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Figure 1: A composition created with our brush-based soft stacking method. From left to right: source layers; initial order;
some smoke pushed behind box; colored and white smoke interleaved; and colored smoke replaced with edited version.

Abstract

In this paper, we present a continuous approach to ordering 2D images when compositing. Previous methods for
stacking image layers require them to appear in a single (though possibly different) order at every point in the
image. Our soft stacking approach removes this restriction — allowing layers to stack as if they were volumes of fog,
appearing partially in front of and partially in back of other layers within the same pixel, and moving smoothly
through other layers across the image. Our approach involves augmenting each pixel with stacking coefficients
— a necessary and sufficient representation for sub-pixel stacking complexity. These stacking coefficients arise
naturally when considering sub-pixel stacking complexity, much as continuous (alpha) transparency arises when
considering sub-pixel coverage complexity.

While the number of stacking coefficients required to represent all possible sub-pixel stacking arrangements is
factorial in the number of layers in the stack, in many practical situations only a small subset of the stacking
coefficients are nonzero. We use this sparsity as the basis of a prototype that allows artists to interactively paint
stacking adjustments into composites. Additionally, we demonstrate how to generate optimally-stacked images

under a generalized notion of stacking consistency.

Categories and Subject Descriptors (according to ACM CCS): Computing Methodologies [1.3.3]: Computer

Graphics—Picture/Image Generation

1. Introduction

Conventional 2D compositing methods require that image
elements (“layers”) appear in the same order everywhere
they overlap. Approaches have been developed that relax this
restriction, allowing layers to be stacked in different orders
in different places (e.g. [Duf85]). However, these approaches
are still limited in that they are discrete: they select, for each
pixel, exactly one stacking. Such discrete methods are un-
able to accurately handle image elements whose color comes
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from more than one depth value (like smoke or fog), as these
elements may well appear both above and below other layers
in a final composition (see Figure 2).

Our continuous approach, on the other hand, introduces
per-pixel stacking coefficients, which are both necessary and
sufficient to represent sub-pixel stacking complexity in the
presence of arbitrary layer blending modes.

We demonstrate two prototype systems for editing stack-
ing coefficients: a brush-based stacking prototype wherein
artists can paint with various layer order adjustments; and
an optimization-based stacking prototype which interpolates
artist-specified stacking constraints across an image. The
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Figure 2: Left: In the pixel marked in red, some fog is in
front of the postbox and some is behind. Center: a side view
with example box-atop-fog (top dashed line) and fog-atop-
box (bottom dashed line) orders marked. Our stacking coef-
ficients, right, track the frequency of these stacking orders.

brush-based prototype is useful when creating artistic com-
posites, like Figure 1, where iteration and experimentation
are required to generate pleasing results. The optimization-
based prototype is more suited to composites which have a
simple stacking structure but are not amenable to discrete
stacking methods because of glows or fog. In contrast to
ad-hoc methods involving layer duplication and opacity ad-
justment, our prototypes allow layer contents and blending
modes to be changed while retaining stacking edits.

Given L layers, L! stacking coefficients are required to
represent all possible stacking orders at each pixel. This lim-
its our optimization prototype to working with three layers
at 500x500 resolution, or two layers at 1 megapixel. How-
ever, our brush-based prototype enforces sparsity in stacking
coefficients, so remains interactive even with 10 megapixel
images and tens of layers and mappings.

2. Background

When creating two-dimensional compositions on a com-
puter, artists often assemble final images from stacks of lay-
ers. Layers allow artists to separate semantically different
portions of an input scene, adjust gross composition, and
achieve occlusion effects.

The notion of creating such layered scenes on computers
dates to the 1970s — though it duplicates practices in the film
industry that go back much further. Computer compositing
was formalized as a “‘compositing algebra” by Porter and
Duff [PD84]. A short history of the subject is available from
Alvy Ray Smith [Smi95], and the reader is encouraged to
spend a few enjoyable minutes looking it over.

