restrict an implicitly-overloaded
definition to exclude the worlds used by explicit declarations of the
same component with the same variation name.

The above rules are oblivious to whether the components that
an implicitly-overloaded component depends on are themselves
explicitly or implicitly overloaded. For example, in Listing 1,
the implicitly-overloaded component lighting depends on the
explicitly-overloaded normal, and so may be placed in either of
the worlds where normal is available: Vertex or Fragment. Judi-
cious use of explicit overloading, to express simplification choices
for frequently-referenced components, in turn makes implicit over-
loading more useful, by enabling more overload selection choices
for downstream components.

5.3 Enumerating Choices and Making Decisions
As described in Section 4.4, Spire allows shader optimization
choices to be made by external, potentially engine-specific, tools
between the execution of the compiler front- and back-ends. To
support this process, the compiler front-end must be able to enu-
merate the space of choices in a shader, and the back-end must be
able to generate a variant subject to specific optimization decisions.

Naïvely, we might just enumerate the overloaded components in
a shader, then enumerate the worlds in which each component is
defined. However, this naïve strategy results in potentially exposing
choices that are not useful. For example, consider the shader code:

float x = 1.0;
@Vertex float y = x + 2.0;

Given Spire’s rules for implicit overloading, the component x is
defined in every non-abstract world, so the naïve strategy would
include Fragment among the overload selection choices for x. In
practice, though, trying to place x in the Fragment world would
fail, because x must be available to the Vertex computation of
y. Before enumerating overload selection choices to a choice file,
the compiler first performs constraint propagation to remove such
impossible alternatives.

Once the choice maker has made a set of optimization decisions,
the compiler back-end tries to apply those decisions and produce
a shader variant for code generation. Valid decisions must be in
the space enumerated in the choice file, and should respect pipeline
dependencies; when decisions are in conflict, we greedily satisfy
overload selection constraints in order, skipping those that are im-
possible (rather than issue an error). Components for which no de-
cision is given are automatically placed by the compiler. By de-
fault, the compiler chooses the component definition in the latest
possible world, where “latest” is determined by pipeline topology.
When more than one component definitions are provided for the lat-
est world, the first one is chosen. This policy tends to favor higher
visual quality, at the possible expense of performance, and is con-
sistent with the design choice in SMASH [McCool 2000] and Re-
naissance [Austin and Reiners 2005].

While we describe the optimization interface in terms of choice and
decision files, this is only one option. Our compiler system can

also be used as a library, in which case an API is used to query the
optimization space of a shader, and request particular variants.

6 Optimizing Large Numbers of Shaders
The system described so far allows users to explore and make op-
timization choices for individual shaders. We now discuss lan-
guage extensions that support making optimization choices that af-
fect multiple shaders. These extensions allow engine developers to
express optimization policies as reusable libraries.

Spire extends the use of object-oriented inheritance for shaders in
Spark by introducing two new mechanisms that allow a library of
base shaders to implement optimization policy. First is the idea
of shader groups, which allow a single derived shader definition
to synthesize a family of related shaders. Second is the idea of
locked worlds, which allow an engine to guarantee state coher-
ence between related shaders. As a running example, we will con-
sider the case where an engine developer wants to specify a policy
for shader level-of-detail (LOD) optimization, to which all surface
shaders should conform.

Listing 4 defines several base shaders for an engine with mate-
rials that support both high- and low-quality shaders. The fea-
tures common to all shaders are defined in BaseImpl, while
BaseMaterialHQ and BaseMaterialLQ inherit from BaseImpl
and define logic appropriate to high- and low-quality shaders, re-
spectively. The high-quality shader specifies that albedo should
be computed per-fragment (e.g., from multiple texture layers); the
low-quality shader specifies that it be baked into a texture offline.

6.1 Synthesizing Families of Related Shaders
The base shaders defined above allow engine-defined policies to be
applied to many authored shaders, but do not address the issue of
easily synthesizing multiple shaders from a single description, each
conforming to different policies (e.g., generating both high and low
LOD shaders from the same artist-authored description).

