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Figure 1: A visualization of three shots from a coherent video cut of a social event created by our algorithm. In this case, eight social
cameras record a basketball game. Their views are shown at three different times. The 3D top-view shows the 3D camera poses, the 3D
joint attention estimate (blue dots), and the line-of-action (green line). Using cinematographic guidelines, quality of the footage, and joint
attention estimation, our algorithm chooses times to cut from one camera to another (from the blue camera to purple and then to green).

Abstract

We present an approach that takes multiple videos captured by so-
cial cameras—cameras that are carried or worn by members of the
group involved in an activity—and produces a coherent “cut” video
of the activity. Footage from social cameras contains an intimate,
personalized view that reflects the part of an event that was of im-
portance to the camera operator (or wearer). We leverage the in-
sight that social cameras share the focus of attention of the people
carrying them. We use this insight to determine where the impor-
tant “content” in a scene is taking place, and use it in conjunction
with cinematographic guidelines to select which cameras to cut to
and to determine the timing of those cuts. A trellis graph repre-
sentation is used to optimize an objective function that maximizes
coverage of the important content in the scene, while respecting cin-
ematographic guidelines such as the 180-degree rule and avoiding
jump cuts. We demonstrate cuts of the videos in various styles and
lengths for a number of scenarios, including sports games, street
performances, family activities, and social get-togethers. We eval-
uate our results through an in-depth analysis of the cuts in the re-
sulting videos and through comparison with videos produced by a
professional editor and existing commercial solutions.
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1 Introduction

Cameras are now ubiquitous in our lives—we are rarely without our
smart phones and pocket-size camcorders. Recently, even wearable
cameras have become quite common. These social cameras are
used to record our daily activities: time with family and friends,
participation in hobbies and games, and group activities such as
concerts, sporting events, and parties. A given activity is often cap-
tured by multiple people from different viewpoints resulting in a
sizable collection of social camera footage even for a single event.
With millions of hours of video captured in this way each year, al-
gorithms to effectively summarize and understand such content are
urgently needed.

Social cameras create a new form of media as they are always avail-
able, generally handheld, and reflect the personal viewpoint of the
camera operator. The footage from social cameras is quite differ-
ent from what has traditionally been created by professional cam-
eramen. Professionals use tripods or stabilized rigs and carefully
compose and light their shots. In contrast, social camera footage
contains an intimate view of the proceedings, often from a first per-
son viewpoint. Large portions of social camera footage are rough
and unstable. These differences present a challenge for editing such
videos into a coherent “cut”, and this challenge is amplified when
large numbers of input video streams of a single event are available.
In an experiment that we conducted with a professional editor, the
editing of just a few minutes of video from multiple social cameras
required about 20 hours of effort.

This paper describes an algorithm that automatically creates a video
“cut” of an activity (Figure 1) from multiple video feeds captured
by a set of social cameras. To create this cut, we leverage and
extend existing cinematographic guidelines that were designed to
guide the editing of traditional footage into a narrative by human
editors. Our key insight is to take the center of attention of the cam-
eras (and therefore of the viewers) as a strong indicator of what was
important at that moment in time. While this indicator does not de-
scribe a complex narrative flow as a human editor might (through
editing tricks such as replays, close-ups, and flashbacks), it does
provide the information needed to create a cut of the video that
condenses the video footage a hundredfold or more while retaining
the important action that occurred during the event.
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The joint attention of a group is a powerful indicator of content
because people engaged in a social activity naturally arrange them-
selves to ensure that everyone gets a good view of the activity. Indi-
vidually, their orientation signals what they consider most interest-
ing and worth attending to. When a member of such a social group
records the activity via a camera, the camera inherits this social sig-
nal. When multiple social cameras observe the same activity, this
signal can be consolidated to obtain what is called gaze concur-
rence or 3D joint attention: a consensus measurement of the spatial
and temporal location of the important “content” of an activity [Kim
et al. 2010; Fathi et al. 2012; Park et al. 2012].

We use a graph-theoretic method to optimize an objective func-
tion encoding the traditional cinematographic guidelines with some
modifications to deal with the unique properties of the new media
created by social cameras. First, a graph is built, whose nodes rep-
resent the joint attention in the frames of each camera, and whose
edges represent transitions between cameras. Then, an optimal path
in this graph is found automatically using a modified dynamic pro-
gramming algorithm. This path represents the final movie that is
rendered by combining the footage from the cameras on the path.
We show results on a number of activities, including playing sports,
attending a party, and watching street performances, and produce
coherent video cuts in various lengths and styles (e.g., including
first person views or not).

Minimal human input to the system is optional – either just the de-
sired length of the output or a threshold for “level-of-interest” for
the creation of summarization video, or other parameters such as
who is an “important characters” for the creation of a personalized
video. We evaluate our results by dissecting the cuts chosen by our
algorithm in various examples and through comparison with ed-
its created by commercially available software, a random selection
process, and a professional editor.

Contributions: We present a method for automatic editing of mul-
tiple social camera feeds. Although our automatic method does
not have the superb story telling capabilities of professional edi-
tors, it creates a coherent video of a user-specified length from a
large number of feeds that include intimate, first person views and
a significant percentage of bad footage. Our contributions are three-
fold: (1) A demonstration that the center of attention of hand-held
cameras can serve as an effective measure of what is important in
a scene. (2) Establishing that the long-standing cinematographic
guidelines can be adapted to footage produced from social cameras
despite the significant differences between this new media and tra-
ditional video footage. (3) An optimization algorithm and objective
function for finding a path in a trellis graph structure to produce
cuts of social camera footage in a variety of lengths and styles.

