
Slang: language mechanisms for extensible real-time shading systems

YONG HE, Carnegie Mellon University
KAYVON FATAHALIAN, Stanford University
THERESA FOLEY, NVIDIA
Designers of real-time rendering engines must balance the conflicting goals

of maintaining clear, extensible shading systems and achieving high render-

ing performance. In response, engine architects have established effective de-

sign patterns for authoring shading systems, and developed engine-specific

code synthesis tools, ranging from preprocessor hacking to domain-specific

shading languages, to productively implement these patterns. The problem is

that proprietary tools add significant complexity to modern engines, lack ad-

vanced language features, and create additional challenges for learning and

adoption. We argue that the advantages of engine-specific code generation

tools can be achieved using the underlying GPU shading language directly,

provided the shading language is extended with a small number of best-

practice principles from modern, well-established programming languages.

We identify that adding generics with interface constraints, associated types,

and interface/structure extensions to existing C-like GPU shading languages

enables real-time renderer developers to build shading systems that are

extensible, maintainable, and execute efficiently on modern GPUs without

the need for additional domain-specific tools. We embody these ideas in an

extension of HLSL called Slang, and provide a reference design for a large,

extensible shader library implemented using Slang’s features. We rearchitect

an open source renderer to use this library and Slang’s compiler services,

and demonstrate the resulting shading system is substantially simpler, easier

to extend with new features, and achieves higher rendering performance

than the original HLSL-based implementation.

Additional Key Words and Phrases: shading languages, real-time rendering

ACM Reference Format:
Yong He, Kayvon Fatahalian, and Theresa Foley. 2018. Slang: language mech-

anisms for extensible real-time shading systems. ACM Trans. Graph. 37, 4,
Article 1 (August 2018), 13 pages. https://doi.org/10.1145/3197517.3201380

1 INTRODUCTION
Designers of real-time rendering engines must balance the conflict-

ing goals of facilitating developer productivity and achieving high

rendering performance. Code maintainability and extensibility are

key aspects of productivity, particularly since popular commercial

engines such as Unreal [Epic Games 2015] or Unity [2017] feature

large shader libraries used across many titles, each requiring dif-

ferent shading features. At the same time, to achieve high GPU

rendering performance, an engine must perform key optimizations

such as statically specializing shader code to the rendering features

in use, communicating shader parameter data between the CPU

Authors’ addresses: Yong He, Carnegie Mellon University; Kayvon Fatahalian, Stanford

University; Theresa Foley, NVIDIA.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2018/8-ART1 $15.00

https://doi.org/10.1145/3197517.3201380

and GPU efficiently, and minimizing CPU overhead using the new

parameter binding model offered by the modern Direct3D 12 and

Vulkan graphics APIs.

To help navigate the tension between performance and maintain-

able/extensible code, engine architects have established effective

design patterns for authoring shading systems, and developed code

synthesis tools, ranging from preprocessor hacking, to metapro-

gramming, to engine-proprietary domain-specific languages (DSLs)

[Tatarchuk and Tchou 2017], for implementing these patterns. For

example, the idea of shader components [He et al. 2017] was recently
presented as a pattern for achieving both high rendering perfor-

mance and maintainable code structure when specializing shader

code to coarse-grained features such as a surface material pattern or

a tessellation effect. The idea of shader components is to drive both

code specialization and CPU-GPU communication using the same

granularity of decomposition, but the implementation of this idea

was coupled to a custom DSL, which presents a barrier to adoption.

Beyond the coarse-grained specialization addressed by shader

components, a modern shading system must be extensible to in-

clude new features and to assemble collections of shading effects

into statically optimized GPU shaders. (Examples include: com-

posing different types of lights, decoupling material patterns from

reflectance models, adopting closed-form solutions and approxima-

tions for specific surface-light interactions.) AAA graphics engines

implement proprietary code generation tools to aid with these tasks.

Unfortunately, metaprogramming tools add complexity on top of

the underlying shading language, and thus create additional chal-

lenges for learning and adoption. Engine-specific DSLs often lack

advanced language features, and create the problem that shader

code and learned skills do not transfer between engines.

In this paper we argue that the advantages of specialized DSLs

(both the Spire language used to implement shader components [He

et al. 2017] and other proprietary, engine-specific tools) can be

achieved using the underlying GPU shading language directly, pro-

vided the shading language is extended with a small number of best-

practice principles from modern, well-established programming

languages. Our key contribution is to identify the necessary set of

general-purposemodern programming language features that, when

added to existing C-like GPU shading languages (GLSL/HLSL/Metal),

can be used by real-time rendering engines to build shading systems

that are extensible, maintainable, and execute efficiently on modern

GPUs without the need for additional layered DSLs. Specifically, we:
• Propose the design of the Slang shading language, a variant of
HLSL extended with the following general-purpose language

features: generics with interface bounds, associated types,

and interface/structure extensions. The choice of features is

intended as a minimal set of extensions to meet our perfor-

mance and productivity goals, while providing an incremental

path of adoption for current HLSL developers.

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201380
https://doi.org/10.1145/3197517.3201380

1:2 • He, Foley, and Fatahalian

class Material {
virtual String getTypeName();
virtual void bindParams(Program p);

};

Camera gCamera;
Material gMaterial;
LightEnv gLights;
float3 forwardPass(
SurfaceGeometry geom) {
float3 V = gCamera.worldPos – geom.P;
MaterialPattern pat = evalPattern(
gMaterial, geometry);

return illuminate(gLights, pat, V);
}

struct MyMaterial {
Texture2D albedoTex;
SamplerState sampler;

};

typedef Lambertian MyMatPattern;

MyMatPattern evalPattern(
MyMaterial mat,
SurfaceGeometry geom)

{
MyMatPattern pat;
pat.albedo = mat.albedoTex
.Sample(mat.sampler, geom.uv);

return pat;
}

User ApplicationEngine Framework

class Camera {
void setWorldPos(float3 p);
...
void bindParams(Program p);

};

struct Camera {
float3 worldPos;
float4x4 viewProj;
...

};

Shader Library (HLSL) Host Code (C++)

class Lambertian : Material
{ float3 albedo;
String getTypeName() {"Lambertian"}
void bindParams(p) {
p->setParam("albedo", albedo); }

};

class Light {
virtual String getTypeName();
virtual void bindParams(Program p);

};
class LightEnv {
Array<Light*> lights;

};

int main(...) {
Camera* cam = new Camera();
Material* mat = new MyMaterial();
LightEnv* lights = new LightEnv();
lights->add(new QuadLight(...));
...
ForwardPass* fwd = new ForwardPass();
context->bindProgram(fwd);
camera->bindParams(fwd, "gCamera");
mat->bindParams(fwd, “gMaterial”);
lights->bindParams(fwd, “gLights”);
context->draw(...);

}

class MyMaterial: Material
{
Texture* albedoTex;
Sampler* sampler;

String getTypeName()
{
return "MyMaterial";

}
void bindParams(Program p)
{
p->setParam("albedoTex",

albedoTex);
...

}
};

struct PointLight
{
float3 pos;
float3 intensity;

};
float3 evalLight(
PointLight light,
...)

{ ... }

Shader Code (HLSL) Host Code (C++)

struct Lambertian {
float3 albedo;

};
float3 evalBxDF(
Lambertian bxdf,
float3 wi, float3 wo)

{ return albedo / PI; }

struct QuadLight
{ float3 vertices[4]; };
float3 evalLight(
QuadLight light,
MaterialPattern bxdf,
float3 wo)

{ // integrateQuadLight() provided
// by BxDF implementation
return integarteQuadLight(
bxdf, light, wo);

}

class QuadLight : Light
{
float3 vertices[4];
String getTypename()
{
return "QuadLight";

}
void bindParams(Program p)
{ ... }

};

class ForwardPass
: Program

{
String getFileName() {
return "ForwardPass.hlsl" }

};

Camera.hlsl Camera.h

Lambertian.hlsl

PointLight.hlsl

Material.h

class Program {
String getFileName();

};

class PointLight : Light {
float3 pos; float3 intensity;
String getTypeName() {
return "PointLight"; }

};

Lambertian.h

Light.h

PointLight.h

Program.h

ForwardPass.h

...