In certain scenarios, it is infeasible or artistically undesir-
able that layers should appear in the same order everywhere
in an image. Methods have been proposed for 3D scenes
[Duf85, SLI98] and 2D images [Wil06, MP09] that allow lo-
cal ordering of scene elements. Indeed, such methods have
been adopted into commercial software [Med09, ASPO7].
Recently, researchers have begun to apply mixed 2D/3D ap-
proaches, enlivening flat scenes with inferred [RID10] or in-
terpolated depth [SSJ*10], and using 2D layering operations
to manipulate 3D objects [IM10]. While the aforementioned
methods are discrete (choosing one stacking order per pixel),

other hybrid approaches allow continuous mixed stackings,
blending depth-based and user-specified compositing orders
[BRV*10], and interpolating temporal and depth informa-
tion when drawing 3D paint strokes [SSGS11,BSS*11]. In
contrast to these approaches, our method does not use any
3D information, and is sufficient to represent all possible
sub-pixel stacking order variations.

3. Construction

Our soft stacking approach extends per-pixel stacking in
much the same way that image alpha extends the notion of a
0/1 coverage mask (“bitmap transparency”’) (Figure 3). That
is, both alpha values and our stacking coefficients are rep-
resentations for sub-pixel structural information which are
necessary and sufficient to perform compositing.

First, we define the problem setting. We wish to compos-
ite a stack of L layers, which we label with integers 1, ..., L.
Each layer, i, has an associated transfer function f;, where
fi(x,¢) is the expected color when viewing color ¢ through
layer i at pixel x. Notice that the transfer function f; repre-
sents both layer color and blending mode. f

Notice that in this formulation, the material of a layer
either interacts with colors below it or does not. However,
multiple-interaction models like the opaque pigment/colored
media Beta Color Model [OW91] are still supported thanks
to our use of general f.

The goal of any compositing algorithm is to determine the
expected color inside every pixel, given layer ordering and
opacity information.

Cfinal (X) = E(color at random point in x) (1)

In case of per-pixel ordering and per-pixel coverage infor-
mation, this is a simple matter of applying the transfer func-
tions corresponding to opaque layers in bottom-to-top order
(that is, applying the bottom-most transfer function first and
working up):

Cfinal = f01 ( o fUN (cbackground))
where o1, ...,oy are the opaque layers at x, (2)
in top-to-bottom order

(Note that we have dropped the pixel location, x, for com-
pactness; a conceit we will continue.)

We now briefly re-iterate a standard derivation of alpha,
then follow with our extension to sub-pixel stacking com-
plexity.

T Having such a flexible notion of compositing is important for
real-world image editing applications; for example, the GNU Im-
age Manipulation Program — a common layer-based painting pro-
gram — supports 21 different blending modes, ranging from the stan-
dard over operator (“Normal”) to complicated non-linear functions
(e.g., “Hue”) [GIM10].

(© 2012 The Author(s)
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Figure 3: Stacking coefficients by analogy. Inside a single pixel, the area covered by a layer can be summarized by opacity (Q.).
Similarly, inside a single pixel, the areas where a set of layers assume different stacking orders can be summarized by a list of
stacking coefficients (G). In both cases the representation is necessary and sufficient for compositing tasks.

3.1. From Coverage to Alpha

Notice that in (2) every layer either completely covers a pixel
or does not cover the pixel at all. To extend to the case of
partially covered pixels, one must know the probability of a
random sample inside each pixel interacting with each layer.
Indeed, this is a definition of conventional opacity, o

0;(x) = P(random point in x interacts with layer i)  (3)

With these probabilities in hand — and assuming uncorre-
lated sub-pixel coverage between layers — the expected value
in (1) can be re-written in conventional image compositing
format:

Cfinal = €1, /... /1,
where /1,...,[ are the layers at x,

in top-to-bottom order, and: )
Cl-/j/,,, = (1 7(1,')Cj/,,_ +(X.ifi (C]/>
¢ =(l—-oy )cbackground +a;f; (Cbackground)

In the above equation — and the remainder of this paper — we

write stacking orders as lists of indices separated by forward
slashes; this notation is compact and gives a visual hint as
to the order. Thus, 1/3/2 denotes a stack with layer 1 over
layer 3 over layer 2.

