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Abstract

The human shoulder complex is perhaps the most complicated joint in the human body being comprised of a set

of three bones, muscles, tendons, and ligaments. Despite this anatomical complexity, computer graphics models

for motion capture most often represent this joint as a simple ball and socket. In this paper, we present a method

to determine a shoulder skeletal model that, when combined with standard skinning algorithms, generates a more

visually pleasing animation that is a closer approximation to the actual skin deformations of the human body.

We use a data-driven approach and collect ground truth skin deformation data with an optical motion capture

system with a large number of markers (200 markers on the shoulder complex alone). We cluster these markers

during movement sequences and discover that adding one extra joint around the shoulder improves the resulting

animation qualitatively and quantitatively yielding a marker set of approximately 50 markers for the complete

skeleton. We demonstrate the effectiveness of our skeletal model by comparing it with the ground truth data as well

as with the recorded video. We show its practicality by integrating it with the conventional rendering/animation

pipeline.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

The shoulder complex is one of the most complicated joints
in the human skeletal structure as it consists of three bones:
the clavicle, the scapula and the humerus, as well as their
associated muscles, tendons and ligaments. The shoulder
bones form three synovial joints: the sternoclavicular (SC)
joint, the acromioclavicular (AC) joint and the glenohumeral
(GH) joint. The combination of these joints allows the shoul-
der complex to have both a very wide range of motion and
subtle internal movements such as a shrug [vdH97].

Unlike the complexity of the anatomical shoulder mech-
anism, animated characters often have shoulders that are
modeled as a single ball and socket joint. The shoulder joint
is defined as three rotational degrees of freedom between
two bones, one attached to the spine and the other represent-
ing the upper arm. This discrepancy between the complexity
of anatomical system and the simple animated model im-
pacts the quality of the resulting animation, especially when
the motion is rendered on a full human figure with a skinned
surface.

There have been various approaches to reduce the gap
between human shoulder deformations and those created
in computer graphics. In particular, there has been a great
deal of work in skinning algorithms aimed at volume preser-
vation [MG03, KZ05, WPP07, RHC09] as well as detailed
anatomical models [SPCM97, NT00, ZCCD04, PCLS05,
LST09]. In this paper, we approach this problem by learn-
ing the structure of the shoulder from data. We collect the
data using densely spaced surface markers and reconstruct
the mesh surface with the technique presented by Park and
Hodgins [PH06]. From these example poses, we determine
the appropriate skeletal structure including the number of
joints and the position of each joint. We integrate this new
skeletal structure into a traditional motion capture and ren-
dering pipeline by identifying a small number of markers
(four/segment) which approximate the motion of the skele-
ton generated from the large marker set and estimating the
skin weight of each vertex on a high resolution mesh with
respect to the computed skeleton. We compare our results to
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video of the capture session and quantitatively to the mesh
created from the large marker set.

Our main contribution is a new skeletal model which
reduces artifacts and creates more visually pleasing motions
for the shoulder in animation rendered in the conven-
tional capture/animation/rendering pipeline. Although
our model is not anatomically based, it is data-driven
and therefore provides a good match to the actual de-
formations seen in the skin and muscle around the
shoulder. We further contribute to the literature by placing
our collected data and model parameters on the web
(http://graphis.s.mu.edu/projets/shoulder)
for others to use in their captures or research.

The remainder of the paper is organized as follows. In the
next section, we describe the existing research in skin defor-
mation and techniques for constructing the skeletal structure
based on data. Section 3 describes our approach: collecting
data and then determining the skeleton and skin weights. In
section 4, the experimental results are presented. The limita-
tions and future work are discussed in section 5.

2. Background

Skeleton-driven techniques are the prevalent techniques for
generating human character animation. The most popular
method is skeleton subspace deformation or skinning, in
which each vertex on the skin surface is connected to un-
derlying bones with proper weight values. The position of
the vertices are determined by the connected bones as de-
scribed by Lewis and his colleagues [LCF00]. Most com-
mercial animation tools such as 3ds Max and Maya support
this method, and we use this approach to render our final re-
sults. However, a simple implementation of this method suf-
fers from artifacts such as the “collapsing-elbow” and the
“candy-wrapper” effect (described in [LCF00]). Many re-
cent research efforts have been aimed at overcoming these
problems through the use of more sophisticated models or
by carefully determining the parameters and coefficients of
the method based on the examples.

The improved models include such techniques as chang-
ing the interpolation scheme [KZ05], using swept ellipsoids
for approximating the model [HYC∗05], mimicking the vol-
ume effects of muscles and fat by adding deformable geome-
tries under the skin [GW05], building a simple anatomical
model from the outside in [PCLS05], and applying a post-
processed volume correction [RHC09].