MyMaterial.hlsl MyMaterial.h

QuadLight.hlsl QuadLight.h

main.cpp

DisneyBRDF.hlsl

... SkinBRDF.hlsl

... DirectionalLight.hlsl

... CascadedShadowMap.hlsl

ForwardPass.hlsl

Fig. 1. An example shading system architecture using HLSL and C++. Left: the framework provides modules that comprise both HLSL struct types and
corresponding C++ classes. Right: an application can extend the features of the framework with new HLSL/C++ modules, and specifies the features to use in
a rendering operation by instantiating and filling in C++ objects. The marshaling of data from CPU to GPU is managed explicitly by the bindParams methods
on the C++ objects.

• Define the Slang runtime API, which provides renderers ser-

vices for introspecting modules of shading effects and as-

sembling collections of shading effects into efficient, stati-

cally optimized GPU shaders. Slang was designed to provide

renderer-agnostic mechanisms for defining shading effects

and introspecting and compiling shaders. This allows engines

to retain control of performance-critical, application-specific

policy decisions about shader optimization and execution

(e.g., what effects to use, if and when to specialize shaders,

when to communicate shader parameters).

• Contribute a reference design for a large, extensible shader

library implemented using Slang’s features, and rearchitect

a large open source research renderer [Benty et al. 2017] to

use this library and Slang’s compiler services. We show the

resulting shading system (both the shading library itself and

the CPU-side renderer “host” code to compile and execute

shaders) is substantially simpler, easier to extend with new

features, and improves performance over the original HLSL-

based implementation.

2 BACKGROUND: BEST PRACTICES IN SHADING
SYSTEM DESIGN

In this section we describe an example shading system that is archi-

tected with design patterns observed in current AAA game engines.

Our goal is to provide detailed background on the tasks a modern

shading system must perform, and to illustrate how shading sys-

tem developers currently use a combination of coding conventions,

metaprogramming via string concatenation, and the HLSL prepro-

cessor to make trade-offs in performance, code clarity, modularity,

and extensibility. In Section 4 we demonstrate that similar goals

can be achieved more elegantly and productively, with fewer trade

offs, given first-class language support. Readers familiar with the

development of large real-time shading systems may elect to skip

to Section 3.

A real-time shading system comprises both GPU code for a shader
library (defining shading features such as material models, lighting,

geometry effects, etc.) and the CPU host code responsible for prepar-
ing and invoking GPU work (compiling and executing shaders, com-

municating parameters to the GPU). Fig. 1 provides an overview of

key pieces of the example shading system, which uses C++ for host

code and HLSL for the shader library.

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

Slang: language mechanisms for extensible real-time shading systems • 1:3

The shading system in Fig. 1 is architected to prioritize exten-

sibility and performance. We consider a real-time renderer (e.g., a
game engine like Unreal or Unity) to be a framework that is used by

many different applications (e.g., game titles). An extensible shading

system must enable an application to add features without needing

to modify the host code or shader library of the renderer. Code

provided by the renderer is on the left in Fig. 1, while code specific

to a particular application (specific materials, light sources, etc.) is

on the right. As will be discussed in detail, the example shading

system is performant since its architecture allows the renderer to

statically specialize GPU shaders to exactly the features in use.

2.1 Authoring a Modular Shader Library
To aid developer productivity, it is desirable for shading system

features to be expressed in a clear and modular fashion. In the exam-

ple system, the implementation of each feature spans code in both

HLSL and C++. The decomposition of features is similar in both lan-

guages: e.g., there is both an HLSL type Camera, and a corresponding

C++ class. The HLSL type encapsulates the parameters required by

a feature (e.g., per-view camera parameters), while the C++ class

holds and communicates parameter data to a shader. This pairing of

shader code for a feature with a C++ class echoes the use of FShader

and FMaterialShader subclasses in Unreal Engine [Epic Games 2015].

While there is only a single implementation of cameras in Fig. 1,

other features of the shader system support multiple implementa-

tions: notably, materials and light sources. In C++, such choices can

expressed with an abstract base class, such as Light, with concrete

implementations in derived classes such as PointLight. In HLSL,

each concrete implementation has a corresponding HLSL struct,

but there is no direct encoding of a space of choices; Fig. 1 instead

uses color to group types by feature: camera, materials, and lights.

GPU shader execution begins with an entry point function, such as
the forwardPass entry point for the fragment shading pipeline stage.

The entry point is responsible for declaring shader parameters for all

features in use, such as the variable gCamera, which represents cam-

era parameters, and for coordinating the execution of code across

different features and subsystems. For example, forwardPass invokes

the pattern generation step (Section 2.3) for a surface material fea-

ture and then integrates reflectance over a lighting environment.

2.2 Generating Specialized Shader Kernels
In order to optimize for throughput-oriented GPU processors, shad-

ing code is usually aggressively specialized to exactly the features

that are in use. The example shader system uses a combination of

metaprogramming and clever use of the HLSL preprocessor to stati-

cally specialize the code of an entry point for different combinations

of material and lighting features. Specialization yields a variant of
the entry point that can be compiled to an executable GPU kernel
optimized for the chosen features.

Notice how the forwardPass entry point is written abstractly

in terms of types (Material) and functions (evalPattern) which it

does not define. Listing 1 shows an example of how a variant of

forwardPass can be specified by including features that define the

required types and methods. For example, the concrete MyMaterial

type (from MyMaterial.hlsl) is “plugged in” for the (correspondingly

colored) abstract Material type using a typedef prior to including

#include "MyMaterial.hlsl"
typedef MyMaterial Material;
typedef MyMaterialPattern MaterialPattern;
#define PointLightCount 1
#define QuadLightCount 1
#include "LightEnv.hlsl"
#include "ForwardPass.hlsl"

Listing 1. HLSL code that specializes the forwardPass entry point of the
shader system in Fig. 1 to use the material defined in MyMaterial.hlsl. It
also specializes the entry point’s lighting code to use a single point light
and an area light. Colors correspond to interactions with features in Fig. 1

the text of the forward pass entry point. A similar approach to

specialization appears in the shader library for the Lumberyard

engine [Amazon 2016].

The specialization in Listing 1 could be generated by a renderer’s

host code by pasting together strings of HLSL according to the

effects a scene object requires (a simple form of metaprogramming).

For example, the renderer can query for the name of the HLSL

type corresponding to a material in use via the virtual getTypeName

operation on a C++ Material instance, then use this string to generate

the appropriate typedef lines.

The approach to specialization illustrated in Listing 1 is concise,

allowing different material implementations to be specified simply

by modifying includes and typedefs, but it relies on assumptions

that are never explicitly declared in code. For example, each material

must provide a definition of evalPattern with a unique signature

so that, e.g., when the forwardPass entry point calls evalPattern,

type-based overload resolution by HLSL statically dispatches to the

appropriate code (based on the type of the gMaterial argument).

The connection between the evalPattern call site in forwardPass and

the pattern evaluation code for MyMaterial is not explicit. Nor is the

material functionality expected by forwardPass explicitly defined

or enforced in the code. Instead, realizing a valid HLSL shader is a
matter of adhering to engine policy. If an entry point requires an

operation that some, but not all, materials support, no error will be

raised until the engine tries to generate a variant that combines the

entry point with an offending material.

Alternative uses of the preprocessor, such as littering the entry

point definition with a series of #if’s to statically specialize to each

specific material in the shader library, are also common in com-

mercial shading systems. These designs (arguably) make data and

control flow more explicit, but they fail to provide clear separation

between the renderer-provided entry point and set of material types,

forcing applications that wish to add new shading features to modify

renderer framework code.

2.3 Separating Phases of Material Shading
It is common for physically-based shading systems to separate eval-

uation of surface materials into distinct phases for pattern generation
and reflectance function evaluation. For example, an OpenSL [Im-

ageworks 2017] surface shader expresses pattern generation (e.g.,

sampling and combining texture layers to compute albedo) and

returns a “radiance closure“ representing the reflectance function

and its parameters, which is then evaluated as needed by the ren-

derer. We will use the term BxDF for any reflectance function: a

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

1:4 • He, Foley, and Fatahalian

// Assumptions:
// - PointLight.hlsl defines PointLight type and
// evalLight(PointLight, ...)
// - MaterialPattern type provided by pattern definition
// - evalBxDF() is provided by material definition

#include "PointLight.hlsl"
// ...
struct LightEnv {
#if PointLightCount
PointLight pointLights[PointLightCount];

#endif
// ...

}
float3 integrate(MaterialPattern pat, LightSample s, float3 wo) {
return s.Li * evalBxDF(pat, s.wi, wo) * max(0, dot(s.wi, wo));

}
float3 illuminate(LightEnv env, MaterialPattern pat,

SurfaceGeometry geom, float3 wo) {
float3 sum = 0;

#if PointLightCount
for(int i = 0; i < PointLightCount; i++)
sum += integrate(pat, evalLight(env.pointLights[i], geom), wo);

#endif
// ...