Notice that the per-pixel alpha values are both sufficient
— no other information is needed to write down the expected
color of the stack — and necessary — given any black-box
method of computing the final composited color, one can
read back the o values for each layer by varying the layers’
transfer functions (we give a construction in Appendix A).

3.2. From Local Layering to Soft Stacking

The construction of our stacking coefficients follows closely
the construction of continuous alpha. In a setting where
stackings may vary even inside a pixel, the expected color
expression now must take into account the order of layers

(© 2012 The Author(s)
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that is sampled. (Notice the similarity to (3).)

Si/.../k (x) = P(random sample in x encounters

layers stacked in order i/ --- /k)  (5)

These stacking coefficients, G, are not a per-layer vari-
able; rather, given L layers, there are L! stacking coefficients,
one for each stacking. Also, as we’ve defined these stacking
coefficients in terms of probabilities, any sub-pixel stack-
ing structure will result in stacking coefficients that are non-
negative and sum to one. (The converse is also truei.)

With these stacking coefficients, ¢, in hand — and making
an assumption that stacking information and alpha informa-
tion are independent — we can re-write the expected color of
the composite by expanding over possible stacking orders:

Cfinal (X) = Z

peperm(L)

6 pE(color at x|layers stacked in order p)

(6)
Note that here we use perm(L) (“permutations of 1,...,L")
to denote the set of all stacking orders.

Of course, we’ve already written down the expected color
for a given stacking in (4), so we substitute to get a more
compact expression:

Cfinal = Z

peperm(L)

VP:GPZO

Gpcp with Yo, =1

)
In other words, the expected color of a pixel with sub-pixel
stacking variation is a convex combination of the expected

colors of each stacking, with coefficients proportional to the
area of the pixel appearing in each order.

Like «, the constructed stacking coefficients (¢ values)
are both sufficient to determine the final pixel color, and nec-
essary. We give a construction to read back ¢ values from a
black-box compositing function in Appendix B.

1 Given stacking coefficients summing to one, one can create a sub-
pixel structure which would yield these coefficients by, e.g., slicing
the pixel into L! vertical bands with different stackings orders and
setting their widths properly
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Figure 4: A brush-based stacking result with three layers.
Notice the local ordering of the snake and apple as well as
the snake, apple, and mist.

4. Painting Continuous Stackings

Having put forward the notion of using stacking coefficients
to represent sub-pixel stacking complexity, we now describe
a brush-based stacking editor that avoids storing L! stacking
coefficients at each pixel. Our editor allows artists to manip-
ulate sub-pixel layer orderings in order to create composites
with layer interleaving and volumetric effects (e.g. Figure 4).

In our brush-based prototype, artists begin with layers
stacked in a global order, and locally refine this stacking to
achieve their desired result. This refinement is accomplished
by defining a mapping (an operation on stacking orders,
like “put fog layer behind the person layer”), then paint-
ing per-pixel weights that control the influence of this map-
ping. Artists can paint these weights with semi-transparent
brushes, leading to mixed stackings (e.g., 50% fog-over-
person, 50% person-over-fog). Over time, a list of such map-
pings and their weights accumulate, with the final stacking
coefficients at each pixel defined as the result of applying
each mapping in sequence.

We allow artists to paint (or erase) weights for any map-
ping at any time; this is useful for making small adjustments
without having to add additional mappings.

Our brush-based stacking editor doesn’t explicitly store
stacking coefficients; rather, it computes them as needed
from the artist-defined mappings. A trimming step during
this computation guarantees linear time and memory com-
plexity. Further, the system uses the fact that pixel color
is linear in mapping weights to provide real-time feedback
when painting, even in arbitrarily complex compositions.

4.1. Mapping Specification

In our system, users paint with stacking mappings, M :
perm(L) — perm(L), functions from stacking orders to

stacking orders. While our rendering system supports arbi-
trary mappings, our interface’s stacking coefficient mapping
vocabulary is somewhat more limited (though, in practice, it
seems to contain all the useful operators).

In our interface, users specify mappings with shorthand
phrases like “a > b&e > ¢”. These phrases tell the system
which layers to adjust (a, b, ¢, and e), what direction to move
them (up if the condition is written with “>”, down if it is
written with “<”"), and when to stop (when a is above b, c,
and e; b is above c; and e is above c¢).