2 Related Work

Our approach is most closely related to work that selects from
among multiple input videos based on content. A number of ap-
proaches attempt to recognize the activity of people in the scene and
interpret these activities to determine the most appropriate camera
view. Hata and colleagues [2000] presented a method to summa-
rize multiple video feeds from surveillance cameras based on the
activity of people in a each view. He and colleagues [1996] used
finite state machines to decide when to select cameras in a virtual
party scenario. This approach was applied to real data in a lecture
setting [Rui et al. 2001]. Dale and colleagues [2012] used frame
similarity to align multiple videos and a similar dynamic program-
ming algorithm to ours to choose parts and created a summariza-
tion. However, they do not handle social cameras nor use cine-
matographic guidelines in their summary. With his Virtual Director
system for webcasts of lectures, Machniki [2002] used audio cues
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Figure 2: Our method’s pipeline: from multiple camera feeds to a
single output “cut”.

and an automation specification language to allow a user to auto-
mate when to cut between audience and speaker cameras. Heck
and colleagues [2007] presented a system to automatically produce
an edited video of a classroom lecture from a single camera feed,
selecting from different virtual cameras created by 2D zooms and
pans in image space. The selection was done by analyzing the con-
tent on the board. In a series of papers, Takemae and colleagues
[2004] used head orientation to determine camera selection in meet-
ings. These systems work well but only in controlled settings such
as classrooms or meeting rooms where the variety of content is lim-
ited.

Other efforts focus only on assessing the quality of the available
footage or leverage user input. [Bao and Choudhury 2010] present
a method to select a representative video based on footage at-
tributes but do not use cinematographic guidelines. Sumec [2006]
collated multiple video feeds of a meeting based on rules for the
quality of each feed. Shrestha and colleagues [2010] create a
“mashup” of multiple video feeds by optimizing a cost function
composed of several low-level video measures and user-defined
scores. Zsombori and colleagues [2011] presented “MyVideos”, a
semi-automatic system to align and select videos using Narrative
Structure Language (NSL) for multi-media items. A number of
commercial products exist today that combine footage from mul-
tiple cameras to produce a coherent video (Vyclone1 or Switch-
cam2). Their solutions appear to be limited to choosing the most
stable or best lit view and periodically switching between views.
Because these algorithms do not know the spatial relationship of
the cameras to the action, they cannot take into consideration higher
level cinematographic guidelines such as jump cuts and the 180-
degree rule.

Our approach is also related to video summarization as we con-
dense multiple videos to produce an edited version. However,
summarization is usually performed on just a single video stream.
Many techniques for summarization have been proposed [Ponto
et al. 2012; Lee et al. 2012; Kumar et al. 2010; Money and Ag-
ius 2008; Truong and Venkatesh 2007; Taskiran and Delp 2005;

1http://www.vyclone.com
2http://make.switchcam.com



Barbieri et al. 2003]. Most approaches are based on some level
of video understanding such as human detection, visual saliency,
or video quality analysis. Some methods handle specific types of
video such as interview videos [Berthouzoz et al. 2012] or ego-
centric footage [Lu and Grauman 2013]. The first presents a tool
that links text to video, allowing the video to be edited simply by
editing the text transcript. The second presents a nice advance to-
wards higher level story-driven summarization by segmenting the
continuous video into sub-shots and building chains of sub-events
that “lead to” each other.

The idea of using joint attention to identify socially salient loca-
tions has been investigated in a number of papers. Kim and col-
leagues [2010] present an approach to use the convergent motion of
soccer players to identify areas of importance on the field. Fathi and
colleagues [2012] use convergence of attention to identify and ana-
lyze social interactions in first person cameras. Jain and colleagues
[2013] recognizes shared content in videos and joint attention by
finding the number of the overlapping 3D static points. In this pa-
per, we leverage the approach of Park and colleagues [2012], that
presents a method to find spatiotemporal points of social saliency
in a scene by analyzing the convergence in the fields of view of
multiple first person cameras. We explore the use of such 3D joint
attention points to select and time the transitions between multiple
feeds.

3 Overview

The inputs to our algorithm are k synchronized video feeds of the
same event or scene, and the output is a single edited video that is
created from the k videos and best represents the event or scene cap-
tured according to the objective function. The algorithm pipeline is
illustrated in Figure 2. First, at each time instant, we reconstruct the
3D camera poses and estimate the 3D joint attention of the group
[Park et al. 2012] (Section 5). Over time, this provides the 3D cam-
era trajectories and joint attention for all the footage. Next, we
construct a trellis graph and calculate the weights for all nodes and
edges based on cinematographic guidelines and style parameters
(Section 6). If summarization or personalization style parameters
are given, we apply contraction operations to the graph (i.e., remove
some of its nodes and edges—-Section 9). Next, we use dynamic
programming to find the best route in the trellis graph from the first
slice to the last (Section 7). Such a path defines a single output
video containing appropriate cuts between cameras.

4 Adapting Cinematographic Guidelines

Edward Dmytryk, a pioneer of Hollywood film directing and edit-
ing, wrote: “If the film is well shot and well cut, the viewer will
perceive it ... to flow in continuous, unbroken movement on a single
strip of film” [Dmytryk 1984]. Raw footage from multiple cameras
rarely produces such continuous flow and must therefore be heav-
ily edited. As we start from handheld or body-worn social cameras
footage created by non-professionals, we must filter out much of it
because of low quality, and we must choose and cut between cam-
eras following cinematographic editing guidelines to achieve a sin-
gle coherent and smooth viewing experience. Below we describe
how these guidelines are applied and adapted to our settings.

Content, then form. Dmytryk’s first rule is content, then form.
This rule demands a semantic understanding of the video footage,
however acquiring a high-level understanding of activities using au-
tomatic video processing remains a challenge. We leverage the fact
that the collective ego-motion of multiple social cameras encodes
the judgment of the social group about which areas in the scene are
significant. We posit that areas that attract greater attention have

(a) 3D camera pose and joint attention

Top view

(b) Current shot (camera 2)

(c) Valid shot (camera 4) (c) Invalid shot (camera 1)
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Figure 3: The 180-degree rule is defined by an imaginary line in the
scene. A cut from one camera to another should not cross this line
as it will confuse the viewer by reversing directions. If we use the
green line in (a) for the shot of camera 2 (seen in b), then camera 4
(seen in c) and camera 3 are valid to cut to, while cutting to camera
1 (seen in d) will violate the rule—note how the snow ball moves
from left to right instead of right to left.

greater salient content. Thus, we use the joint attention of social
cameras, as estimated by concurrences in 3D camera gaze vectors,
to determine significant content and guide our basic editing choices
(Section 5). Furthermore, as described in Section 6, we use the
graph node costs to represent the quality of the footage to direct the
algorithm to choose higher quality frames.