}

Listing 2. Sketch of a lighting environment implemented using preprocessor
conditionals. Adding a new light type to the renderer involves editing this
code in three places. Colors highlight assumptions about features in Fig. 1

BRDF [Nicodemus et al. 1992], BSDF [Bartell et al. 1981], etc. Devel-

opers adding new BxDFs should have to consider physical correct-

ness, while artists authoring new material patterns need not worry

about breaking physical invariants.

Each BxDF requires a unique set of input parameters, so material

surface shaders which use different BxDFs will use different types

to store the parameter values provided by pattern generation. In the

forwardPass entry point in Fig. 1, the MaterialPattern type is used to

represent the material parameters produced by pattern generation.

Notice that the choice of MaterialPattern type in Listing 1 is tied

to the choice of Material, but the code that generates this special-

ization must define both consistently; this is another implicit pol-

icy in our toy system. The MaterialPattern type is defined via a

chain of two typedefs representing two choices: the shader code

for MyMaterial in Fig. 1 selects the concrete Lambertian BRDF as the

result of its evalPattern, and the specialization logic in Listing 1

selects MyMaterial for use by forwardPass.

As in Section 2.2, the example system’s design achieves extensi-

bility with new features (materials and BxDFs), but relies on implicit

engine policies around how features must be authored.

2.4 Specialization to Lighting Environment
It is also desirable to statically specialize GPU shaders to the

structure of a lighting environment: e.g., per-object light lists in

a forward renderer, or per-tile light lights in a deferred renderer.

Although material specialization typically must only consider a

single material in use for an object, lighting specialization is more

challenging because it must account for multiple active lights and

different light types.

Listing 2 demonstrates one approach to lighting environment

specialization for a forward renderer, which differs from thematerial

specialization of the previous sections by making heavy use of

preprocessor conditionals; this additional complexity is required to

achieve performant specialized code. To avoid per-light conditional

execution that would result from a heterogeneous array of lights, the

composite lighting environment (LightEnv) contains distinct arrays

for each type of light in use (for brevity we only show handling of

point lights). The renderer also implements an illuminate operator

that integrates reflectance over the lighting environment (in this case

by looping over all lights). Fig. 1 expects the lighting environment

to provide a definition of illuminate). This design assumes that the

renderer will introduce preprocessor definitions like PointLightCount

for each light type in use (as in Listing 1).

Using preprocessor conditionals to specialize shaders to light

types creates the problem that extending the lighting subsystem

with a new light type, such as the QuadLight added by the applica-

tion in Fig. 1, requires editing the renderer’s shader library imple-

mentation (modifying the LightEnv type and the implementation of

illuminate). Achieving the extensibility benefits of renderer/appli-

cation separation and also static specialization to lighting environ-

ment would require a more advanced form of metaprogramming

by the engine than the specialization scripts shown in Listing 1.

Specifically, each C++ light class could implement a virtual function

getIlluminateCode that returns a string of HLSL code to insert into

illuminate for the given light type, and the renderer could assemble

these strings into an implementation of Listing 2 specialized for a

specific composite lighting environment. The use of code generation

enables extensibility, but further increases the complexity of the

shading system over the preprocessor-based solution.

2.5 Adding BxDF-Dependent Light Types
The light loops in Listing 2 may include different code for each light

type. For example, rather than sample incident illumination along a

single ray (as done for point or directional light types), a real-time

renderer may make use of closed-form solutions or approximations

to integrate the reflectance of a surface due to more complex light

sources (e.g., a polygonal area light) [Heitz et al. 2016]. Closed-form

approximations may involve code that is algorithmically specialized
to both the choice of BxDF and light type. For example, the evalLight

operation for QuadLight in Figure 1 calls out to integrateQuadLight,

which is expected to be implemented by the MaterialPattern type

(the selected BxDF). We will refer to lights that are evaluated using

such algorithmic specialization as BxDF-dependent.
The addition of polygonal area lights in the example helps to

illustrate the steps required to add a new BxDF-dependent light

source type. Beyond the steps discussed in Section 2.4, a developer

must ensure that a function akin to integrateQuadLight is defined,

with an overload provided for every BxDF implementation. Simi-

larly, a developer adding a new BxDF must also be aware of any

BxDF-dependent light source types, and ensure that their new BxDF

implements the required callbacks. The shader compiler does not

provide a user with assistance in identifying the changes that must

be made to implement the required engine policy.

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

Slang: language mechanisms for extensible real-time shading systems • 1:5

2.6 Efficiently Communicating Shader Parameters
In addition to composing shading features into highly specialized

GPU kernels, a high-performance shader system must also perform

efficient management and communication of shader parameters to

the GPU. High-performance CPU-GPU parameter communication

can be achieved by using coarse-grained parameter blocks that are
be populated ahead of time and bound to the graphics pipeline at

the necessary frequency when rendering scene objects. Modern

graphics APIs like Direct3D 12 and Vulkan introduce API mecha-

nisms (descriptor tables and sets, respectively) that can be used to

implement parameter blocks efficiently in GPU memory. (See He et

al. [2017], Section 5 for a tutorial on efficient parameter block use.)

The problem is that extensible shader system design conflicts with

efficient use of parameter blocks. By declaring all shader parameters,

such as gMaterial or gLightEnv, at global scope, the example shader

system’s design leaves the decision of how to lay out these parame-

ters in GPU memory to the HLSL compiler, which is permitted by

the HLSL language definition to eliminate or reorder parameters

based on their usage in a fully specialized entry point. Since the

layout of input parameters for each shading feature is determined

by what other shading features are in use (and even the internal

implementation of those features), objects rendered using the same

lighting environment, but different materials, may require different
layouts for their lighting parameters. This prevents the shader system
from populating a lighting environment parameter block in advance,

and efficiently re-using it as a shader input for many objects.

Due to this problem, modern shader systems either sacrifice per-

formance by allocating, populating, and transferring a new parame-

ter block to the GPU for each scene object drawn (incurring CPU

cost and CPU-GPU communication) [McDonald 2016; Pranckevičius

2015] or employ explicit HLSL parameter layout annotations to man-

ually specify where each parameter should be placed in the global

layout for an entry point. Use of annotations enables efficient param-

eter communication (including use of parameter blocks), but limits

shader system extensibility. Manual parameter layout is a global

process requiring each shading feature (including features added

by applications) to receive parameters in a designated location that

does not conflict with other features.

2.7 Summary
The problems described in this section confront all modern AAA

renderers, except they are amplified in the context of code bases

with hundreds of shading effects and hundreds of thousands of

lines of shader code. While metaprogramming and preprocessor-

based solutions can address aspects of the challenge, as seen here

the result is code that is difficult to understand and debug or that

sacrifices key performance properties. More advanced DSLs [He

et al. 2017; Tatarchuk and Tchou 2017] have elegantly addressed

a subset of these challenges, but these solutions are either engine-

specific or lack features of more established programming languages.

As a result, we believe there is an acute need for better general-

purpose language support for addressing these performance, code

maintenance, and extensibility issues.

3 THE SLANG LANGUAGE
The Slang language is based on the widely used HLSL shading

language, extended with general-purpose language features that

improve support for modularity and extensibility. In this section

we briefly introduce the features Slang adds to HLSL. Section 4 will

show how these features can be applied to address the challenges

presented in Section 2.

Slang’s design is governed by two key principles. First, we sought

to maintain compatibility with existing HLSL whenever possible.

New features should provide a path for incremental adoption from

existing HLSL code, rather than require all-or-nothing porting. Sec-

ond, we sought features that have precedent in a mainstream appli-

cation or systems programming language, which can be relied upon

for familiarity to developers, and to provide intuition. We empha-

size that individually each of Slang’s general-purpose extensions to

HLSL are not novel programming language features. For example,

they have equivalents in both the Rust [2015] and Swift [Apple Inc.

2014b] programming languages, and most appear in C# [ECMA

International 2017]. Indeed, that is the point. Our contribution is

to identify the features from modern languages that are necessary

to achieve the goals of real-time shading, while eliding those that

would interfere with generation of high-performance code.

3.1 Generics
Slang supports parametric polymorphism using the syntax of gener-

ics as in Rust, Swift, C#, Java, etc. For example, we can define a

function that evaluates the rendering equation for any BxDF, given

incident illumination along a single ray:

float3 integrateSingleRay<B:IBxDF>(B bxdf,
SurfaceGeometry geom, float3 wi, float3 wo, float3 Li)

{ return bxdf.eval(wo, wi) * Li * max(0, dot(wi, geom.n)); }

In this example the parameter B stands in for the unknown BxDF.