Under the hood, our prototype applies these phrases by
using a slightly modified topological sort.

We have also developed an interface for specifying such
phrases by graphically arranging boxes representing layers.
This is used in our optimization-based editor, but we have
not yet included it in our brush-based stacking prototype.

4.2. Mapping Weights

With each mapping M, our system stores per-pixel weights,
B, that specify the strength of the mapping. This strength,
B(x) € [0,1] controls how much of the stacking coefficient
64(x) for stacking ¢ is moved to the stacking coefficient
for stacking M(q). We write this succinctly by introducing
Pre(p), a function that takes stacking order p to the set of all
stacking orders ¢ such that ¢ maps to p under M:

oy (1-Bjop+ ), Bog
q€Pre(p) 8)

where Pre(p) ={q|M(q) = p}

In our system, the user specifies these § values by painting.

4.3. Display

To produce a final image, our program must transform a se-
ries of mappings and weights to a final pixel color. As we’d
like our system to remain general, this method should not
rely on simplifications afforded by specific mapping types
or layer transfer functions. Further, it is important to main-
tain interactive rendering performance and provide real-time
feedback when the user is painting stacking order mappings.

0: Render: )
L if p = pinit

. ;start with initial order
0 otherwise

I: Op <

2 foreach mapping M with opacity f:

3 G < applyMapping(M, 3, G) ;use Eqn 8

4 while countNonzero(c) > limit:

5: Set smallest nonzero element of G to zero

6 G < 6/||o]|1 ;normalize

7 return ., em(z) OpCp ;stackings to color (Eqn 7)

Figure 5: Code implementing our rendering algorithm,
which computes the final color of a pixel given the list of
stacking order mappings M applied by the artist at that pixel.
For efficiency, only nonzero coefficients of G are stored, and
only a limited number are kept (lines 4,5).

(© 2012 The Author(s)
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Figure 6: The computation of stacking coefficients, given a series of mappings. The full set of coefficients (left) can grow
exponentially, which is why our renderer trims the set of coefficients after applying each mapping (right). The mappings applied
(center) are: move blue and orange up until they are over green and purple; move purple down until it is under orange; and
move blue and orange down until blue is under orange is under green. The B values give the opacity, at the current pixel, of the

brush used to apply each mapping.

Our prototype uses a trimmed direct solution to determine
stacking coefficients (and, thus, pixel color). This method
is visualized in Figure 6; pseudo-code is provided in Fig-
ure 5. This method works by maintaining a sparse vector of
stacking coefficients, starting with a single non-zero coeffi-
cient (the artist’s initial stacking) and applying each artist-
specified mapping in turn (using (8)). If, after applying a
mapping, the number of nonzero coefficients has grown too
large, the smallest stacking coefficients are dropped. After
all mappings are applied, the remaining coefficients are di-
vided by their sum to compensate for energy lost during the
trimming process. These coefficients are then used to com-
pute the color, as per (7).

Though our rendering scheme is already quite fast, we
can provide even faster feedback to artists while they are
painting by using the linearity of stacking coefficients. No-
tice that, by (8), the final stacking coefficients at a pixel are
linear in the weight, B, of any given mapping. Further, by
(7), the final pixel color is linear in the stacking coefficients.
Thus, for any mapping M, anywhere in the stack of applied
mappings, the final pixel color is a linear interpolation of the
color when that mapping isn’t applied and when it is applied
at full weight:

Chinal = (1 —B)eno-m + Pem
where ¢,o.Mm = final color without M ©)]

¢Mm = final color with opaque M

As soon as the artist selects an existing mapping (or cre-
ates a new mapping), our prototype begins to render versions

(© 2012 The Author(s)
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of the image without that mapping applied at all and with
that mapping applied with 100% weight. As portions of the
image finish rendering, they are uploaded to the GPU as tex-
tures. Wherever the user draws, a simple shader computes
the interpolation for real-time feedback.