We address this challenge with shader groups. Listing 4 includes
the definition of a shader group, BaseMaterial. A shader group
collects a list of shaders into a single named entity. In this exam-
ple, BaseMaterialHQ is a required member of the group, while
BaseMaterialLQ is marked optional.

A derived shader declaration may inherit from a group rather than
a single base shader; in fact, a shader writer may not even know
they are using a group. Listing 4 presents an alternative definition
of the Terrain shader from Listing 1, this time inheriting from the
BaseMaterial group. When a shader declaration inherits from a
group, it defines an entire shader group rather than a single shader.
The derived group will contain one derived shader for each required
entry in the base group; the declarations within the derived declara-
tion must be valid in the context of every required base shader. For
optional base shaders, the compiler attempts to compile a derived
shader. On success, the shader is added to the derived group; on
failure, no shader is added, and the failure is reported as a warning.

A shader group can be used to define a family of related shader
permutations. BaseMaterial defines a very simple level-of-detail
policy: every material has a high-quality shader, and may option-
ally have a low-quality shader with baked albedo. The single def-
inition of Terrain in Listing 4 yields two shaders conforming to
this policy, which we can think of as TerrainHQ and TerrainLQ.

Note that Terrain in Listing 4 makes no direct reference to
BaseMaterialLQ, or the PrebakeTex world, but this declaration
yields a shader that uses pre-baked textures. The author who writes
Terrain might not know that they are inheriting from a shader
group. While we have shown an example of using groups to imple-
ment an optimization policy for LOD, the same mechanism can be



shader BaseImpl using EnginePipeline {
@FrameUniform mat4 matMVP;
@FrameUniform vec3 lightDir;
vec4 projPos = matMVP * vec4(vert_pos,1);
abstract @Fragment vec3 albedo_in, normal_in;
float nDotL = max(0,dot(lightDir, normal_in));
vec4 output = albedo_in * nDotL;

}
shader BaseMaterialHQ : BaseImpl {
abstract @Fragment vec3 normal, albedo;
@Fragment vec3 normal_in = normal;
@Fragment vec3 albedo_in = albedo;

}
shader BaseMaterialLQ : BaseImpl

finalizes Vertex,Fragment
{
abstract @PrebakeTex vec3 albedo;
@Vertex vec3 normal_in = vert_normal;
@PrebakeTex vec3 albedo_in = albedo;

}
group BaseMaterial {
shader BaseMaterialHQ;
optional shader BaseMaterialLQ;

}

shader Terrain : BaseMaterial {
@MaterialUniform sampler2D mixMap;
@MaterialUniform sampler2D albedoMap1, albedoMap2;
@MaterialUniform sampler2D normalMap1, normalMap2;

float mixFactor = texture(mixMap, vert_uv).x;
vec4 albedo {
vec4 c1 = texture(albedoMap1, vert_uv * 5);
vec4 c2 = texture(albedoMap2, vert_uv * 5);
return mix(c1, c2, mixFactor);

}
vec3 normal {
vec4 n1 = texture(normalMap1, vert_uv * 5);
vec4 n2 = texture(normalMap2, vert_uv * 5);
vec3 n = mix(n1, n2, mixFactor).xyz;
return n * 2.0 - 1.0;

}
}

Listing 4: A set of base shaders used to define an LOD policy.

used to express other optimization spaces, such as platform: e.g.,
different optimizations for PC, console, and mobile targets.

6.2 Locking Worlds to Guarantee Coherence
Shader programming often involves walking a fine line between
specialization and coherence. Aggressively specializing code to
particular assets or viewing conditions (number of lights, etc.) can
result in better performance via constant folding, loop unrolling,
etc. However, this specialization often comes at the cost of coher-
ence, since GPU pipeline state changes must be inserted between
drawing objects requiring different (specialized) shaders.

For example, when drawing objects with simplified LODs, it is de-
sirable to be able to group objects together into a small number of
batches to reduce per-object overheads. To be in the same batch,
simplified LOD shaders might need to have the same vertex and
fragment kernels (since these impact GPU state), but could still be
allowed different code in other worlds (e.g., it does not matter if
objects execute different code when baking textures).