3.2 Interfaces
As in most languages with generics, but unlike C++ templates,

a generic like integrateSingleRay is semantically checked once in

Slang, rather than once for each specialization. In order to check the

body of the function, it is necessary to describe what operations are

available on values of type B. In Slang this is done using interface

declarations, which correspond to traits in Rust, protocols in Swift,

and type classes in Haskell [Wadler and Blott 1989].

The declaration of the IBxDF interface used in integrateSingleRay

looks like:

interface IBxDF { float3 eval(float3 wo, float3 wi); }

The IBxDF interface defines one requirement: eval. Any type that

wants to conform to this interface will need to provide a concrete

method to satisfy this requirement. For clarity, this paper will use a

convention where all interface names are prefixed with I.

The integrateSingleRay function uses the IBxDF interface to pro-

vide a bound for the type parameter B. Because of this bound, the

function can safely call the evalmethod on its bxdf parameter (since

it must conform to the required interface).

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

1:6 • He, Foley, and Fatahalian

3.3 Associated Types
A generic function that must to work with any surface material

shader of type M:

float3 shade<M : Material>(M material, ...) { ... }

As discussed in Section 2.3, evaluating the pattern of a surface

material yields a BxDF, where the type of BxDF depends on the type

of material. Associated types are a language mechanism that allows

code to name the BxDF type associated with M, without knowing it

exactly.

An associated type is an interface requirement that is a type,

rather than a method:

interface IMaterial { associatedtype Pattern : IBxDF; ... }

A concrete type that conforms to the IMaterial interface must define

a suitable type named Pattern, either as a nested struct or typedef.

An associated type may come with bounds, just like a generic pa-

rameter; in this case, the concrete Pattern type must conform to the

IBxDF interface.

3.4 Retroactive Extensions
In some cases, applications using a framework may wish to extend

features of the framework. For example, suppose an engine frame-

work defines a Lambertian type that could be used as a BxDF, but

doesn’t specify conformance to the IBxDF interface. Slang supports

extension declarations, that allow an application to “inject” new

behavior into existing framework types:

extension Lambertian : IBxDF { float3 eval(...) { ... } }

Slang borrows its syntax for this feature from Swift, but equivalents

exist in Rust and Haskell. This extension declaration makes the type

Lambertian conform to IBxDF; it is the responsibility of the extension

author to provide the requirements of the interface.

3.5 Explicit Parameter Blocks
A final aspect of Slang’s design is not present in modern general-

purpose languages, but is instead taken from the C++-based shading

language for Metal [Apple Inc. 2014a]. While HLSL and GLSL do not

have a first-class language construct that corresponds to a parameter

block, Slang and Metal allow the user to define the contents of a

parameter block as an ordinary struct type, where fields of the

struct constitute shader parameters:

struct PerFrameData { float3 viewPos; TextureCube envMap; ... }

To use a type like PerFrameData in a parameter block, a Metal pro-

grammer simply declares an entry point parameter using a C++

pointer or reference to the type. (The memory layout of the param-

eter block is given by the struct’s definition.)

In order to support a variety of graphics APIs, which may im-

plement the memory layout of a parameter block differently, Slang

leaves the data layout of a parameter block abstract by exposing a

generic ParameterBlock<T> type in its standard library. This type may

be implemented differently on each target platform. For example,

on targets that support “bindless” resource handles, a parameter

block can be implemented as a simple GPU memory buffer.

float3 forwardPass<M : IMaterial, L : ILightingEnv>(
ParameterBlock<Camera> camera,
ParameterBlock<M> material,
ParameterBlock<L> lights,
SurfaceGeometry geometry)

{
float3 viewDir = normalize(camera.P - geometry.P);
M.Pattern bxdf = material.evalPattern(geometry);
return lights.illuminate(bxdf, geometry, viewDir);

}

Listing 3. A fragment shader entry point written as a function with generic
type arguments. Plugging in different types for these arguments yields
shader variants with different behavior, and different parameter data.

4 USING SLANG TO DESIGN A SHADING SYSTEM
In this Section we describe how Slang’s features facilitate imple-

mentation of a version of the shading system from Section 2 that

is modular (with statically checked interfaces), easily extensible,

and performant (yields statically specialized shaders that efficiently

receive inputs through parameter blocks).

4.1 Generating and Using Shader Variants
Listing 3 shows a fragment shader entry point similar to forwardPass

in Fig. 1, which uses generics and interface bounds, rather than

preprocessor-enabled metaprogramming, to achieve specialization.

The choice of material and lighting effects is expressed with the

generic type parameters M and L respectively; The shader body evalu-

ates the surface pattern of thematerial, and then requests integration

of incident illumination from the lighting environment. Plugging in

concrete types for M and L yields a specialized variant of this entry

point, with different behavior for these steps.

Using Slang interface bounds on type parameters allows the com-

piler can type-check fragmentMain and determine that it is compatible

with any material and light types that implement the specified in-

terfaces. Compatibility is guaranteed even for a type implemented

in a separately compiled file, so that our static checking guarantees

also benefit extensibility; a user can confidently extend an existing

entry point to support new effects.

Listing 3 also demonstrates the use of parameter blocks to encap-

sulate shader parameters for efficient communication using modern

graphics APIs. In this example, the material parameter block uses

the generic type parameter M, so that the choice of a concrete mate-

rial type influences not only the behavior of a specialized variant,

but also the parameters it accepts.

A renderer can allocate a parameter block for a specific material

type using reflection information provided by the Slang compiler’s

runtime API (Section 5). That API can also be used to generate

specialized variants of forwardPass using the chosen material type.

By using language and API support for the distinct mechanisms of

generics and parameter blocks, this shader system implements the

shader components design pattern without the need for a DSL with

first-class “components” [He et al. 2017].

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

Slang: language mechanisms for extensible real-time shading systems • 1:7

interface IBxDF {
float3 eval(float3 wo, float3 wi);

}
interface IMaterial {
associatedtype Pattern : IBxDF;
Pattern evalPattern(SurfaceGeometry geom);

}

Listing 4. Slang interfaces for defining surface reflectance functions and
surface material patterns. Each implementation of the IMaterial interface
will be associated with the particular type of reflectance function it yields.

struct Lambertian : IBxDF {
float3 albedo;
float3 eval(float3 wo, float3 wi) {
return albedo / PI;

}
}
struct TexturedLambertian : IMaterial {
typedef Lambertian Pattern;

Texture2D albedoMap;
SamplerState sampler;
Lambertian evalPattern(SurfaceGeometry geom)
{
Lambertian bxdf;
bxdf.albedo = albedoMap.Sample(sampler, geom.uv);
return bxdf;

}
}
struct DisneyBRDF : IBxDF { ... }
struct RustedMetal : IMaterial {
typedef DisneyBRDF Pattern;
DisneyBRDF evalPattern(SurfaceGeometry) { ... }
...

}

Listing 5. Reflectance and pattern generation functions defined as types
implementing the IBxDF and IMaterial interfaces (Listing 4), respectively.

4.2 Separating Phases of Material Shading
As discussed in Section 2.3, it is desirable to enforce the separation

of material shading into distinct pattern generation and BxDF eval-

uation steps. In the context of a preprocessor-based specialization

system, this involves conditionally defining a type that stores the

parameters of the chosen BxDF. When using generics for specializa-

tion, a similar function is served by associated types (Section 3.3).

Listing 4 shows Slang declarations of IBxDF and IMaterial inter-

faces that express the concepts of a reflectance function and material

surface shader respectively. The definition of IBxDF is straightfor-

ward, while IMaterial makes use of an associated type (Section 3.3)

to capture the dependence of the reflectance function type on the

choice of surface shader.

A concrete implementation of IMaterial will define the specific

type to use for the associated type Pattern. For example, the sur-

face shader TexturedLambertian in Listing 5 defines Pattern to be of

Lambertian type, which implements a trivial diffuse BRDF.