If the user begins painting before this precomputation has
finished, a placeholder checkerboard texture is used in the
blending. Our system preferentially renders parts of the im-
age close to the user’s cursor so that when a stroke is started,
it is likely we can provide feedback immediately.

4.4. Implementation

Our prototype is written in C++. We use the Qt toolkit for
UI, and OpenGL for display and for real-time painting. All
images are treated in 128x128 tiles, with stacks of layer and
mapping tiles handed out to background threads for render-
ing. This allows our prototype to make good use of multiple
cores.

Our renderer’s theoretical time complexity is O(#layers -
#mappings - #retained coefficients) and memory complexity
is O(min(#retained coefficients, 2fmappings o#layersyy = gy
implementation has been tuned for common workloads, so
performs better with coherent mapping weights than with
random ones, and with layer and mapping counts that allow
one stack of tiles to fit in cache.

The examples in this paper all rendered very quickly, even
without trimming. On a single core of an aging worksta-
tion (Core 2 Quad Q6600) running Linux, Figure 8, a 10
megapixel composite with six layers and eleven mappings,
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Figure 7: Banding artifacts appear if too few stacking coefficeints are retained by our rendering algorithm. “Max diff " is the
maximum absolute difference between the trimmed and full solution, relative to color values in the range [0,255]. The top row
is a crop from Figure 8, while the bottom row is a crop from a stress test with 20 layers and 20 random mappings.

takes 1.7 seconds to render, while Figure 1, a five megapixel
composite with four layers and five mappings, takes 0.5 sec-
onds. Note that, when painting, any tiles under the current
stroke need to be rendered twice (due to (9)), at which point
any further modification is real-time. Thus the worst-case’
lag between brush touch-down and rendered feedback is
about 25 milliseconds for this example.

‘We compare the appearance of our rendered results with
different numbers of retained coefficients in Figure 7. When
coefficients are trimmed too vigorously, banding artifacts
can appear. However, with 10 coefficients, the results appear
smooth, even if they may not exactly match the untrimmed
solution.

4.5. Results

We find that our brush-based stacking system is useful for
dealing with transparent and translucent smoke (Figure 1),
and adding fog- or mist-like effects to a scene (Figure 4). It
can also be used in situations where previous discrete layer-
ing approaches would be useful, but are stymied by the lack
of a clean alpha channel (the rings in Figure 8).

One benefit of using a tool that knows about stacking co-
efficients is that layers can be changed after the stacking has
been determined. For instance, when creating Figure 8, the
initial composite looked somewhat flat. It was easy to add
defocus blur to the rings by modifying (and re-loading) the
source layers while keeping the same mappings and weights.

4.6. User Comments

To informally evaluate usability of our brush-based stack-
ing system, we introduced two technically-literate Photo-
shop users to our system, then interviewed them as they du-
plicated the stacking in Figure 4. Both users found the paint-

§ Thisisa pessimistic estimate because the system pre-renders tiles
as soon as a mapping is selected, favoring those tiles closer to the
MOouse Cursor.

Figure 8: Brush-based soft stacking was used to interleave
the rings and their glows in this 10 megapixel image. Our ap-
proach handles arbitrary transfer functions, like the translu-
cent (“multiply”) glow around the colored ring.

ing process intuitive, though they generally found that speci-
fying mappings by typing was cumbersome, and pointed out
that this could be a stumbling block for novice users.

One of the users performed further tasks, including re-
placing the snake layer in their version of Figure 4 with a
worm layer (duplicating a task which appears in the video),
copying the stacking in Figure 1, and attempting each of
these tasks in Photoshop. This user observed that with our
brush-based soft stacking prototype, he could immediately
begin restacking, whereas in Photoshop he needed to figure
out a plan first. He also commented that restacking trans-
parent layers was more difficult in Photoshop because layer
duplication changed the look of the layer (specifically, the
white smoke in Figure 1 got oversaturated, while the colored
smoke became too dark).

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 9: Two photos of smoke are woven using our
optimization-based method. Constraints are horizontal
smoke over vertical (blue), and vertical smoke over horizon-
tal (red). Source image from flickr user aubergene.

[ m
"

Figure 10: Three lightning bolts interleaved using
optimization-based soft stacking.