The second approach uses sample skin data in various
poses as a training set and determines a more accurate set
of parameters. Our work falls into this class of approaches
in that we use an optimization framework to find an addi-
tional joint. Mohr and Gleicher add extra joints in the re-
gion of complex deformation observed in the data [MG03].
The number of extra joints and their positions were deter-
mined by the user. The movement of the extra joints is in-

ferred from the neighboring joints rather than captured di-
rectly. Wang and Phillips also use sample surface data to de-
termine the skinning parameters [WP02]. However, rather
than modifying the skeletal structure, they break down the
single weight value for a bone into 12 sub-weight values,
where each corresponds to a component of the transforma-
tion matrix of a bone. Similar to Wang and Phillips’ method,
Merry and his colleagues present a method called Anima-
tion space, in which a vertex has 4 sub-weight values for
a bone [MMG06]. Park and Hodgins model dynamic skin
deformation based on captured skin data [PH08]. They fo-
cus on representing the non-linearity of the skin deformation
given the skeletal structure while here we present a method
to find an effective skeletal structure when the skinning al-
gorithm is given.

Recently, mesh animation data has become more readily
available with new surface acquisition methods. Using mesh
animation data is not easy due primarily to the difficulty
of editing such a large unstructured dataset. One solution
is to convert the surface data into skeleton-based skinned
data. James and Twigg suggested a method for represent-
ing mesh animation as a set of near-rigid objects based on
the mean-shift segmentation method [JT05]. Anguelov and
his colleagues compute a skeletal structure from a set of 3D
scanned surface data [ASK∗05], and de Aguiar and his col-
leagues compute it from mesh animation [dATTS08]. We
basically follow those approaches in estimating the skeletal
structure and add an automatic method for determining the
number of bones and joint locations.

3. Approach

Our algorithm for computing a skeletal model and the skin-
ning weights has five steps: database construction, rigid seg-
mentation, skeleton extraction, marker selection and skin
weight computation. We now describe those steps in detail.

3.1. Database Construction

We build a database of captured skin surfaces around the
shoulder area from a variety of poses. There have been

(a) (b)

Figure 1: Database construction: (a) marker placement on

the subject’s body; (b) captured markers and marker sur-

face.
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Table 1: List of motions used for building the shoulder mo-

tion database.

Training set Testing set
Name Number of frames Name Number of frames

range of motion 2523 body building 1114
stretching 1766 golfing 776

various poses 1602 jumping jack 717
swimming 1580

many methods developed for this purpose including scan-
ners [ACP02, ASK∗05] and optical motion capture devices
[SMP03, PH06]. We use an optical motion capture system
for capturing the surface because the optical motion capture
device captures motion in realtime. We use a Vicon commer-
cial motion capture system consisting of 16 near infra-red
cameras at a rate of 120 frames/sec and place approximately
200 markers on the subject’s shoulder area (Figure 1(a)). The
markers are positioned with approximately a 1 inch spacing.

In order to cover the deformation space of the shoulder ef-
fectively, we captured a variety of motions including a range-
of-motion exercise, stretching, and golfing. We divide the
motion into a training set and a testing set (Table 1). The
captured data are represented as marker trajectories. Mark-
ers which are missing due to occlusions are filled in using
the method of Park and Hodgins [PH06]. In this technique a
triangular mesh is constructed and used to identify the neigh-
boring markers based on the connectivity embedded in the
mesh (Figure 1(b)). The motion of the neighbors is used to
reconstruct the position of an occluded marker.

3.2. Rigid Segmentation

The conventional skinning process for a virtual character is
a process of approximating the deformation of the human
body as an articulated set of rigid bodies. Thus, for effective
skinning, the character surface should be divided in such a
way that its deformation space is modeled well. In this work,
we achieve this segmentation by finding sets of triangles
from the marker surface that move together in the marker
mesh animation. Thus, we transform the problem of rigid
segmentation into a clustering problem.

Inspired by the work of James and Twigg [JT05], we clus-
ter the triangles on a marker surface based on the rotational
displacement of each triangle because the triangles have the
same rotational displacement during rigid transformations.
Given a time instance t, the rotational displacement of the
i-th triangle is represented as a unit-quaternion qt

i ∈ SO
3,

which is computed by finding the absolute orientation by
solving a least-squares problem [Hor87]. In clustering, our

feature vector for the i-th triangle is Fi =
[

v1
i v2

i · · · vT
i

]T
,

where T is the total number of frames in the training set and
vt

i ∈ R
3 is the rotational displacement vector corresponding

to qt
i computed by the logarithm map [LS02]. By using vt

i

instead of qt
i , we assume that two rotational changes are sim-

(a) (b)

(c) (d)

Figure 2: Segmentation results: (a) three segments; (b) four

segments; (c) five segments; (d) six segments

ilar if their corresponding displacement vectors are close in
the Eulerian space.

Many methods have been proposed for clustering. For ex-
ample, mean shift is used by James and Twigg [JT05] for a
similar purpose. However, in our case, the number of clusters
is finite and small. Therefore, we test all reasonable candi-
date number of clusters using standard K-means clustering.
We choose three as the smallest number to test because it is
comparable to the common skeletal structure used in games
consisting of the right chest, the upper arm, and the lower
arm. The largest number we test is six, which we believe
is the maximum number that makes sense for rigging. We
test each integer value, and evaluate how many clusters are
needed. Because the clustering result from K-means is sen-
sitive to the choice of the initial guesses for the cluster cen-
ters, we use a randomized approach: we repeat the cluster-
ing many times (1000 times) with a random initial seed and
choose the best. We measure the quality of the clustering by
summing the distance between feature vectors and their clus-
ter center. On an Intel R©CoreTM2 CPU at 2.66GHz, it takes
less than 30 minutes to execute the K-mean algorithm 1000
times.