Shader code that takes a material type parameter, such as the

parameter M of the forwardPass function in Listing 3, can refer to

the associated reflectance function type as M.Pattern. Because the

associated type Pattern is bounded using the IBxDF interface, only

the operations provided by that interface can be used in forwardPass.

interface ILightEnv {
float3 illuminate<B:IBxDF>(B bxdf, SurfaceGeometry geom,

float3 wo);
}
struct DirectionalLight : ILightEnv {
float3 direction;
float3 intensity;
float3 illuminate<B:IBxDF>(B bxdf, SurfaceGeometry geom,

float3 wo) {
return integrateSingleRay(

bxdf, geom, wo, direction, intensity);
}

}
struct PointLight : ILightEnv { ... }

Listing 6. A lighting environment is represented as a type im-
plementing the ILightEnv interface. A single light source (e.g.,
DirectionalLight,PointLight) is treated as a simple case of a lighting
environment.

For example, an attempt to access the albedo field of the BxDF would

yield a compile-time error since not every BxDF is guaranteed to

have such a parameter.

Associated types achieve a similar result to the ad hoc approach in

Section 2.3, with the added benefit that entry points like forwardPass

and materials like TexturedLambertian can be compiled and validated

independently. Thus, when extending an engine with a newmaterial,

a user can have confidence that the new material will work with all

entry points that require materials to implement IMaterial.

4.3 Specialization to Lighting Environment
Section 2.4 showed that it was challenging for simple preprocessor-

based solutions to simultaneously support specialization to a light-

ing environment and preserve the ability to extend the system with

new light types. This motivated more general code generation tech-

niques like string pasting. Using the language mechanisms of Slang,

our shading system can support both specialization to a lighting

environment and extension to new light types without resorting to

string-based code generation.

Listing 6 shows pieces of a framework for defining lighting en-

vironments that we will develop here and the next section. The

ILightEnv interface declares that every lighting environment must

provide an operation to illuminate a surface sample, and that op-

eration must be generic in the BxDF of the surface. The illuminate

operation is expected to integrate light coming from the environ-

ment that is reflected by the surface in direction wo.

In the lighting systemwe present, a single light source is treated as

a simple case of a lighting environment. For example, DirectionalLight

in Listing 6 implements a simple directional light that conforms to

the ILightEnv interface. For clarity, DirectionalLight implements its

integration using the integrateSingleRay function, defined in Sec-

tion 3.1. Additional infinitesimal light types such as PointLight can

be defined similarly.

Given the definitions in Listing 6 it is possible to specialize the

shader entry point in Listing 3 for any single light source. How-

ever, when more complex lighting environments are required, we

can use generics to define types for building composite lighting

environments out of simpler ones.

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

1:8 • He, Foley, and Fatahalian

struct LightArray<L:ILight, const N:int> : ILightEnv {
L lights[N];
int lightCount;
float3 illuminate<B:IBxDF>(Surface surface, float3 wo) {
float3 result = 0;
for(int i = 0; i < lightCount; i++)
result += lights[i].illuminate(surface, wo);

return result;
}

}

struct LightPair<H:ILightEnv, T:ILightEnv> : ILightEnv {
H head;
T tail;
float3 illuminate<B:IBxDF>(Surface surface, float3 wo) {
return head.illuminate(surface, wo)

+ tail.illuminate(surface, wo);
}

}

Listing 7. Composite lighting environments defined using generics. A
LightArray can be used to encapsulate a homogeneous array of lights,
while LightPair can be used to “unroll” a heterogeneous list of lights. Each
allows the simple entry point in Listing 3 to transparently work with either
a single light or a list of many lights.

Listing 7 shows two types of composite lighting environments.

The LightArray type implements a dynamically-sized (but statically

bounded) array of lights. The L type parameter represents the type of

the elements in the light array, while N is a generic value parameter

that is an upper bound on the number of lights that may appear. For

example, the type LightArray<DirectionalLight, 16> represents an

array of (up to) 16 directional lights.

While LightArray used to support a dynamically-sized, but homo-

geneous composite, the LightPair type can be used to compose a

heterogeneous lighting environment. A light pair like

LightPair<DirectionalLight, PointLight>

simply sums the contributions from its constituent lighting envi-

ronments.

These two simple types can be used as composition operators to

construct more complicated lighting environments. For example, if

an application wants to specialize a shader entry point for rendering

with a single directional light with cascaded shadow maps, plus up

to 16 point lights, it can construct the type:

LightPair<CascadedShadowMap<DirectionalLight>>
ArrayLight<PointLight, 16>>

In practice, we anticipate renderer designs where an application

uses data-driven code (based on application or framework data struc-

tures representing scene light sources) to generate Slang types for

complex scene lighting environments. The Slang compiler’s runtime

API (Section 5) provides applications support for constructing these

composite types, and for querying the layout information required

to store values of these types in parameter blocks.

By allowing light composition operators to be expressed as types,

Slang raises the level of abstraction in the host code for lighting

environments. Rather than pasting together strings of shader code,

the engine now composes shader types, and then creates instances

of those types.

struct QuadLight : ILightEnv {
float3 vertices[4];
float3 intensity;
float3 illuminate<B:IBxDF>(B bxdf, SurfaceGeometry geom,

float3 wo) {
return bxdf.acceptQuadLight(
this,
geometry,
wo);

}
}
interface IAcceptQuadLight {
float3 acceptQuadLight(
QuadLight light,
SurfaceGeometry geom,
float3 wo);

}

extension IBxDF : IAcceptQuadLight {}

extension Lambertian : IAcceptQuadLight {
float3 acceptQuadLight(QuadLight light,

SurfaceGeometry geom,
float3 wo) {

return albedo * LTC_Evaluate(light, geometry, wo,
float3x3(1,0,0, 0,1,0, 0,0,1));

}
}
extension DisneyBRDF : IAcceptQuadLight { ... }

Listing 8. Extending the shader system to support an (approximate) area
light type. The new light type cannot efficiently be supported with the
existing IBxDF interface, so a new interface for surfaces that accept area
lights is introduced. extension declarations can be used tomake pre-existing
reflectance functions like Lambertian support the interface required by the
new light type.

4.4 Adding BxDF-Dependent Light Types
Section 2.5 discussed the challenge of adding a BxDF-dependent

light type, which relies on BxDF-specific closed-form evaluation or

approximation for performance. The crux of the challenge is that the

code to execute depends on both the light and the BxDF. By using

the extension mechanism in Slang, an application can address this

challenge by injecting light-type-specific operations into existing

BxDF types without having to modify the simple abstractions of the

framework presented so far (e.g., Listing 6).

The QuadLight type in Listing 8 implements a quadrilateral area

light. This type may seem superficially simple, but note that the

illuminate implementation invokes amethod named acceptQuadLight

on a BxDF, while the original definition of IBxDF in Listing 4 does

not declare such a method.

Instead, the acceptQuadLight operation is defined as part of the

IAcceptQuadLight interface in Listing 8. Three extension declarations

are used to make existing framework types conform to the new in-

terface. First, the IBxDF interface is extended with a new requirement,

so that any conforming type must also support the IAcceptQuadLight

interface. Next, the Lambertian and DisneyBRDF BxDF types are ex-

tended with concrete implementations of acceptQuadLight that, in

our example, perform a closed-form approximation using linearly

transformed cosines [Heitz et al. 2016].

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

Slang: language mechanisms for extensible real-time shading systems • 1:9

.slang

.hlsl

front end back endIR

HLSL

GLSL
DXBC
SPIR-V

reflection API

users author

shader modules
engine allocates parameters blocks,

makes specialization decisions

engine runs

specialized
code on GPU

Fig. 2. The Slang system implementation comprises a compiler front-end
(for checking and determining parameter layouts for unspecialized modules)
and back-end (for generating specialized GPU kernels), as well as supporting
APIs. Applications use the Slang reflection API to obtain shader parameter
layout information used to allocate GPU parameter blocks and to guide the
specialization choices needed for low-level code generation.

// Front End
Module* loadModule(const char* path);

// Reflection
EntryPoint* findEntryPoint(Module* module, const char* name);
Type* findType(Module* module, const char* name);
TypeLayout getTypeLayout(Type* type);
Type* specializeType(Type* type, Type* types[], int ntypes);

// Back End
Kernel* specializeEntryPoint(EntryPoint* entryPoint,

Type* types[], int ntypes);

Listing 9. An overview of API services provided by the Slang implementation,
grouped according to the system diagram in Fig. 2.

Any BxDF implementation that is not extended to support the

new interface will result in a compiler error. The implementation of

extensions in Swift and Rust require a default implementation of

acceptQuadLight to be provided when extending IBxDF; that imple-

mentation would then be used as a fallback for BxDFs that have not

been explicitly extended. We are considering adding this feature to

Slang.

The ability of extensions to “inject” code into existing types allows

an application developer to write a module that expands the capabil-

ities of the renderer framework’s shading system without disturbing

its existing implementation or adding complexity for other users.