5. Optimization-Based Editing

Though remapping stacking coefficients with a brush is di-
rect and intuitive, sometimes an artist may wish to provide
a more sparse set of inputs (e.g. “Layer 1 should be on top
on the left of the image and layer 2 should be on top on
the right”). In this section, we present a method for deter-
mining an optimal selection of stacking coefficients subject
to such user-specified constraints. Our optimal stacking co-
efficients change smoothly and allow less-opaque layers to
pass through each-other more readily. This results in smooth
transitions between stacking orders (e.g., Figure 9).

5.1. Objective Function

As we now must begin to talk about whole groups of stack-
ing coefficients, we introduce the notation 6(x) — notice the
lack of subscript — to denote the column vector of all the
stacking coefficients at pixel x:

o(x)=[ 61....(%) 1/.../1(X) }T (10)

We build our optimization around a generalization of the
discrete notion of stacking consistency [MPQ9]; specifically,

(© 2012 The Author(s)
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we introduce ¢(c,6”), which measures the inconsistency be-
tween two vectors of stacking coefficients ¢ and ¢’. Intu-
itively, ¢ penalizes for layers that pass through each-other,
with the magnitude of the penalty being proportional to the
product of the layers’ opacities (in some sense, the probabil-
ity that the layers collide). We give an exact definition of ¢
in Appendix C.

Given a set of user-specified constraints, we compute the
optimal selection of stacking coefficients by minimizing the
inconsistency between the stacking coefficients at each pixel
x and the stacking coefficients at each four-way neighbor n:

G+« argmin Y &o(x),0(n))
° nENxbr(x)

an

subject to user-defined constraints on ¢

subject to ZG =1,062>0

5.2. Implementation

Our prototype is written in C++, and performs all computa-
tion on the CPU. It is not multi-threaded, though it does use
an SVD routine provided by the Intel Math Kernel Library,
which may elect to use multiple threads behind the scenes.

Our user interface is rudimentary. The user begins with
the layers to be stacked arranged in a default order. (This
order is required to select between multiple optimal answers
—e.g., when there is a region of the image disconnected from
any constraints.) The user can specify constraints by painting
into the image with subsets of allowed stacking coefficients.
These subsets are defined using a vocabulary similar to that
used in our brush-based prototype to specify mappings — we
constrain pixels only to take stackings which are not changed
by the specified mapping. The user may then press a key
to start the optimizer and — if she doesn’t like the partial
results displayed during the process — can opt to cancel the
optimization in order to paint more constraints.

Our objective function (11) is a quadratic optimization
with inequality constraints. Unfortunately, the scale and
sparsity of the system make it infeasible in the off-the-shelf
quadratic program solvers we have tried.

Instead, we use a form of gradient descent; alternating
steps of successive over-relaxation (which bring us closer to
the global, unconstrained minimum) and constraint enforce-
ment. Steps are taken until a fixed limit is reached or the
maxiumum change drops below a specified threshold. For
examples in this paper we use a limit of 500 iterations and a
threshold of i

To aid in convergence, we start by scaling down our layers
and constraints and iterating on this coarse version of the
problem, then project this solution to finer and finer levels —
refining after each projection (Figure 11). This is similar to a
multigrid approach, except that we never return to the coarse
level for further iteration on residual error.
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Figure 11: Left: Our optimizer solves at progressively higher resolutions. Right: The final image and source layers.
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Figure 12: Optimizer runtime for the examples in this paper. Runs are color-coded by type of work. “Build” is building
the system, “iterate” is solving, and “misc” includes upsampling, downsampling, and rendering intermediate results. Each
build/iterate pair corresponds to a level of our multi-resolution solver — so, for example, even though the lightning example
takes 106 seconds to run, a 1/4 resolution version of the result is available in under 10 seconds.

An additional advantage of the coarse-to-fine approach is
that users can attain low-resolution feedback quickly, even if
full-resolution feedback is a long time off.