Jump Cuts. A core guideline in video editing is to avoid jump
cuts. These are transitions between two cameras that shoot the
same scene from almost the same angle (e.g., below 30 degrees
difference), or have a noticeable portion of overlap in their frames.
When choosing to cut from one camera to another, our algorithm
favors a significant difference in frame content and angle.

180-degree rule. Another fundamental guideline of editing is the
180-degree rule. In its strict form, this guideline keeps the subject
of the scene on one side of an imaginary line-of-action, as shown
in Figure 3. Shooting the same subject from opposite sides creates
an abrupt reversal of the action and can confuse the viewer. This
guideline is important in our setting as social cameras can often be
found on both sides of this line. For highly dynamic events, we
also explore the use of a relaxed version of this guideline. We al-
low the camera to move from one side of the scene to the other in
small steps across multiple cuts. Viewers are able to adjust to the
gradually changing viewpoint without confusion. Note that apply-
ing the 180-degree rule and avoiding jump cuts both necessitate a
3D understanding of the configuration of the cameras.

(a) (b) (c) (d)

Figure 4: Shot sizes: (a) wide shot, (b) long shot, (c) medium shot,
and (d) close-up shot.



Time: 00:04 Time: 00:22 Time: 00:39 Time: 00:56

Figure 5: 3D reconstruction of the camera position and orientation allows our algorithm to track the joint attention through the basketball
game. The blue dot in the top view of the reconstructions is the joint attention point. One can see how most players are watching the same
position in the scene (usually the ball position), which is the focus of joint attention during the game. The green line is the 180-line according
to the current camera (see also Figure 1).

Shot Selection. Selecting the correct camera view and the time
to cut to it is critical in maintaining the perception of continuity.
We determine cut timing and select cameras based on the following
guidelines.

Shot Size Diversity: Controlling shot size transitions promotes both
smoothness and interest in a video. Shot size is defined as the size
of the frame with respect to the main subject—the subject can be
seen from afar or closer up. There are five major types: wide shot,
long shot, medium shot, close-up, and extreme close-up (Figure 4).
We determine shot size by measuring the distance to the 3D joint
attention. Using a single shot size throughout the movie is boring,
while jumping too often or in steps that are too large is distracting.
We create two shot size alternatives from each original frame by
cropping, and promote choosing a diverse set of sizes during movie
creation (Figure 11).

Shot Duration: Varying shot duration also affects smoothness and
interest. Very short-duration shots can be disturbing, while long-
duration shots can be boring. We set a minimum and maximum
shot duration. Our algorithm then prevents cuts before the mini-
mum duration has elapsed and promotes a cut when the maximum
duration is reached (Section 7).

Shot Quality: Each individual camera feed should also be weighted
for smoothness and aesthetics. In this work, we concentrate on
choosing stabilized shots and create better compositions using crop-
ping (see Section 6.1). Other characteristics such as focus and light-
ing could be included in the node costs of each frame to allow the
algorithm to pick better shots.

Cut-on-Action. Using characters’ actions/movements, editors
match between two shots to help hide cuts. By cutting exactly at the
height of action (when the door is shut or the ball hits the bat etc.),
the action itself distracts the audience from the actual cut. Although
our algorithm does not have an exact understanding of the action in
the scene, we use an approximate measure to mimic these types of
cuts. We track the movement of the 3D joint attention: whenever
there is a large acceleration of this movement, we take this to mean
that some action has happened that changed the center of attention
abruptly, and the algorithm tries to cut to a different camera. This
guideline is more appropriate for some types of footage than others
and the user can enable/disable this guideline.

5 Content from 3D Joint Attention

To identify which views best capture the content of the activity, we
need a semantic representation of the activity in the scene. How-
ever, algorithms capable of interpreting social activity from cam-
eras remain an active area of research. As a proxy for a seman-
tic understanding, we use the 3D location of joint attention of the
cameras. A feature of social cameras is that they inherit the gaze
behavior of their users: people tend to point their cameras at what
they find interesting in a scene. We leverage this phenomenon by
explicitly computing the 3D motion of the k cameras and analyzing
their collective motion to identify where they focus their attention.
We use a standard structure-from-motion algorithm [Snavely et al.
2006] to simultaneously reconstruct the 3D structure of the scene
and the motion of the cameras using a subsampled set of the camera
frames. Using the reconstructed 3D structure, we estimate the pose
of each camera using a perspective-n-point algorithm [Lepetit et al.
2009]. However, because of imaging artifacts, such as motion blur,
rolling shutter, and pixel saturation, there are a significant number
of frames for which we cannot recover the camera pose directly.

To handle these missing frames, we employ data-driven camera
motion interpolation. Between any two cameras that have been
posed, which we refer to as anchor cameras, the interpolation is
performed by estimating the frame-to-frame fundamental matrix at
each consecutive frame, which gives us the relative orientation and
translation up to scale. This relative information corresponds to
differential constraints on the camera motion. Our approach then
interpolates the camera translation and orientation using a Discrete
Cosine Transform basis, with gradient constraints defined by the
relative orientations and translations. This computation provides
the 3D pose of each video camera through time (Figure 5). Once
we have the 3D trajectory of each camera, we use the gaze clus-
tering algorithm of Park et al. [2012] to extract 3D points of joint
attention (JA-point) in the scene at each time instant. We calculate
all gaze concurrences g in the scene through time, and rank their
importance rank(g) by counting the number of camera gazes that
intersect at that point. Thus, this process produces multiple 3D lo-
cations of joint interest and our algorithm uses them all during its
reasoning about producing the cut.
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Figure 6: The trellis structure used in our algorithm; the frames
are nodes

(
C j, jat

i
)

for time t, camera C j and 3D joint attention
jat

i with two types of edges: continuous (bold) and transition
edges. In this example, at each time t there are three synchronized
camera sources C1, C2, and C3 and there are three joint attention
points ja1, ja2, and ja3. Assume that jat

1 and jat
2 project onto

C1 and C2 and jat
3 on C3, for t = 1 and 2. Further, assume

that the third point of 3D joint attention ja3
3 ceases to exist as

a point of interest at t = 3, and camera C3 views ja3
2 instead.