Unlike the preprocessor-based solution described in Section 2.5, the

module in Listing 8 makes the policy decisions around what has

been extended and what the new interface requirements are explicit

(e.g., it is clear the interface contract of IBxDF has been extended).

5 COMPILER AND RUNTIME API
The previous section demonstrated how to use Slang language

mechanisms to author an extensible shader library. However, a

complete shading system also requires a runtime API to support

renderer host code in composing and executing the shader effects

in the library and preparing parameter blocks.

Listing 9 provides an overview of the API services that Slang pro-

vides. These services are grouped according to the main components

of Slang’s system implementation, shown in Fig. 2. In the first step,

a renderer loads a shader library comprising one or more modules

of Slang (or HLSL) code into the compiler’s front end, resulting in

IR code for those modules. Next the renderer uses the reflection

API to access information about the types and entry points in the

shader library. Importantly, the reflection API allows the renderer

to create specializations of types on demand; e.g., to create the com-

posite light environment types described in Section 4.3. In addition,

a renderer may query layout information for any type, including

specialized types, and use this information when allocating and

populating parameter blocks. Optimized renderers might rely on

hard-coded layouts (relying on the fixed algorithm used by the Slang

compiler), but a dynamic reflection API is essential for supporting

data-driven renderers and tools.

The compiler back-end provides an API to specialize an entry

point for a particular set of type arguments, yielding platform-

specific GPU kernels. In the example shading system in Section 2,

this was performed by pasting HLSL strings of #defines and typedefs

to create Listing 1.

The design of our runtime API was inspired by that of the Spire

language used to support shader components [He et al. 2017]. In

particular, Slang adopts the idea of allowing applications to load and

introspect type layout of unspecialized code, so that API-specific

parameter blocks can be allocated and filled in independently from

the choice of entry points that may later be specialized to use those

types. Slang extends this idea to also allow for the specialization of

generic types (not just entry points), which enables applications to

perform both fine- and coarse-grained composition.

Although we describe a “runtime” API, Slang does not enforce

any policy as to when a renderer performs the tasks supported by its

API services. The Slang runtime API can be invoked by a rendering

engine to introspect and specialize shader code during offline asset

processing, at load time, or on-demand during rendering (e.g., to

lazily populate a shader cache or when “hot reloading” shader code).

6 REARCHITECTING A RENDERER TO USE SLANG
The overall goal of Slang is to facilitate productive development of

large real-time shading systems without sacrificing renderer per-

formance. As an initial step toward assessing whether this goal has

been achieved, we have used Slang to refactor the shader library and

shading system of the Falcor open source real-time renderer [Benty

et al. 2017]. Falcor is a real-time rendering framework that aims

to accelerate and support prototyping of new real-time rendering

effects and algorithms. Although intended to be modular and exten-

sible to support a wide variety of use cases, Falcor must also deliver

high performance to support state-of-the-art real-time rendering

effects. We forked Falcor version 2.0.2 for our evaluation, which

featured 5,400 lines of shader code written in HLSL, implementing:

• A flexible, layered material system that can be configured to

model complex reflectance functions

• Point, spot, directional, and ambient light types

• Glossy reflection using an environment map

• Cascaded, exponential and variance shadow map algorithms

• Post processing effects, such as screen space ambient occlu-

sion and tone mapping

Falcor’s material and lighting systems contribute over 2,100 lines

of shader code and constitute the major fraction of CPU and GPU

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

1:10 • He, Foley, and Fatahalian

TEMPLE BISTRO INTERIOR BISTRO EXTERIOR
(a)

(b)

Fig. 3. (a) Scene viewpoints used for evaluating performance of the refactored Falcor renderer built using Slang (see Figure 4). (b) Support for polygonal areal
lights was added to the Falcor renderer by changing a single code site.

execution time during rendering. Our refactoring focused on im-

proving the extensibility, performance, and code clarity of these two

subsystems.

Since Slang is an extension of HLSL, we were able to immediately

compile the entire Falcor shader library using the Slang compiler

(as a replacement for fxc). This allowed us to gradually refactor

the Falcor shading system to incrementally adopt Slang’s language

features. We discuss important details of the refactoring experience

below.

6.1 Using parameter blocks to communicate parameters
The existing Falcor shader library uses struct types to encapsulate

related shader parameters, similar to our example shading system in

Section 2. For example, Falcor defines material parameters (colors,

textures, etc.) using a single global shader parameter:

MaterialData gMaterial;

For the reasons described in Section 2.6, similar to many engines

ported to Direct3D 12, the original Falcor renderer allocates and fills

a monolithic parameter block for each draw call that contains data

for all shader parameters. Using Slang’s explicit parameter block

construct (Section 3.5) we were able to easily modify the shader

library to use API-supported parameter blocks for materials:

ParameterBlock<MaterialData> gMaterial;

We also modified Falcor host code to allocate and fill in one

parameter block for each material when loading a scene. By re-

using the per-material parameter blocks across frames, we expect to

reduce the CPU overhead of fetching and communication material

parameter data for each draw call.

6.2 Specialization of Material
Falcor models a material as a combination of layers, where a layer
defines a BxDF (e.g. Lambertian, Phong, GGX) and how its results

should be blended with the next layer. By default, Falcor evaluates

materials using dynamic looping over layers, and dynamic branch-

ing on layer type “tags.”

In the common case, a material only includes a small number

of layers in a fixed ordering, so the existing Falcor code includes

support for specializing material code by passing a fixed list of layer

tags as a preprocessor #define. Falcor looks up shader variants in

a cache based on the set of “active” #define strings, including any

material specialization #define. This lookup mechanism supports

multiple subsystems using preprocessor-based specialization, but

string-based lookup is a significant source of CPU overhead.

In our refactored shader library, we introduced an IMaterial in-

terface, and entry points use a generic type parameter TMaterial

: IMaterial to specialize to a selected material type (as shown in

Listing 3). The definition of the material parameter block changed

again, to:

ParameterBlock<TMaterial> gMaterial;

The existing Falcor MaterialData type, which uses if statements

to select code for the appropriate BxDF for each material layer,

was modified to implement the new IMaterial interface. In addi-

tion to porting the original material implementation, we added a

new generic material type to achieve efficient specialization of the

common cases, where a material is using a standard set of layers

only:

struct StandardMaterial<const bool HasDiff, const bool HasSpec,
const bool HasDielectric, const bool HasEmissive> : IMaterial

{...}

The StandardMaterial type can be statically specialized to include or

exclude diffuse, conductor/dielectric specular, and emissive terms.

We then modified the Falcor’s host-side Material class, which

encapsulates a material, so that it creates a parameter block for

either the original material type, or a specialization of the new

StandardMaterial type (when the material features only the standard

layers). Following the shader components design pattern [He et al.

2017], Falcor was modified to look up a specialized variant based

on the types of parameter blocks bound to the pipeline. By giving

each type a small integer ID, this lookup step can be implemented

more efficiently than Falcor’s previous string-based lookup using

#defines.

The IMaterial type that we implemented in Falcor follows the

approach in Section 4.2 to separate the phases of material shading

using an associated type.

6.3 Refactoring Lighting Computation
To avoid the complexity of preprocessor solutions, Falcor’s devel-

opers chose to not employ the static specialization approaches dis-

cussed in Section 2.4. Instead, the original Falcor implementation

used dynamic branching to deal with different types of lights in

a scene. The shader library uses a single HLSL type, LightData, to

represent all supported light types. Similar to material layers, each

light has a tag field that indicates its specific type (point, spot, direc-

tional), followed by a union of the fields required by the different

cases. Light integration is performed by looping over an array of

lights and dynamically dispatching to the correct logic based on the

tag.

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

Slang: language mechanisms for extensible real-time shading systems • 1:11

In contrast to the monolithic light type in shader code, Falcor’s

C++ code has a Light class with distinct subclasses for PointLight,

etc. Our refactored shader library closely follows the design in

Section 4.3, with a ILightEnv interface and distinct shader types for

PointLight, etc. We also implemented the LightArray and LightPair

composites.

Similar to material specialization, we defined a generic parame-

ter TLightEnv and a parameter block using this type to replace the

existing global array of lights. We modified the host C++ code to

construct an appropriate composite lighting environment type (and

corresponding parameter block) based on the lights loaded in a

scene. By eliminating the existing “tagged union” design, it becomes

simpler to extend the system with new light source types, as we

show in Section 7.2.