We show the run-time for our optimizer on a several-year-
old workstation-class computer (Core2 Quad Q6600) in Fig-
ure 12. The optimization examples in this paper all took un-
der 30 seconds to run fully, except for the lightning result
shown in Figure 10, which took 106 seconds. This dramati-
cally longer runtime is likely due to the many nearly trans-
parent pixels, which make constructing ¢ less numerically
stable.

In all cases, the solution time appears to be dominated
by bookkeeping and system construction rather than by the
iterative solution. This suggests that caching or approxima-
tion of ¢ (which is currently constructed per-pixel-pair) may
speed the optimization process. Additionally, a more sophis-
ticated solution technique (e.g. algebraic multigrid) could re-
sult in better convergence and thus reduce solution time.

5.3. Results

Our optimization-based approach provides reasonable stack-
ing order interpolation in a number of situations. It is useful

when interleaving layers with volumetric glows (Figure 10,
right), or smoke-like layers — both photographic (Figure 9)
and hand-drawn (Figure 11).

One downside of our multi-resolution approach is that
thin features merge at lower resolutions — making it hard
to have alternating stacking orders on closely-spaced par-
allel lines. Such a difficulty arose when stacking Figure 13,
with the consequence that more constraints were required to
achieve the desired solution.

6. Comparison to Existing Methods

Our continuous stacking formulation is able to represent all
possible mixtures of sub-pixel stackings. This makes our
method more flexible than existing one-stacking-per-pixel
approaches. However, in instances where the desired stack-
ing order is discrete, systems like Local Layering [MP09]
allow users to specify stackings quickly, without having
to paint over large areas with constraints, manually chase
implications of order adjustments, or — in the case of our
optimization-based stacking prototype — wait minutes for a
result. In the future, a hybrid approach could layer our brush-
based stacking adjustments atop a base discrete stacking ed-
itable with Local Layering to provide the benefits of both.

(© 2012 The Author(s)
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Figure 13: A difficult case for our optimizer. The thin fea-
tures in the rainbow merge at finer solution levels, so the
user was forced to paint many constraints to achieve the in-
terleaving he was interested in.

Continuous stackings can be created in conventional im-
age editing programs by cloning from various stacking or-
ders into a final image.1T This is equivalent to painting in
our brush-based prototype with mappings that select exactly
one order; our system allows significantly more flexible con-
straints (e.g., “put a in front of b and ¢, but preserve their
relative order”). Additionally, our system allows the transfer
functions and contents of source layers to be changed freely
— something that requires, at best, a large amount of manual
copying and pasting in a conventional image editor.

7. Closing Remarks

We started this paper by generalizing per-pixel stacking or-
ders to stacking coefficients. These stacking coefficients are
both necessary and sufficient to represent sub-pixel stacking
complexity with arbitrary layer transfer functions.

We then demonstrated two approaches for the manip-
ulation of stacking coefficients. The brush-based stacking
method has the advantage of allowing direct control, provid-
ing rapid feedback, and scaling well. On the other hand, the
optimization-based stacking approach can provide a globally
smooth result given sparse constraints, though it isn’t practi-
cal for large numbers of layers.

One can perform an alternate derivation of stacking
coefficients in order to represent correlated coverage in-
formation. In this case, stacking coefficients are intro-
duced for all orders of all subsets of layers to account
for portions of each pixel which are covered by each
layer. For example, with three layers, additional coefficients
0p,01,02,03,01/2,02/1,01/3,03/1,02/3, and 03/2 would
be required at each pixel, and additional equality constraints
on the stacking coefficients would be required (the sum of

Al Additionally, compositions that look like (but are not) continuous
stackings can be created by manipulating layer alpha channels.

(© 2012 The Author(s)
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all o mentioning layer i must equal the opacity of i). Such
a derivation might make an interesting basis for future work
in this area.

Overall, our notion of soft stacking extends the current
state-of-the-art in layer stacking by providing a continuous-
domain extension of current discrete techniques. In addition
to providing artists all the flexibility of existing approaches,
stacking coefficients allow artists to manipulate layers — like
hair or fog — as if they had sub-pixel stacking complexity.
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Appendix A: The Necessity of Alpha

To read back o; from a black box compositing function, set
the background color to 0 and layer transfer functions as fol-
lows:
_ 1 ifj=i
file) = { ¢ otherwise (12)

This makes all other layers besides i effectively transpar-
ent, so the final composited color is just the probability of
interaction with layer i — that is, o;.