In Listing 4, the BaseMaterialLQ shader locks the Vertex
and Fragment worlds using the finalize keyword. As a re-
sult, shaders which inherit from BaseMaterialLQ are not al-

MeshVertex

PrebakeTex Vertex Fragment

MaterialUniform

FrameUniform
Terrain Demo Pipeline

PrebakeUniform

PrebakeVertex

Figure 4: Pipeline topology used for the Terrain scene,
LOD system, and auto-tuning example. This pipeline extends
EnginePipeline from Figure 2 with additional worlds for pre-
baking vertex data and uniform parameters.

lowed to introduce additional component definitions in the locked
worlds, nor request additional data to be imported from (or through)
those worlds. Because the Vertex and Fragment worlds are
locked, an engine can assume that all shaders that derive from
BaseMaterialLQ share identical kernel code for these worlds,
with an important caveat we will discuss next. The engine can
thus use the same state to render a batch of objects using different
shaders that inherit from BaseMaterialLQ, exploiting coherence
among the related shaders. In contrast to, e.g., EAGL [Lalonde and
Schenk 2002], our system does not perform any sorting, batching,
or state-change optimizations; it merely exposes sufficient mecha-
nisms for an engine developer to implement these optimizations.

The caveat alluded to above is that two shaders derived from
BaseMaterialLQ will share identical vertex and fragment kernels
so long as they make consistent optimization decisions for inher-
ited components that may be placed in those worlds. If one shader
is optimized to compute nDotL in the Vertex world while an-
other computes it in Fragment, then clearly the resulting kernels
will not be coherent. Our compiler is not responsible for making
overload selection decisions, and so cannot guarantee the desired
property. Instead, the simple mechanism of choice files can be
used to enforce an appropriate policy at the engine level. Choices
from inherited components are explicitly prefixed in the file (e.g.,
BaseMaterialLQ.nDotL), and a tool can either not expose these
choices, or ensure that consistent decisions are made across all
shaders.

Locking is most useful when defining frequently-used base shaders
for an engine, since it allows an engine developer to a define pol-
icy that will be applied to many shaders authored by less technical
users. Shader authors may not even be aware of the constraints, in
the common case; for implicitly overloaded components in a de-
rived shaders, the compiler will simply skip locked worlds when
generating overloaded definitions.

7 System Experience
To evaluate the design of Spire, and to gain experience using its
abstractions, we have implemented a real-time rendering engine
that supports several distinct rendering pipelines. Our implemen-
tation adopts many best practices of modern production game en-
gines (shader level-of-detail, precompiled command lists, sorting
to minimize GPU pipeline state changes, etc.) to achieve high
rendering performance. The engine partitions scene geometry
spatially into blocks, and pre-generates a command list (via the
NV_command_list OpenGL extension) for all geometry in a block
sharing the same GPU pipeline vertex and fragment kernels. Each
frame, the engine selects a desired shader level-of-detail for each
block and appends the corresponding command lists for the block
to a rendering task queue. To reduce GPU state changes, the en-
gine sorts the command lists in the task queue by shader prior to
drawing.



Full Quality (7.8ms) LOD 1 (3.4ms) LOD 2 (3.1ms)

Figure 5: Terrain scene rendered with three shader variants with
significantly different performance-quality trade-offs.

The engine can be configured to draw geometry using several dif-
ferent rendering pipelines. These pipelines contain multiple offline
and runtime worlds that implement varied rendering functionality
(e.g., object-space and screen-space shading, multi-resolution ren-
dering). We describe these pipelines in detail in the following sub-
sections. Unless otherwise stated, all performance results described
in this section were obtained on a machine with an Intel i7-5820K
CPU and an NVIDIA GeForce GTX980 Ti GPU.

Our compiler framework is implemented as C++ libraries, includ-
ing a GLSL back end for compute and graphics kernels. The GLSL
back end utilizes plugins for import and export strategies as de-
scribed in Section 5.1, and can generate kernel code for all pipelines
described in this section using the implemented strategies.