7 EVALUATION
In this section we evaluate the performance and extensibility bene-

fits realized by refactoring Falcor’s shading system to use Slang’s

language mechanisms and compiler services.

7.1 Performance
The refactoring described in Section 6 should reduce the CPU cost

of rendering (use of parameter blocks, fast specialized shader vari-

ant lookup) and preserve the same level of GPU rendering per-

formance as renderer using shaders specialized to materials and

lighting environment. Since the original branch of Falcor did not

specialize shaders to lighting environments, to facilitate fair per-

formance comparison, we forked the original branch and extended

with support for light specialization using the approach discussed

in Section 2.4. We compared the performance of all three branches

of the Falcor renderer: the original branch (HLSL-based, without

light specialization), the modified original branch (HLSL-based, with

light specialization), and the refactored (Slang-based) branch. We

use three test scenes from the ORCA asset library [NVIDIA 2017]:

temple, bistro-interior, and bistro-exterior (rendered views

shown in Fig. 3 (a)). These scenes were created by developers of the

Unreal and Lumberyard [Amazon 2016] engines to demonstrate the

capabilities of their engines and are representative of modern game

content (e.g., the bistro-exterior scene has over 2.8 million trian-

gles). Fig. 4 compares the performance of both renderers in terms

of CPU time required to generate all GPU commands per frame

(top) and GPU time to execute all these commands (bottom). We

conducted experiments rendering 1920×1080 images on a machine

with an Intel i7-5820K CPU and a NVIDIA Titan V GPU.

As expected, the refactored renderer realizes a notable reduction

in CPU cost (over 30%) across all test scenes. Note that even if

a renderer is not CPU-bound, reducing CPU costs frees up CPU

resources for other game engine tasks. The GPU performance of

the refactored renderer is on par with the original renderer with

lighting environment specialization.

Adopting Slang adds overhead to shader compilation, because

the Slang compiler outputs HLSL text that must be compiled by

an existing HLSL compiler. When loading the temple scene, 1s is

spent in Slang, while 4.5s is spent in HLSL compilation. This is

slightly slower than the original (light specialization) branch, which

TEMPLE BISTRO EXTERIORBISTRO INTERIOR
0

10

C
PU

 T
im

e
(m

s) 15

5

RefactoredOriginal + Light SpecializationOriginal

TEMPLE BISTRO EXTERIORBISTRO INTERIOR
0

10

G
PU

 T
im

e
(m

s)

5

Fig. 4. Comparing average per-frame CPU time (top) and GPU time (bot-
tom) of the original branches (with and without light specialization), and
the refactored branch of the Falcor renderer, we find that the refactored
renderer improves CPU performance and preserves the same level of GPU
performance as the original branch with light specialization.

takes 4.1s to compile all the shader variants. Compile times could

be improved in two ways. First, because Slang’s language features

are carefully chosen to support separate compilation, front-end

work could be amortized across multiple entry points and variants.

Second, and more importantly, we could eliminate the overhead

of outputting HLSL and invoking a second compiler by directly

translating Slang’s IR to formats like SPIR-V and DXIL.

7.2 Extensibility
A major promise of Slang is that it will enable the design of a more

extensible shading systems. To evaluate the extensibility of the

refactored Falcor code, we added a new polygonal area light type to

both the original and refactored shading system. Fig. 3 (b) shows a

rendering of temple scene with a QuadLight type that uses linearly

transformed cosines for approximate evaluation [Heitz et al. 2016].

As anticipated, the refactored shading system was significantly

easier to extend. The following table summarizes the shader code

changes required in each version of Falcor:

Branch Sites Changed Files Changed Lines of code

Original 7 4 246

Original(w/ LS) 8 5 253

Refactored 1 1 249

Adding the area light feature to original code required changes at

seven sites in the code, spanning four different files. These changes

include: defining a new type tag for approximate area lights, adding

new fields to the LightData types, inserting a new branch into the dis-

patch logic inside the main light integration loop, and adding logic

to handle the new light type for each supported BxDF. Supporting

shader specialization of lighting environments makes the original

HLSL shader code even harder to extend, requiring one more change

in one additional file. In contrast, adding area light support to the

refactored Slang shader library was accomplished with a single

block of code in a single file (a type definition plus extensions), and

did not require modifying any existing Falcor functions or types.

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

1:12 • He, Foley, and Fatahalian

We use the number of changed sites as a measure of code ex-

tensibility because it reflects the programming language’s intrinsic

capability of localizing a concern (independent of the file organiza-

tion of the code base). We also report the number of files changed,

since the file organization often reflects a developer’s intention of

modularity decomposition. Changing fewer files is an indication of

better extensibility. Even though the total number of lines of shader

code is comparable in all three branches, the refactored shader

library handles two BxDF implementations (the original layered

material and the StandardMaterial that we added) while the original

code only deals with one.

7.3 Summary
By refactoring Falcor’s shading system to utilize the language mech-

anisms and compiler services offered by Slang, we improved the

renderer’s CPU and GPU performance, as well as made the shader

library code easier to extend. Qualitatively, we found that the refac-

tored shader code reflects the mental model of the engine devel-

opers more explicitly and clearly. Although an ultimate evaluation

of Slang’s ideas will involve integration into a complex production

game engine, our experiences integrating with the Falcor rendering

system have been promising. Because of the benefits described in

this section, the Falcor project has now adopted the Slang shader com-
piler, and is increasingly adopting Slang’s language mechanisms in

the shader library it provides to its application developers.

8 RELATED WORK
Previous efforts have attempted to improve shader modularity by

adding more flexible dispatch mechanisms to real-time shading

languages, including Cg interfaces [Pharr 2004], HLSL classes and

interfaces [Microsoft 2011], and GLSL shader subroutines [Khronos

Group, Inc. 2009]. These approaches use the syntactic form of dy-

namic dispatch, but support static specialization as an optimization

performed by the language runtime or GPU driver. In contrast, Slang

uses explicit generics syntax and the compiler implementation guar-
antees that static specialization is performed before code is passed

to a GPU driver. Prior approaches do not include detailed discus-

sion of the shading system design problems they seek to address;

in contrast, Slang was specifically motivated by inspection of real

shader systems and their challenges. None of the prior systems

support associated types or retroactive extensions, which we found

necessary to implement our modular and extensible shading system

in Section 4.

The Vulkan API allows shaders to use compile-time constant pa-

rameters called “specialization constants” (Metal supports a similar

feature). A specialization constant is left as an opaque value in the

SPIR-V IR, and can be used in conditional control-flow decisions,

and in determining the sizes of arrays of shader parameters. These

systems are similar to Slang in that front-end compilation to IR

can be performed once, and amortized across specializations. How-

ever, Slang allows type parameters in addition to values and uses

pre-existing language constructs rather than new syntax.

The Sh shader metaprogramming system [McCool et al. 2002]

supports the construction of abstractions like our surface shader

separation (Section 4.2) and composite lighting environments (Sec-

tion 4.3), using C++ templates; examples similar to ours can be found

Fig. 5. A scene rendered using GPU ray tracing in Falcor, which uses Slang
to compile shaders for new ray tracing shader stages.

in the companion book for Sh [McCool and Du Toit 2004]. Sh is an

embedded DSL which relies on runtime metaprogramming to gen-

erate its IR. In contrast, Slang is an extension of an existing shading

language, and its generics can be statically checked at compile time.

9 DISCUSSION
We have demonstrated that a popular real-time shading language

can be extended with carefully chosen mechanisms from modern

general-purpose languages, and that these mechanisms enable the

development of a high-performance and extensible shader library

without the need for layered preprocessor and DSL tools. By refac-

toring the Falcor shading system to use these mechanisms we were

able to achieve improvements in CPU and GPU performance (by

exploiting the shader components pattern) and also made the frame-

work easier to extend with a new BxDF-dependent light type.

Although our evaluation of Slang was conducted in the context

of rasterization and forward rendering, we believe Slang’s features

for code modularity and specialization also stand to benefit pro-

grammers using deferred rendering and ray tracing. For example,

systems like DirectX Raytracing (DXR) [Sandy 2018] present the

user with an increasing number of shader stages that will further

complicate the implementation and maintenance of complex shad-

ing systems. Falcor has recently been extended to support GPU ray

tracing with DXR, and uses Slang to generate shader code for ray

tracing stages. Fig. 5 shows a ray-traced image rendered by Falcor

using Slang shaders. Looking forward, we are interested to see how

Slang’s language mechanisms can benefit a shader library that may

be used with both rasterization and ray tracing.