Appendix B: The Necessity of Stacking Coefficients

To read back o;,,...;, from a black box compositing func-
tion, set all layer opacities to 1, the background color to L,
and the transfer functions as follows:

oy ) i—1 ifj=landec=i
file) :{ 0 otherwise

This setting counts from L to 1 if a sample interacts with
layers in order /1 /- /I, and yields 0 if the sample interacts
in any other order. As every sample must interact with every
layer, the final composited color will be 67, /., .

(13)

Appendix C: Measuring Continuous Consistency

In this appendix, we describe how to extend the discrete
notion of consistency introduced by McCann and Pol-
lard [MPQ9] to the continuous domain. Briefly, in the dis-
crete domain, a consistent stacking is one in which layers in
adjacent pixels appear in the same order unless they are fully
transparent in one or both of the pixels.

In the continuous domain, we introduce a function ¢
(for “not consistent”), which measures the inconsistency be-
tween vectors of stacking coefficients in a continuous way.

Intuitively, ¢(c,6”) measures the difficulty one would en-
counter in re-stacking a pixel with the mix of stacking orders
given by G into one with stacking orders given by ¢’

Re-stacking. Consider the task of transforming a pixel
with the mix of stackings ¢ into one with the mix of stack-
ings ¢’. One might perform this re-arrangement by selecting
some portion of the pixel stacked in a given order, say 1/2/3,
and exchanging two adjacent layers, say 1 and 2, so that that
portion of the pixel is now stacked 2/1/3; continuing in this
way, swapping various layers, one could eventually trans-
form the stacking coefficients of the pixel to ¢’.

In the general case, we’ll denote the portion of the pixel
where we swap p; and p;y; in the stacking p = p/---/pL
by 8; ;. Notice that when performing a set of swaps, stacking
coefficient 6, will lose value to neighboring stacking g(i) =

p1/---/pix1/pi/ -+ /pL via swap §; , and gain value from
it through swap §; ;(;) (Figure 14). With this in mind, we

81,1/2/3

C$1/2/3‘_8/ 62/1/3
121173

82,1/3/2 62,1/2/3 622/3/1 62,2/1/3

01/3/2 G2/3/1

61,3/1/2 81,1/3/2 613/2/1 81,2/3/1

62,3/|/2

1
03/1/2 <\_/G3/2/1
2,3/2/1

Figure 14: Using swaps to transform stacking coefficients
(14). To move from Gy 2/3 =1 to 6/3/2/1 =1, one could set
81,1/2/3 = 1, 82’2/1/3 = 1, and 81_2/3/1 =1. (Though, de-
pending on , this may not be minimal (16).)

can write down what it would mean for a set of swaps to
transform stacking coefficients ¢ into ¢’:

L—1
/
vp : GP = Gp + 1:211 Si.q(i) - 81‘4’[;

where ¢(i) = Pl/"'/Pifl/PiJrl/Pi/PiJrZ/"'/12?4)

Difficulty. Of course, with all this passing of layers
through other layers, some collisions are bound to occur. Ap-
pealing to our earlier definition of opacity (3) as the prob-
ability of a random sample inside a layer being solid, we
can write the expected colliding area when passing layer i
through layer j in a region of area a:

o0 ja = E(colliding area passing i through j

in region of area a)  (15)

Putting it together. When re-arranging, it makes sense to
pick a set of swaps that does not have much colliding area.
Thus, we take minimum squared expected colliding area as
our measure of inconsistency:

&o,6) = mgnz (ocpiocpm (5,-,(,@') - Si,p) ) 2 o
X

subject to (14)

As ¢ is evaluated “between pixels” we use the average o
values of pixels to which ¢ and ¢’ belong.

Notice that the sum of squared collision areas is a convex
quadratic function with equality constraints, and is, there-
fore, minimized by a linear transformation of ¢ and o’. Thus,
¢ itself is a convex quadratic function of the concatenation of
6 and ', which is convenient for our optimization.
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