The graph contains a set of five nodes for every slice St as
follows: St = {(C1, jat

1),(C1, jat
2),(C2, jat

1),(C2, jat
2),(C3, jat

3)}
for the first two time instances, and S3 =
{(C1, ja3

1),(C1, ja3
2),(C2, ja3

1),(C2, ja3
2),(C3, ja3

2)} for t = 3.

6 Trellis Graph Construction

To represent the elements in our optimization, we use a trellis
graph GT = {V,E}, where the node set V contains T time-slices:
V =

⋃
t{St |1 ≤ t ≤ T}. Every slice contains a set of nodes, where

each node is defined by pair (Ci, jat
j), associating a camera and a

3D JA-point (e.g., a point of 3D joint attention as estimated via gaze
concurrences). The edges E in the graph connect all nodes in slice
St to nodes in slice St+1 for all times 1 ≤ t ≤ T − 1. Figure 6 il-
lustrates a graph with three synchronized camera sources and three
JA-points. Each JA-point defines a different narrative allowing us to
create various video “stories”. To allow different zoom or cropping
options for a cut we clone each node for each available size. To
create a crop, we define the cropping center to be the node’s point
of interest (the 2D projection of the 3D joint attention point). To re-
tain enough resolution, we use only two possible crops: the original
size and a zoom-in (e.g., long shot cropped to medium or medium
shot cropped to close-up). This process enables smoother and more
interesting cuts [Heck et al. 2007], as the algorithm can choose the
zoom as part of the main path calculation, avoiding large changes
in zoom but adding interest by changing shot sizes.

We now describe the different node and edge weights we use in the
graph. The weights are defined as cost functions in which the cost
is higher as the given input parameter deviates from a predefined
optimum value. To normalize them to the same range of values and
to define the desired shape of a cost function, we use a piecewise
quadratic function:

N (min,max,opt,x) =


(

x−opt
opt−min

)2
min≤ x < opt(

opt−x
max−opt

)2
opt ≤ x≤ max

∞ otherwise.

(1)

This function has a minimum at the optimum input value
opt, and maps any [min,max] range of values to [0,1].
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In the figure on the right, the
red curve shows the normal-
ization function and the grey
dotted line shows the rest of
the half-functions used to pro-
duce the normalizing func-
tions. The three operating limits are highlighted by red dots, where
in this example min = 0.5, opt = 1, and max = 2.

6.1 Node Costs

The node cost Wn (ni) : V → [0,1] combines various parameters of
the node’s ni camera frame. It is defined as:

Wn (ni) =
λs ·Ws (ni)+λr ·Wr (ni)+λ ja ·W ja (ni)+λv ·Wv (ni)

λs +λr +λ ja +λv
,

(2)
where λs,λr,λ ja,λv are the weighting factors for the different terms
which are based on Stabilizing, Roll, Joint Attention, and global
Vector constraints. We use λs = 1, λr = 1, λ ja = 3, and λv = 1, if
the global 180-degree rule vector is enabled, or λv = 0 otherwise.

Stabilization Cost. To limit shaky camera movement, we constrain
the camera movement frequency in Ws (ni); lower frequency motion
gives a lower cost. Unlike conventional methods to measure video
frequency based on image processing (e.g., optical flow), we use the
estimated 3D motion of the camera (Section 5) to ensure that scene
motion does not disturb the stability measure. We use a measure of
the rotation frequency of each camera coordinate system along with
a measure of camera movements. For instance, if we have a head-
mounted camera and the head is undulating at a high frequency, the
camera’s forward and up vector, as well as the camera’s position
will present a high frequency change, yielding a jerky video. We
measure the frequency of these geometric values for each node ni
in a window of ten consecutive frames and refrain from cutting to a
camera if its frequency is too high in this duration. The stabilization
cost is then:

Ws (ni) = N
(
0,max f ,0, f requency(ni,k)

)
, (3)

where f requency(ni,k) measures the average frequency of the for-
ward, right, and up vector and camera movements of node ni in a
window of k consecutive frames.

Camera Roll Cost. Extreme viewing angles are difficult to inter-
pret and therefore we constrain the camera roll using our normal-
ization function:

Wt (ni) = N (0,90,0,roll (ni)) , (4)

where roll (ni) is the roll angle of node’s ni camera. When the
camera is perfectly aligned to the horizon then roll (ni) = 0.

Joint Attention Cost. We use three parameters to define the cost
of a 3D JA-point: its ranking, the 2D location of its projection in
the frame, and its 3D distance from the camera:

W ja (ni) = rank( ja)−2 · 1
2
(W2 (ni, ja)+W3 (ni, ja)), (5)

where ja is the 3D joint attention point of node ni, rank( ja) is the
ranking of ja according to how many members of the social group
are participating in the JA-attention. W2 (ni, ja) is a “validity” check
to ensure the 2D projection of the JA-point lies within the usable
field of view of the camera of ni. If this projection lies outside the
10% margin of the frame (or if there is no projection of this JA-point
in node ni), then W2(ni, ja) = 1, otherwise we set W2(ni, ja) = 0.
We limit the position of the projection not to lie in the margins of the



frame as we usually crop around this position: to center the frame
around the main point of interest of the narrative, to stabilize shaky
footage, to reduce distortion in wide FOV cameras, or to create
more aesthetic compositions.