7.1 Exploring a Diverse Set of Optimizations
To demonstrate the wide scope of shader optimizations enabled
by overload selection choices, we created a rendering pipeline
that consists of five worlds: PrebakeUniform, PrebakeVertex,
PrebakeTex, Vertex, and Fragment. This pipeline, shown in
Figure 4, is an extended version of the simple EnginePipeline
introduced in Section 4.1. The additional PrebakeVertex world
is used to bake components as additional vertex attributes.

The PrebakeUniform world is used to bake components into uni-
form values at scene load time. Similar to He et al.’s [2015] pa-
rameter shader stage, our engine uses the PrebakeUniform world
to support aggressively simplified shaders. The engine runs the
PrebakeUniform code as an OpenGL compute kernel, to evaluate
component values at the vertices of a mesh. The resulting values
are averaged over the mesh to generate a per-mesh uniform inputs
for subsequent per-frame rendering.

Figure 5 shows a terrain scene, exported from the Unreal Market-
place [2015b], running on this pipeline. The terrain is rendered with
a complex shader that blends five material layers (soil, cliff, snow,
and two types of grass) and computes additional effects such as fog,
color variation and specular lighting. The full shader has 39 com-
ponents, 27 of which have more than one overload selection choice,
yielding millions of possible shader variants. The Terrain shader
shown in Section 4 is a greatly simplified version of this shader.

As an alternative to making optimization decisions by manually
editing a choice file, we developed a shader optimization tool that
uses the compiler’s choice enumeration API to query for a list of
choices available for the current shader, then displays them in an in-
teractive UI (Figure 6). As the user makes optimization decisions,
the engine invokes the compiler back-end to generate new GLSL
kernels for the resulting shader variants. The tool dynamically loads
newly compiled kernels, making performance and quality changes
immediately visible to the user.

Figure 6: A GUI for exploring shader optimization choices. The
user can modify decisions for each choice, and the engine instantly
recompiles and applies a new shader variant.

Full Quality LOD 1 LOD 2

1.3 ms 0.35 ms 0.31 ms

0.37 ms 0.31 ms 0.29 ms

0.40 ms 0.30 ms 0.28 ms

Ba
rre

l
C

ou
ch

Ro
ck

Figure 7: Shader LODs generated for objects with different surface
shaders, all inheriting from a common shader group.

We have used the UI to create an LOD policy for the terrain shader,
consisting of three variants of decreasing runtime cost. While the
UI makes it simple to explore the space of choices afforded by a
shader, each decision potentially yields significantly different ker-
nel code and engine behavior. For example, different decisions will
not only cause vertex, fragment, and compute shaders to change,
but will determine which compute passes are needed, cause differ-
ent numbers of command lists to be submitted, and potentially lead
to different allocations of textures and uniform buffers.

7.2 Shader Level-of-Detail Library
Modern game scenes often contain many different types of objects,
with different shaders, so manually exploring LOD optimization
choices for each object can be tedious. In practice, the same op-
timization choices may apply to many different shaders when cre-
ating LOD policies. To reuse optimization decisions for LOD, we
encode the optimization decisions explored in Section 7.1 into a
library of base shaders, similar to the approach shown in Listing 4.

The base shader group contains three shaders. The first base shader
produces the highest-quality output and computes all important



Figure 8: Terrain scene featuring 10,000 instances of three differ-
ent object types. Shaders share the same LOD policy.

shader components in the Fragment world; the second base shader
computes the albedo component in the PrebakeTex world and
directly uses the mesh’s vertex normal for lighting computations;
the last base shader (corresponding the lowest level of detail) bakes
albedo and lighting parameters into per-object uniform values by
placing these components in the PrebakeUniform world.

In addition to the terrain shader, we also implemented three other
different material surface shaders imported from the Unreal Mar-
ketplace: Barrel (23 components), Couch (28 components), and
Rock (23 components). Figure 7 shows these shaders rendered at
our three LODs. All shaders (including the terrain shader) inherit
from this base shader group, so that our single LOD policy was ap-
plied to shaders differing significantly in how they compute com-
ponents such as albedo and surface normal.

Since the low-detail shaders use baked resources (generated by the
PrebakeUniform and PrebakeTex worlds), these base shaders
use locked worlds (Section 6.2) to ensure that all low-detail shaders
share the same vertex and fragment kernel code.