Slang’s design demonstrates that it is possible to maintain per-

formance and compatibility with existing HLSL codebases, while

moving in the direction of modern general-purpose languages with

strong support for good software development practices. We view

this as one step toward an ultimate goal of enabling heterogeneous

CPU and GPU programming in modern general-purpose languages.

Rather than evolve HLSL, there is also parallel interest in adapting

C/C++ for use in shader programming, and we hope our efforts serve

to highlight the language features that are essential or preferred

to support extensible and high-performance shading systems. We

believe that all real-time graphics programmers could benefit from

a new generation of shader compilation tools informed by these

ideas.

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

Slang: language mechanisms for extensible real-time shading systems • 1:13

10 ACKNOWLEDGMENTS
The research was supported by the National Science Foundation

(IIS-1253530) and by the NVIDIA Corporation. Special thanks to the

Falcor development team for useful discussions.

REFERENCES
Amazon. 2016. Lumberyard Engine. https://aws.amazon.com/lumberyard/.

Apple Inc. 2014a. Metal. https://developer.apple.com/documentation/metal

Apple Inc. 2014b. The Swift Programming Language. https://itunes.apple.com/us/book/

the-swift-programming-language-swift-4-0-3/id881256329

F. O. Bartell, E. L. Dereniak, and W. L Wolfe. 1981. The Theory And Measure-

ment Of Bidirectional Reflectance Distribution Function (BRDF) And Bidirec-

tional Transmittance Distribution Function (BTDF). , 0257 - 0257 - 7 pages.

https://doi.org/10.1117/12.959611

Nir Benty, Kai-Hwa Yao, Tim Foley, Anton S. Kaplanyan, Conor Lavelle, Chris Wyman,

and Ashwin Vijay. 2017. The Falcor Rendering Framework. https://github.com/

NVIDIAGameWorks/Falcor https://github.com/NVIDIAGameWorks/Falcor.

ECMA International. 2017. C# Language Specification (ECMA-334:2017).

Epic Games. 2015. Unreal Engine 4 Documentation. http://docs.unrealengine.com.

Yong He, Tim Foley, Teguh Hofstee, Haomin Long, and Kayvon Fatahalian. 2017. Shader

Components: Modular and High Performance Shader Development. ACM Trans.
Graph. 36, 4, Article 100 (July 2017), 11 pages. https://doi.org/10.1145/3072959.

3073648

Eric Heitz, Jonathan Dupuy, Stephen Hill, and David Neubelt. 2016. Real-time Polygonal-

light Shading with Linearly Transformed Cosines. ACM Trans. Graph. 35, 4, Article
41 (July 2016), 8 pages. https://doi.org/10.1145/2897824.2925895

Sony Pictures Imageworks. 2017. Open Shading Language 1.9 Language Specifica-

tion. https://github.com/imageworks/OpenShadingLanguage/blob/master/src/doc/

osl-languagespec.pdf.

Khronos Group, Inc. 2009. ARB_shader_subroutine. https://www.opengl.org/registry/

specs/ARB/shader_subroutine.txt.

Michael D. McCool and Stefanus Du Toit. 2004. Metaprogramming GPUs with Sh. A K

Peters. I–XVII, 1–290 pages.

Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. 2002. Shader Metaprogramming.

In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware (HWWS ’02). 57–68. http://dl.acm.org/citation.cfm?id=569046.569055

John McDonald. 2016. High Performance Vulkan: Lessons Learned from Source 2. In

GPU Technology Conference 2016 (GTC). http://on-demand.gputechconf.com/gtc/

2016/events/vulkanday/High_Performance_Vulkan.pdf.

Microsoft. 2011. Interfaces and Classes. https://msdn.microsoft.com/en-us/library/

windows/desktop/ff471421.aspx.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. 1992.

Radiometry. Jones and Bartlett Publishers, Inc., USA, Chapter Geometrical Consid-

erations and Nomenclature for Reflectance, 94–145. http://dl.acm.org/citation.cfm?

id=136913.136929

NVIDIA. 2017. ORCA: Open Research Content Archive.

http://developer.nvidia.com/orca.

Matt Pharr. 2004. An Introduction to Shader Interfaces. In GPU Gems: Programming
Techniques, Tips and Tricks for Real-Time Graphics, Randima Fernando (Ed.). Pearson

Higher Education.

Aras Pranckevičius. 2015. Porting Unity to new APIs. In SIGGRAPH 2015 Course Notes:
An Overview of Next-generation Graphics APIs. https://doi.org/10.1145/2776880.

2787704 http://nextgenapis.realtimerendering.com/presentations/7_Pranckevicius_

Unity.pptx.

Rust Project Developers. 2015. The Rust Programming Language. https://doc.rust-

lang.org/book/.

Matt Sandy. 2018. DirectX Raytracing. Game Developers Conference 2018 slides..

https://msdnshared.blob.core.windows.net/media/2018/03/GDC_DXR_deck.pdf

Natalya Tatarchuk and Chris Tchou. 2017. Destiny Shader Pipeline. http://advances.

realtimerendering.com/destiny/gdc_2017/index.html.

Unity Technologies. 2017. Unity 5.6 Users Manual. Available at https://docs.unity3d.

com/.

P. Wadler and S. Blott. 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc. In

Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (Austin, Texas, USA) (POPL ’89). ACM, New York, NY, USA, 60–76.

https://doi.org/10.1145/75277.75283

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

https://aws.amazon.com/lumberyard/
https://developer.apple.com/documentation/metal
https://itunes.apple.com/us/book/the-swift-programming-language-swift-4-0-3/id881256329
https://itunes.apple.com/us/book/the-swift-programming-language-swift-4-0-3/id881256329
https://doi.org/10.1117/12.959611
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
http://docs.unrealengine.com
https://doi.org/10.1145/3072959.3073648
https://doi.org/10.1145/3072959.3073648
https://doi.org/10.1145/2897824.2925895
https://github.com/imageworks/OpenShadingLanguage/blob/master/src/doc/osl-languagespec.pdf
https://github.com/imageworks/OpenShadingLanguage/blob/master/src/doc/osl-languagespec.pdf
https://www.opengl.org/registry/specs/ARB/shader_subroutine.txt
https://www.opengl.org/registry/specs/ARB/shader_subroutine.txt
http://dl.acm.org/citation.cfm?id=569046.569055
http://on-demand.gputechconf.com/gtc/2016/events/vulkanday/High_Performance_Vulkan.pdf
http://on-demand.gputechconf.com/gtc/2016/events/vulkanday/High_Performance_Vulkan.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/ff471421.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff471421.aspx
http://dl.acm.org/citation.cfm?id=136913.136929
http://dl.acm.org/citation.cfm?id=136913.136929
https://doi.org/10.1145/2776880.2787704
https://doi.org/10.1145/2776880.2787704
http://nextgenapis.realtimerendering.com/presentations/7_Pranckevicius_Unity.pptx
http://nextgenapis.realtimerendering.com/presentations/7_Pranckevicius_Unity.pptx
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://msdnshared.blob.core.windows.net/media/2018/03/GDC_DXR_deck.pdf
http://advances.realtimerendering.com/destiny/gdc_2017/index.html
http://advances.realtimerendering.com/destiny/gdc_2017/index.html
https://docs.unity3d.com/
https://docs.unity3d.com/
https://doi.org/10.1145/75277.75283

	Abstract
	1 Introduction
	2 Background: Best Practices in Shading System Design
	2.1 Authoring a Modular Shader Library
	2.2 Generating Specialized Shader Kernels
	2.3 Separating Phases of Material Shading
	2.4 Specialization to Lighting Environment
	2.5 Adding BxDF-Dependent Light Types
	2.6 Efficiently Communicating Shader Parameters
	2.7 Summary

	3 The Slang Language
	3.1 Generics
	3.2 Interfaces
	3.3 Associated Types
	3.4 Retroactive Extensions
	3.5 Explicit Parameter Blocks

	4 Using Slang to Design a Shading System
	4.1 Generating and Using Shader Variants
	4.2 Separating Phases of Material Shading
	4.3 Specialization to Lighting Environment
	4.4 Adding BxDF-Dependent Light Types

	5 Compiler and Runtime API
	6 Rearchitecting a Renderer to use Slang
	6.1 Using parameter blocks to communicate parameters
	6.2 Specialization of Material
	6.3 Refactoring Lighting Computation

	7 Evaluation
	7.1 Performance
	7.2 Extensibility
	7.3 Summary

	8 Related Work
	9 Discussion
	10 Acknowledgments
	References