W3 (ni, ja) is the cost of the 3D distance between the JA-point and
node’s ni camera center:

W3 (ni, ja) = N
(
min jad ,max jad ,opt jad ,dist (ni, ja)

)
, (6)

where dist (ni, ja) is the normalized distance between the location
of the JA-point and the camera of ni, and min jad ,max jad ,opt jad are
the normalized minimum, maximum, and optimum distances in 3D
respectively. We use min jad = 0 feet, max jad = 100 feet, which
gives us wide shots, and opt jad = 20 feet which is a medium shot
size. These constraints eliminate cameras that are too far or too
close. W3 also controls the use of first-person view-point in the
movie. For example, increasing min jad will eliminate such view-
points from the resulting movie altogether.

Global Vector Cost. This cost is defined by a global vector ~v, fa-
voring cameras from a certain direction. For instance, in a basket-
ball game, if a global 180-degree rule is desired, the user can set
~v to a line passing through the center of the court. If a story from
the point of view of the attackers in the game is desired, the user
can set ~v to be a static vector from the center of the field to one of
the baskets. Our algorithm can also handle a dynamically changing
vector by checking the current direction of the camera or averag-
ing the movement direction of the players. This cost is computed
by measuring the angle angle(ni,~v) between any node ni camera’s
forward vector and the vector~v. We use our normalization function
where the optimal angle is 0:

Wv (ni) = N (−180,180,0,angle(ni,~v)) . (7)

6.2 Edge Weights

The edge weight We
(
ni,n j

)
: E → R depicts the cost of transition

from node ni to node n j. We distinguish between two types of
edges: continuous edges and transition edges. A continuous edge is
defined as an edge between two nodes that represent the same cam-
era, point of interest, and zoom level (see bold edges in Figure 6),
while all other edges are transition edges. Each type of edge carries
a different weight definition.

Continuous Edge Weight. Because following a continuous edge
does not produce a real cut, the cost of following this edge comes
only from the camera movement: We

(
ni,n j

)
=Wca

(
ni,n j

)
. High-

rate camera movement is confusing and we want to avoid it. Hence,
we constrain the absolute angle difference angle

(
ni,n j

)
between

the two front vectors of adjacent frames in ni and n j of the same
video feed:

Wca
(
ni,n j

)
= N

(
0,180,0,angle

(
ni,n j

))
. (8)

Transition Edge Weight. Transition edges produce real cuts in the
output video and hence should follow cinematographic guidelines.
We use a weighted combination of three parameters to score the
likelihood of a transition:

We
(
ni,n j

)
= α ·Wta

(
ni,n j

)
+β ·Wtd

(
ni,n j

)
+

(1−β −α) ·Wtz
(
ni,n j

)
−Wts,

(9)

where 0≤ α,β ≤ 1 are the weighting factors between angle weight
Wta, position weight Wtd , and shot size weight Wtz. Wts is a cut-on-
action transition factor, explained below.

To avoid jump cuts when shooting the same JA-point from two dif-
ferent cameras and to follow the 180-degree rule, we constrain both
the transition angle angle

(
ni,n j

)
and the distance dist

(
ni,n j

)
be-

tween the two cameras. The first ensures small overlap between
their frames and different background arrangements, and the sec-
ond ensures small angle change between the transition frames. We
use our normalization function to define the cost of Wta

(
ni,n j

)
and

Wtd
(
ni,n j

)
:

Wta
(
ni,n j

)
= N

(
0,maxta,optta,angle

(
ni,n j

))
,

Wtd
(
ni,n j

)
= N

(
0,maxtd ,opttd ,dist

(
ni,n j

))
,

(10)

where we use transition angle parameters maxta = 180,optta = 30.
We empirically found the best distance for social events is opttd =
20 feet, while distance greater than maxtd = 100 feet prevents the
viewer from perceiving the social scene details. This threshold de-
pends on the camera specifications to some extent.

For Wtz
(
ni,n j

)
we identify the size of each shot as wide, long,

medium, close-up or extreme close-up (Figure 4). This is done
according to the distance from the JA-point. Transitions between
shots whose sizes are more than two levels apart can be confusing
for the viewer. Hence, we set Wtz

(
ni,n j

)
= 1 for transitions differ-

ing in more than two levels and Wtz
(
ni,n j

)
= 0 otherwise.

Lastly, we want to promote cut-on-action transitions. Because our
center of action is the “joint attention” point of social cameras, we
use the acceleration (rate of change of speed) of the 3D JA-point
as a measure for action change. We normalize this value to be be-
tween 0 and 1, and track each JA-point through time. For each, we
find the local maximum in regions where the speed is above a cer-
tain threshold (0.7). We set the value of Wts in all transition edges
between nodes of the respective JA-point at this specific time to the
value of the normalized speed value. For all other edges Wts is set
to zero.

7 Path Computation

A path in the trellis graph GT starting at the first slice and ending at
the last defines an output movie whose length matches the length of
the original footage (Figure 8). Following continuous edges in the
path continues the same shot in the movie, while following transi-
tion edges creates a cut. The cost of a path is the sum of all edge
weights and node costs in the path. Once our graph is constructed,
we can find the “best” movie by choosing the lowest cost path. Al-
though there are an exponential number of paths, Dijkstra’s algo-
rithm could provide a feasible solution. However, there are other
constraints we would like to impose on the output movie and its in-
dividual shots. One of them is the duration of shots to avoid boring
long-duration shots and jumpy short ones. Unfortunately, the du-
ration of the shot cannot be mapped to edge or node weights. We
solve this by using a dynamic programming algorithm that takes
into account not only the path cost but also the shot length.

The algorithm proceeds by filling a cost table φ , where each cell
φ(nt

i) =
〈
Dt

i ,P
t
i
〉

of node nt
i ∈ St for 1 ≤ t ≤ T is a pair containing

the current shot duration Dt
i and the accumulated cost of the path

up to that cell Pt
i . The table is filled from left to right starting at the

first column representing slice S1 and ending at the last representing
ST . Then, we backtrack from the cell containing the smallest cost
to recover the full path.