To exercise the shader LOD library, we placed 10,000 instances of
three different object types in the terrain scene from Section 7.1.
With shader LOD enabled, the frame shown in Figure 8 is rendered
in 17 ms, compared to 33 ms without LOD.

A well-written engine is able to use information provided by the
compiler to optimize rendering performance. Recall that our en-
gine generates a single OpenGL command list for all objects in a
scene block that use the same GPU pipeline vertex and fragment
shader kernels (these objects are drawn in the batch). When us-
ing locked worlds in our base LOD shaders, the shader compiler is
able to inform the engine when two different variants share GLSL
vertex and fragment kernels. The engine uses this information to
aggressively group objects into command lists, reducing the num-
ber of command list submissions needed to render the scene from
1024 to 328. This yields a 2 ms (10%) reduction in rendering time
compared to using the same three shaders without world locking.
Our demo scene only includes three unique types of objects (three
unique shaders), and the performance benefits of world locking
would increase with the number of unique shaders in the scene.

7.3 New Pipelines and Worlds
To demonstrate Spire’s ability to target a variety of rendering
pipelines, and to highlight the value of an engine-agnostic shad-
ing system, we have implemented a number of advanced render-
ing pipelines in our engine. Pipelines supporting multi-rate screen-
space rendering, and object-space shading are shown in Figure 9.

Our engine implements the multi-rate shading pipeline using two

MeshVertex

LowResFrag Vertex Fragment

FrameUniform

Multi-Rate Shading Pipeline

LowResVertex

Object-Space Shading Pipeline
MeshVertex

ObjSpaceFrag Vertex Fragment

FrameUniform

ObjSpaceVertex

Figure 9: Pipeline topologies for screen-space multi-rate shading
and object space shading. The pipelines have identical topology,
but differ in their engine implementations.

rendering passes [Yang et al. 2008; Shopf 2009]. In the first pass,
the engine performs low-resolution shading computations as de-
fined by logic in the LowResVertex and LowResFragmentworlds
(which map to GPU vertex and fragment kernels). Components
computed in the low-resolution pass are stored into quarter-screen-
resolution textures. Code in the subsequent high-resolution ren-
dering pass accesses low-resolution shading results by performing
texture fetches parameterized by screen coordinate.

The object-space shading pipeline is also implemented via two-pass
rendering. During initialization, the engine allocates textures for all
ObjSpaceFrag outputs. When rendering a mesh, the first pass uses
ObjSpaceVertex and ObjSpaceFrag logic (again, mapping it to
GPU pipeline vertex and fragment shading) to compute and store
components into textures in the object’s UV space. The second
pass fetches these results using the object’s texture coordinates.

Although they employ different implementation techniques, the
multi-rate shading and object-space shading pipelines feature the
same topology. This is because a pipeline topology only describes
data dependencies between worlds; it does not reflect the execu-
tion semantics of the pipeline itself. The rendering engine is fully
responsible for defining and implementing the meaning of each
world. For example, the engine could adopt a different implemen-
tation of the multi-rate shading pipeline: executing LowResFrag
world computations once-per-pixel and Fragment world computa-
tions once per screen multi-sample to achieve anti-aliasing.

As another example, shaders written against the object-space shad-
ing pipeline (which shares object-space shading results across
fragments) could also be used to share shading results between
eyes in a stereo rendering pipeline. Although not shown in Fig-
ure 9, we have also implemented this pipeline in our engine. The
pipeline runs Vertex and Fragment world logic once per eye and
ObjSpaceVertex and ObjSpaceFrag logic one per frame when
configured to render stereo. In each of these cases, the change of
pipeline execution semantics is transparent to the shader, and retar-
geting shaders to these new pipelines only requires a reinterpreta-
tion of overload selection decisions.

We were able to compile the shaders described in Sections 7.1 and
7.2 against our multi-rate and object-space shading pipelines with-
out modifying their source code; optimization choices enabled by
the new worlds became available once the shaders were recompiled.
If future GPU hardware architectures evolve to natively support
screen-space multi-rate [Vaidyanathan et al. 2014; He et al. 2014]
or object-space shading [Clarberg et al. 2014], Spire will make it
easier to retarget existing shaders to exploit these new capabilities.



Ex
ec

ut
io

n 
tim

e 
(m

s)

Average L2 pixel error Average L2 pixel error

GTX 980Ti GT 720

0.4

0.8

1.2

0 0.2 0.4

8

16

24

0.2 0.4

Figure 10: Performance-quality Pareto curve for Couch shader
variants explored by our shader auto-tuner. Results are plotted for
a high-end and low-end GPU. Each blue circle represents a shader
variant generated by the auto-tuner.

7.4 Auto-Tuning Tool
Our compiler’s ability to enumerate the space of component over-
load selection choices for a shader facilitates the implementation of
auto-tuning tools that search for shader variants that meet particu-
lar performance-quality requirements. Using the compiler’s API we
were able to quickly implement a powerful auto-tuning tool for our
engine. This tool goes beyond prior work in shader auto-tuning [He
et al. 2015; Wang et al. 2014; Sitthi-Amorn et al. 2011] to search
the space of rate reduction options, term simplifications, and even
make decisions about the storage format of shader assets.

Automatic component overload selection. To leverage a devel-
oper’s intuition about the most important choices needed to opti-
mize a shader (which components are most likely to have significant
performance-quality impacts), the tool allows the user to specify a
set of components for which overload selection decisions should be
explored. The auto-tuner enumerates all possible decisions for the
selected components and evaluates visual error and performance of
the resulting shader variants. (It uses L2 pixel distance from a high-
quality reference image as an error metric.)

We used the auto-tuner to find the best-quality variant of the Couch
shader that generates images within an 8 ms budget on two dif-
ferent GPU platforms: NVIDIA GTX 980Ti and GT 720. We set
the auto-tuner to explore choices for four of the shader’s 28 com-
ponents (albedo, normal, metallic, roughness) that are most
compute-intensive and likely to have significant performance im-
pact. The shader also exposes an algorithmic choice of three micro-
facet model implementations: standardPhong implements a sim-
plified Blinn-Phong distribution, standardGGX evaluates the GGX
model directly in shader, and GGX_tex implements the GGX model
using precomputed lookup tables for the distribution terms. The
auto-tuner generated and measured the performance and quality of
243 shader variants; this process took 45 seconds on the GTX 980Ti
and 233 seconds on the GT 720. This auto-tuning time is similar to
compilation times reported by He et. al’s [2015] auto-tuning shader
simplifier, despite our implementation considering a wider opti-
mization space that results in more aggressively optimized shaders
(prebaking components into textures and vertex attributes were not
optimizations considered by this prior work). Our implementation
uses a brute-force search over potential shader variants, which is
acceptable because decisions are made per component, instead of
per-instruction as in prior work. It also leverages human guidance
(telling the auto-tuner which components are likely to be most im-
portant) to further limit the search space. A more advanced auto-
tuning tool could adopt more sophisticated search strategies, like
those of He et al. [2015], if faster auto-tuning is needed.

On the GTX 980Ti, the tool chooses to compute auto-tuned com-
ponents in the Fragment world, and use the standardGGX micro-

facet implementation. (Performance is not an issue, so the system
generates a high-quality shader.) To meet the selected performance
constraint on the GT 720, the tool makes the same overload selec-
tion decisions as our manually chosen medium-quality variant in
Figure 7 (which computes auto-tuned components in PrebakeTex
world), and chooses the faster standardPhong microfacet imple-
mentation. The tool does not choose the GGX_tex implementation
on any of the platforms, as the savings from reduced arithmetic op-
erations is not worth the additional texture fetch. Figure 10 shows
performance-quality Pareto curves for all explored shader variants
on both platforms.