Assume that minl and maxl are the minimum and maximum con-
strained shot length respectively. The first column (t = 1) just con-
tains the node costs and a duration of 1:

φ(n1
i ) =

〈
1,Wn(n1

i )
〉
. (11)



For every cell φ(nt
i),1 < t ≤ T we first examine all cells in the

previous column excluding row i, which have a duration larger than
minl and find the one with the smallest cost:

k = argmin
j 6=i
{Pt−1

j |Dt−1
j ≥ minl}. (12)

Now, if the previous cell in the same row has lower cost than
Pt−1

k , and its duration is not larger than maxl (i.e., if Pt−1
i <

Pt−1
k and Dt−1

i < maxl), then we continue with the same shot as
follows:

Pt
i = Pt−1

i +We(nt−1
i ,nt

i)+Wn(nt
i) (13)

Dt
i = Dt−1

i +1.

If not, then we introduce a cut (from row k to row i) and a new shot
is started:

Pt
i = Pt−1

k +We(nt−1
k ,nt

i)+Wn(nt
i) (14)

Dt
i = 1.

If the previous cell in the same row has a duration equal to maxl but
no other cell in the previous column has a duration larger than minl
then we still continue with the same shot as in Equation 13. Finally,
we fill this cell’s values φ t

i =
〈
Dt

i ,P
t
i
〉
, and continue to the next cell

in the same column or to the first cell in the next column.

Each cell in the table corresponds to one node in the graph, and
for each cell, we examine all cells in the previous column. If s =
maxt(|St |) is the maximum number of nodes in each slice, then
the running time complexity of the algorithm is O(|V | · s). This
computation is linear in the number of nodes since s� |V |. Note
that because of the added constraint on shot length, the algorithm
does not guarantee a global minimum on the path. However, in
practice we found this approach provides satisfactory results.

8 Stylistic Control

Our algorithm allows significant stylistic control over the length
and appearance of the edited video.

Length Control. To accommodate a different audience or to filter
uninteresting or unwatchable parts, we define an importance mea-
sure that reflects how interesting or important the action in an event
is. The user can control the length (in time) of the cut in two ways:
either by choosing an importance threshold, resulting in the algo-
rithm filtering out any part that falls below the threshold, or by des-
ignating the approximate output length desired.

There are many ways to define an importance measure. We uti-
lize the JA-points ranking to define the measure of interest. For
each slice St in our trellis graph, we define the importance by
averaging the square of the JA-points ranking of its nodes. We
use the square of the ranking to emphasize more important JA-
points. Assume St = {(Ct

1, jat
1), . . . ,(C

t
k, jat

k)} are the nodes in
slice St where { ja1, . . . , jak} are their JA-points, then we define:
A(St) =

1
k ∑

k
i=1 rank( jai)

2. To create a smoother version of the im-
portance function, we average the measure over time in a window
of size 2w+1 (we use w = 7):

importance(t) =
1

2w+1

w

∑
i=−w

A(St+i). (15)

Next, we normalize the importance measure by dividing it by its
maximum value for all slices to arrive at a measure between 0 and
1. To create shorter versions of a video, the user chooses an im-
portance threshold f ,0 ≤ f ≤ 1, and the algorithm removes from

the graph all consecutive slices of length > m, whose importance
falls below the threshold f . The integer m reflects the minimum
number of consecutive slices we allow to be removed. This min-
imum is required as removing very short segments from a video
will often create jump cuts (we also allow trimming any number
of slices at the beginning and end of the footage). Before running
the path computation algorithm, the two slices on both sides of a
removed portion are connected using only transition edges (there
are no continuity edges between these slices). To create output of a
given length, the algorithm continues to raise f and trim the graph
until it reaches the desired length. Then, the path computation algo-
rithm is executed as usual on the contracted graph. This operation
will create a shorter output video, where only important parts of the
scene are included.

Multiple Sub-Scenes Control. In cases when there is more than
one center of attention in a scene, several clusters of JA-points that
are far apart will be introduced. The user can decide if the resulting
cut should include all, or some, of these clusters. To remove unde-
sired sub-scenes from the movie, we simply remove their respective
nodes from the graph reducing the graph in breadth but maintaining
the same length. We can create a separate movie for each sub-scene
by retaining only its relevant nodes in the graph. To merge sev-
eral sub-scenes together into one movie, we add a minimum scene
length constraint to the path computation algorithm that imposes a
minimum number of seconds for continuous shots taken from one
sub-scene. This guideline prevents jumping from one scene to an-
other in the video, and allows the creation of a video that merges
several scenes happening simultaneously.

First Person Viewpoint Control. As mentioned earlier, hand-held
or wearable cameras often include first-person viewpoint shots.
This type of viewpoint is very different from the ones used in clas-
sic narrative photography, but creates a unique style (see [Wardrip-
Fruin and Harrigan 2004]). Therefore, we allow the user control
over the use of such shots. We measure the distance of the cameras
from the current JA-point. When first-person viewpoints are unde-
sirable, we refrain from using cameras whose distance is too small,
otherwise we allow the use of all cameras, including first-person
viewpoint shots in the cut.

Algorithm Parameters Control. Additional style control can be
achieved by setting different parameters of the algorithm. These
include the use of the soft 180-degree rule. Using, or not, the cut-
on-action mechanism to bias the results towards cutting when there
is a rapid change in the joint attention, as well as using, or not,
cropping of the footage to allow diversity in sizes of shots.

9 Results

We have tested our algorithm in various types of scenarios, includ-
ing sports activities, artistic performances, and social and family
gatherings. These experiments involved both hand-held and head-
mounted cameras including GoPro HD Hero2, GoPro HD Hero3
(Black Edition), as well as cell phone cameras. In addition, we have
applied our algorithm to three previously published datasets [Ballan
et al. 2010; Park et al. 2012] arriving at a total of ten different
scenes. The number of cameras used in the experiment varied be-
tween three to eighteen. To find the positions and directions of
cameras, we use a computer vision algorithm that reconstructs the
whole scene with computation time of several hours, after which
we can apply our algorithm. Figure 7 gives the list of results, along
with the number of cameras, graph statistics, and timing of the dif-
ferent parts of our editing algorithm. Results are included (and best
seen) in the companion video and supplementary material.