Data layout selection. In addition to making choices about how
and where to evaluate components, the auto-tuning tool also makes
decisions about the size and format of textures created as a result of
these decisions. The auto-tuning tool analyzes the contents of pre-
computed texture data to determine the best storage format. For ex-
ample, if a 3-channel texture populated by the PrebakeTex world
contains only values between -1 and 1, the auto-tuner will attempt
to treat the component as a normal map and choose an appropri-
ate packed texture representation. Although not described in this
paper for brevity, Spire supports the ability to annotate shader com-
ponents with attributes that are passed to the code generator and
rendering engine as meta data. For example:

[Normal][TextureSize: "512"]
vec3 normal = ...;

The auto-tuning tool emits these attributes as a result of auto-tuning
(they are included in the Spire optimization decision file). For the
Couch shader, the auto-tuner correctly injects the attributes so that
the normal is stored in a RGB10_A2 format texture, and albedo
term in standard RGB8 format.

8 Discussion
In this paper we presented a new shader language and compiler
framework that enables rapid exploration of shader optimization
choices. By extending the scope of a shader to target engine defined
worlds with diverse semantics, and by introducing a component
overloading mechanism to the language, we achieved many opti-
mizations that would have involved global code changes if shaders
were written using traditional systems. We further extend our lan-
guage with shader groups and locked worlds, mechanisms that sup-
port the implementation of libraries that can be applied to large
numbers of shaders. Our design allows creating pipeline-agnostic
shaders which can remain unchanged even when the underlying
rendering pipeline evolves. We believe this capability is exciting
since GPU hardware evolution to support a wider range of ren-
dering techniques and emerging applications (e.g., virtual reality)
stands to trigger changes in design of game rendering engines.

Our ideas are based on the assumption that shaders evaluate sig-
nals at local surface locations and it is this assumption that allows
components to migrate between worlds. Other operations, such as
vertex data optimization [Kavan et al. 2011], geometry processing,
and image post processing, do not satisfy this assumption, but could
also benefit from a system that exposes their optimization choices.
We are interested in establishing a connection between our existing
framework and a more diverse set of rendering algorithms.

Last, our current design focuses on defining computation locations,
but does not provide an explicit mechanism for managing storage
locations. The current abstraction assumes each world implicitly
defines a storage space that holds its outputs. In a more general set-
ting, storage could be decoupled from computation, and we would
like to explore the system-scope implications of adding a first-class
notion of storage.



9 Acknowledgments
Support for this research was provided by the National Science
Foundation (IIS-1253530) and by a NVIDIA Faculty Partnership.
We would like to thank Nicolas Feltman and Adrian Sampson for
valuable conversations.

References
ANSEL, J., CHAN, C., WONG, Y. L., OLSZEWSKI, M., ZHAO,

Q., EDELMAN, A., AND AMARASINGHE, S. 2009. Petabricks:
A language and compiler for algorithmic choice. In Proceedings
of the 30th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, ACM, New York, NY, USA,
PLDI ’09, 38–49.

AUSTIN, C., AND REINERS, D. 2005. Renaissance: A functional
shading language. In Proceedings of Graphics Hardware 2005,
ACM, New York, NY, USA, 1–8.

BAUER, M., TREICHLER, S., SLAUGHTER, E., AND AIKEN, A.
2012. Legion: Expressing locality and independence with logi-
cal regions. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analy-
sis, IEEE Computer Society Press, SC ’12, 66:1–66:11.

BUNGIE, 2014. Destiny computer game. Available at http://www.
destinythegame.com.

CLARBERG, P., TOTH, R., HASSELGREN, J., NILSSON, J., AND
AKENINE-MÖLLER, T. 2014. Amfs: Adaptive multi-frequency
shading for future graphics processors. ACM Trans. Graph. 33,
4 (July), 141:1–141:12.

EPIC GAMES, 2015. Unreal Engine 4 documentation. Available at
http://docs.unrealengine.com.

EPIC GAMES, 2015. Unreal Engine 4 Marketplace Web Site. http:
//www.unrealengine.com/marketplace.

FATAHALIAN, K., HORN, D. R., KNIGHT, T. J., LEEM, L.,
HOUSTON, M., PARK, J. Y., EREZ, M., REN, M., AIKEN,
A., DALLY, W. J., AND HANRAHAN, P. 2006. Sequoia: pro-
gramming the memory hierarchy. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, ACM, SC ’06.

FOLEY, T., AND HANRAHAN, P. 2011. Spark: modular, compos-
able shaders for graphics hardware. ACM Trans. Graph. 30, 4
(July), 107:1–107:12.