We evaluate our results by comparing them to two extreme alter-
natives: a baseline method of cutting every three seconds to a ran-



Surprise Fire eating Basketball Snowman Four-scene Juggling Bboy Rothman Park Croquet

Scene
Cameras 12 6 8 4 11 6 16 3 6 7
Frames 1901 2150 2081 203 751 1501 281 2151 471 476
Output 64s 72s 70s 67s 150s 60s 93s 86s 47s 119s
Calc FPS 30 30 30 3 5 25 3 25 10 4
Graph Const. 14.1s 8s 11s 4s 6s 9s 2s 9s 5s 12s
Path Comp. 53.3s 17s 16s 0.5s 4s 2s 1s 5s 1s 1s
Rendering 7.2m 4.3m 8m 7.5m 17m 6m 8m 7.6m 5.2m 13m

Figure 7: Statistics and timing results (s = seconds, m = minutes) on all the scenes used in our experiments. Note that these are timings of
our algorithm execution, after we have the estimation of the 3D position and direction of the cameras.

Ours

VyClone

Random

Professional Editor

Figure 8: Visualization of the movie cut created by different methods for the Park sequence where two distinct sub-scenes are taking place
very close to each other in the same area: a basketball game and a kid playing in a playground. Our trellis graph is portrayed below the
images and the path chosen is shown in red. The graph includes a node for each point of 3D joint attention and each zoom level and expands
when more points of joint attention are found. For the other methods, the graph only includes nodes for each camera. Note that the edited
videos produced by Vyclone and the Random method look similar in that the time between cuts is almost constant rather than changing to
reflect the pace of the action. Neither approach handles this scene well because the edited videos cut three or four times from one sub-scene
to the other, creating a confusing version of the event. In our edited video and the hand-edited one, the cuts are much more varied in length
and there is one transition from the playground to the basketball game.

domly chosen camera, and movies created manually by a profes-
sional movie editor. In addition, we compared some of our results
to the output of a commercial application (we chose Vyclone as the
most popular social-video app).

To create a professionally edited version, we provided the raw in-
put footage of cameras of five of the scenes (Basketball, Birthday,
Croquet, Snowman, Park) to an editor and asked her to create a
movie telling the story of the scene. The creation of a few minutes
video took more than than twenty hours on average (27, 33, 20.5, 9,
14.5 hours respectively). A significant amount of time was spent on
just sorting, filtering and reviewing the videos due to the quantity of
footage and the low quality of some of it. The editor mentioned fol-
lowing classic cinematographic guidelines like the 180-degree rule,
avoiding jump cuts and cutting-on-action. She also mentioned that
she often avoided first-person viewpoints and chose the most stable
cameras.

Global Comparison. Figure 8 shows a global comparison reveal-
ing the nature of the different methods. While random cuts and
Vyclone output use fixed length shots and arbitrary cuts between
different sub-scenes, ours and the professional version use varied
shot lengths that reflect the pace of the action, and create a two-part

Break
Long pass

Return

Figure 9: Tracking motion

video for a scene with two points of interest.

Following Content. To illustrate how our algorithm creates correct
cuts that can follow the story in the scene, we concentrate on a spe-
cific basketball move in Figure 9 (the full example can be seen in
the supplemental video at 2 : 35). By using the 3D location of joint
attention of the cameras, the algorithm can follow the movement
of the ball. This is illustrated by the first shot from camera 3 that
follows the player’s break. However, before the long pass, the al-
gorithm cuts to camera 7 to get a better view of the pass seen in the
middle shot. When camera 7 player moves towards the basket the



view of the ball is lost and the shot becomes unstable. At this point,
the algorithm cuts to camera 6 which is on the same side as camera
7 but has a wider angle and a better view to follow the attackers
return and the shot to the basket. Such high level editing decisions
cannot be made simply by assessing shot quality. They cannot be
made by simply tracking the joint attention. They are created by
combining measures of shot quality, joint attention tracking, and
cinematographic guidelines in our optimization algorithm.

Cut Decisions. We further illustrate the differences (and resem-
blance) between the different methods by explaining specific cut
decisions. For example, while Vyclone and Random methods often
violate the 180-degree rule, our results and the professionally edited
ones rarely do so (see example in supplemental video at 3 : 10).
Still, there are cases, such as in the Basketball sequence, where a
fixed global 180-line is hard to follow due to the dynamic nature
and relatively small number of cameras. In such cases, we use our
soft guideline, that is imposed locally on pairs of consecutive shots.
As can be seen in the supplementary video examples of the basket-
ball, these types of transitions are also found in the professionally
edited cut of the game.

Figure 10: Examples of 180-line rule violation. Top (Vyclon): in
three consecutive shots the monster is moving from left to right,
then right to left, then left to right. Bottom (Random): in three
consecutive shots the snowball is rolled from right to left, then left
to right, then right to lefts.

An additional virtue of our method is the support for shot selection
diversity. We have demonstrated (Figure 8) that our algorithm cre-
ates shot duration diversity similar to professional editors and un-
like Random or Vyclone methods. Similarly, Vyclone and Random
methods cannot support size diversity as they cannot crop any part
of the frame. In contrast, because our method follows the points of
3D joint attention on each frame, it can use a variety shot sizes by
cropping around the point of 3D joint attention. Figure 11 shows
two frames from closer shots that were selected by the algorithm
in our Croquet and Snowman results (see example in supplemental
video at 3 : 25). These show better composition than the original
frame, allow a closer view of the action and provide diversity and
interest in the movie.

Figure 11: Shot-size diversity is achieved by cropping around the
point of 3D joint attention. Examples from the Croquet sequence
and the Snowman sequence are shown with the original frame for
comparison.

Random and Vyclone methods cannot create cut-on-action style
transitions between shots either. For sports activities these transi-
tions were sought by the professional editor as they follow the ball

movement in the game. We demonstrate the cut-on-action style
transition that was generated by our algorithm in Figure 12 (see
example in supplemental video at 3 : 17).

Cut-on-actionCamera 3 Camera 6

Figure 12: Example of changing the camera according to cut-on-
action: the player is hitting the ball (here shown in first-person
point of view) and the camera cuts to see the ball rolling.

Stylistic Control. To demonstrate the stylistic control of the user
over the output duration we created shorter cuts of the Basketball
sequence (30 and 50 seconds). These can be seen and compared in
the supplemental materials. The full version contains four differ-
ent attacks, two for each team. During attacks all players tend to
look directly at the ball creating a single high rank point of joint at-
tention, while during the formation of attacks players run from one
side of the court to the other and there is no clear point of 3D joint
attention. Using Equation 15, we are able to distinguish important
from unimportant parts of the play. Removing the less important
parts creates a jump in time exactly between the start of an attack
and the height of the attack (Figure 13). This section is, indeed, the
least interesting part of the game, and removed in the fifty second
version. Reducing the length further removes two of the attacks en-
tirely, leaving only a highlight video with one attack per team (see
supplemental video at 2 : 50).

Time: 00:23 Time: 00:32Jump in time

Figure 13: Jumps in time are created when the length of video
is reduced. In this case, the deleted time occurs exactly when the
attack starts forming (left frame) and continues until the ball is near
the basket (right frame). This deletion removes the least interesting
part of the game.

Another aspect of stylistic control is the use of first person point of
view. In the croquet sequence seen in Figure 12, we create a movie
allowing first-person shots creating some unique shots such as when
the player looks at the ball from above and tries to aim it in the right
direction before hitting the ball. The full results can be viewed in
the supplemental materials, and an example in supplemental video
at 3 : 24.

Results Diversity. In the supplemental materials of the paper, we
provide an extensive and diverse set of ten movie cuts created from
ten social camera scenes. Some scenes, like the Basketball scene,
are highly challenging due to rapid motions and movements. Other
scenes such as the various performance sequences are more stable
and taken from one side of the action: six people filming a fire-
eating act at night, and three and six shooting juggling acts from
Ballan et al. [2010]. Some scenes are captured using a small num-
ber of cameras (the minimum we used was three), while others



have many (eighteen cameras in a 360-degree arrangement in the
B-boys dancing sequence). Two examples also include multiple
sub-scenes: the Park scene and Four-scene party. The graph of this
last scene and some example cuts from our results video can be seen
in Figure 14, illustrating the complexity of the problem of finding
high quality shots and cuts.

Various social settings are also demonstrated including a surprise
party where a birthday boy is first surprised by a nerf-gun attack
but then presented with a birthday cake and winter scene where a
girl and her parents build a snowman. In these two examples, our
automatically edited cut is similar in appearance to the professional
cut as can be seen in the supplemental videos at 4 : 00.

10 Discussion

In this paper, we present an algorithm that takes, as input, multiple
videos captured by participants in a social activity and produces, as
output, a single video of user-specified length that cuts between the
multiple feeds automatically. A graph-theoretic formulation is used
to select the appropriate timing of cuts between cameras by opti-
mizing an objective function created from cinematographic guide-
lines and shot quality. We demonstrate different types of cuts on
a variety of events, such as social gatherings, sports events, and
street performances. Comparing our results to those produced by a
professional editor we note that they are similar in spirit, although
understandably, not identical.

Social cameras present significant new challenges as the capture is
not coordinated by a director and the videos are often poorly com-
posed and highly redundant. The classic cinematographic guide-
lines were not developed for such types of camera feeds; in order
to apply them we have had to modify some (the 180-degree rule),
or create new interpretations of others (the cut-on-action), to make
them better suited to this new type of media. Our adaptation of
the cut-on-action was quite simple and a more complex implemen-
tation that took into account the direction of the action (perhaps
through a measure of optical flow on the camera feeds) might pro-
vide stronger cuts. There is also the potential to apply more ad-
vanced edits [Gleicher and Liu 2007], including split-screen when
two or more simultaneous points of 3D joint attention occur, and
replays or slow motion for a fast-action scene with strong 3D joint
attention.

A limitation of our approach is that it requires computing the 3D po-
sition and orientation of the cameras. However, this 3D understand-
ing allows us to reason in 3D about cinematographic guidelines
such as the 180-degree rule, avoiding jump cuts, and the cut-on-
action as well as distinguish shot sizes. In our implementation, we
rely on computer vision algorithms that take a significant amount of
time. Accelerated techniques are available ([Agarwal et al. 2011])
but they can still fail if not enough cameras are present, if the scene
is poorly textured, or if there are significant environmental artifacts
(e.g., low-light, significant motion blur, or heavy rain/snow). Our
algorithm does not actually require a full 3D scene reconstruction
but requires only the position and orientation of cameras. This in-
formation could be extracted, for instance, using a sensor-based
analysis (see e.g., [Cricri et al. 2012]), albeit at substantially worse
precision with current commodity hardware. We also assume the
camera feeds are synchronized, and we established synchroniza-
tion manually using the audio channel. However, more advanced
synchronization algorithms are available [Pundik and Moses 2010;
Shrestha et al. 2010], and videos from cameras with GPS (e.g. cell-
phones) are already time-stamped.

Our edits of ten different events provide significant evidence that
3D joint attention is a powerful indication of what is important at a
given moment in a scene. However, joint attention only provides

one or two points of interest and those points are approximate.
There may be cases where the main action will not be captured
fully by focusing on the point of joint attention and there may be
cases where the semantics of the scene is too complex to be so sim-
ply captured. Audio can also be a significant cue in determining
the location of content in the scene. As we know the time-varying
3D location of each camera, it would be interesting to see if beam-
forming approaches can be used to reconstruct the motion profiles
of the 3D audio sources and if that information can be fused with
the 3D joint attention to provide a more powerful indication of what
is important in the scene.

Lastly, we note that our algorithm can also be used to assist pro-
fessional editors in their task of editing large amounts of footage
by providing several possible different movies to choose from. It
would be interesting to build an interface for such a semi-automatic
editing tool.
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