HANRAHAN, P., AND LAWSON, J. 1990. A language for shading
and lighting calculations. SIGGRAPH Comput. Graph. 24, 4
(Sept.), 289–298.

HE, Y., GU, Y., AND FATAHALIAN, K. 2014. Extending the
graphics pipeline with adaptive, multi-rate shading. ACM Trans.
Graph. 33, 4 (July), 142:1–142:12.

HE, Y., FOLEY, T., TATARCHUK, N., AND FATAHALIAN, K.
2015. A system for rapid, automatic shader level-of-detail. ACM
Trans. Graph. 34, 6 (Oct.), 187:1–187:12.

KAVAN, L., BARGTEIL, A. W., AND SLOAN, P.-P. 2011. Least
squares vertex baking. In Proceedings of the Twenty-second Eu-
rographics Conference on Rendering, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, EGSR ’11, 1319–1326.

KESSENICH, J., BALDWIN, D., AND ROST, R., 2014. The
OpenGL shading language language version 4.4. Available at
https://www.opengl.org.

LALONDE, P., AND SCHENK, E. 2002. Shader-driven compilation
of rendering assets. ACM Trans. Graph. 21, 3 (July), 713–720.

MARK, W. R., GLANVILLE, R. S., AKELEY, K., AND KILGARD,
M. J. 2003. Cg: A system for programming graphics hardware
in a c-like language. ACM Trans. Graph. 22, 3 (July), 896–907.

MCCOOL, M. D. 2000. SMASH: A next-generation API for pro-
grammable graphics accelerators. Tech. Rep. CS-2000-14, Uni-
versity of Waterloo, August.

MICROSOFT, 2016. HLSL shader model 5 documentation. Avail-
able at https://msdn.microsoft.com.

PATNEY, A., TZENG, S., SEITZ, JR., K. A., AND OWENS, J. D.
2015. Piko: A framework for authoring programmable graphics
pipelines. ACM Trans. Graph. 34, 4 (July), 147:1–147:13.

PROUDFOOT, K., MARK, W. R., TZVETKOV, S., AND HANRA-
HAN, P. 2001. A real-time procedural shading system for pro-
grammable graphics hardware. In Proceedings of SIGGRAPH
01, Annual Conference Series, ACM, New York, NY, USA, 159–
170.

RAGAN-KELLEY, J., ADAMS, A., PARIS, S., LEVOY, M., AMA-
RASINGHE, S., AND DURAND, F. 2012. Decoupling algo-
rithms from schedules for easy optimization of image processing
pipelines. ACM Trans. Graph. 31, 4 (July), 32:1–32:12.

SHOPF, J., 2009. Mixed resolution rendering. Game Developers
Conference 2009 slides.

SITTHI-AMORN, P., MODLY, N., WEIMER, W., AND
LAWRENCE, J. 2011. Genetic programming for shader
simplification. ACM Trans. Graph. 30, 6 (Dec.), 152:1–152:12.

SUGERMAN, J., FATAHALIAN, K., BOULOS, S., AKELEY, K.,
AND HANRAHAN, P. 2009. GRAMPS: A programming model
for graphics pipelines. ACM Transactions on Graphics 28, 1,
4:1–4:11.

VAIDYANATHAN, K., SALVI, M., TOTH, R., FOLEY, T.,
AKENINE-MÖLLER, T., NILSSON, J., MUNKBERG, J., HAS-
SELGREN, J., SUGIHARA, M., CLARBERG, P., JANCZAK, T.,
AND LEFOHN, A. 2014. Coarse pixel shading. In High Perfor-
mance Graphics 2014, 10.

WANG, R., YANG, X., YUAN, Y., CHEN, W., BALA, K., AND
BAO, H. 2014. Automatic shader simplification using surface
signal approximation. ACM Trans. Graph. 33, 6 (Nov.), 226:1–
226:11.

YANG, L., SANDER, P. V., AND LAWRENCE, J. 2008. Geometry-
aware framebuffer level of detail. In Proceedings of the Nine-
teenth Eurographics Conference on Rendering, Eurographics
Association, EGSR’08, 1183–1188.