Figure 2 shows our segmentation results with a vary-
ing number of segments. In the three segments result (Fig-
ure 2(a)), the segmentation matches the conventional skeletal
structure. The result with four segments reveals the shoulder
area as a separate segmentation (Figure 2(b)). Five segments
refines the shoulder area more (Figure 2(c)). The additional
segment provided by six clusters appears around the tip of
the wrist and does not contribute to the shoulder refinement.
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(a) (b)

(c) (d)

Figure 3: Four cluster results (a) segmentation result; (b)

skeleton extraction; (c) skinning weight computation; (d)

registered detailed surface and skinning weight transfer.

3.3. Skeleton Extraction

After segmentation, we optimize the skeletal structure. Each
segment represents a bone in the skeleton. We assume that
our skeletal structure branches from the spine around the up-
per chest and forms a single chain until the wrist joint. This
assumption does not have an anatomical basis. However, the
number of segments we choose is too small to build a com-
plex skeletal structure. More importantly, this single chain
assumption makes the skeleton easy to build, which is cru-
cial for a practical animation pipeline. We set each joint be-
tween two adjacent bones as a 3 degree-of-freedom (dof) ro-
tational ball joint for generality. Based on this assumption,
defining the skeletal structure is dependent on determining
the joint location.

A ball joint between two adjacent bones can be found as a
fixed point on one bone which also remains stationary across
time when described in the other bone’s local coordinate
system. We employ the optimization method presented by
Anguelov and colleagues [AKP∗04], which models compu-
tation of the joint location as a weighted linear regression.

3.4. Marker Selection

In the conventional motion capture pipeline, a minimal set of
markers are used to generate the kinematic constraints of the
bones and therefore determine their movement. The number
of markers required to sufficiently constrain a bone depends
on the type of joint. However, four markers for each seg-
ment is enough to solve for either three dof or six dof joints.
Based on an analysis of the data from the dense marker set,
we provide a method to guide the placement of the small
number of markers so that the rigid motion of a segment can
be computed for a new motion.

We choose those representative markers based on two
conditions: the selected markers should show a similar trans-
formation to that of the associated segment (computed from

(a) (b)

Figure 4: Selected markers of the 4-cluster case: (a) front

view; (b) rear view.

the dense marker set) and the distance between the selected
markers should be sufficient to prevent any confusion in the
motion capture process. We measure how a marker satisfies
the first condition by the deviation of its real position from
its estimated position when we assume it follows the trans-
formation of the segment rigidly:

er =
T

∑
t=0

|| p
t −T

t
p̂ ||2, (1)

where er is the deviation value of a marker, pt is the captured
position of the marker at time t, Tt is the computed transfor-
mation of the segment, and p̂ is the position of the marker at
a reference instance.

To enforce the second condition, we define a distance en-
ergy ed of a marker such that ed increases when the distance
between the marker and any selected representative mark-
ers is reduced and goes to zero when the distance value is
greater than a predefined threshold, that is

ed =
Ns

∑
i=0

d(p̂, p̂i), (2)

where Ns is the number of existing representative markers,
p̂i is the position of the i-th selected marker, and d(·, ·) is a
function defined as follows:

d(p̂, p̂i) =

{

1− ||p̂−p̂i||
dt

if ||p̂− p̂i|| < dt

0 otherwise
, (3)

In our experiment, we assign dt as one fourth of the longest
distance between any two markers on the segment.

Putting these two conditions together, we choose the rep-
resentative markers to have the minimal energy value e =
ω× er +(1−ω)× ed , where ω is the weight between those
two policies (0.5 in our experiments). Markers are chosen
independently for each cluster using a greedy algorithm: af-
ter computing the energy value for each marker, we pick the
marker with the lowest value. Then, we repeat this process
until we have selected four markers. The first marker of a
segment is selected solely based on its er value. Figure 4
shows the representative markers for four clusters.
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3.5. Skin Weight Computation

Given the new skeletal model, the final process is to bind
a detailed surface model for rendering to the skeleton by
assigning weight values to each of the vertices. We call
this surface the detailed surface model in order to avoid
confusion with the marker surface. When the detailed sur-
face model is animated, the rendered results depend heavily
on the skin weight values. Skilled artists assign the weight
values manually. In our work, we automatically assign the
weight values of the detailed surface. To compute the skin
weights of the detailed surface, we first compute the weight
values for the vertices on the marker surface. We exploit the
method of Park and Hodgins [PH06]: the weight values of
markers inside the segment are only dependent on the seg-
ment and the weight values of markers in the boundaries
between neighboring segments are dependent on the like-
lihood that a marker belongs to each segment, which is com-
puted from the distance between captured vertex and ver-
tex rigidly deformed by each segment. After computing the
weight values for the markers, we transfer the weight values
of the markers to the detailed surface by registering the de-
tailed surface onto the marker surface and then by applying
barycentric interpolation to the weight values.

4. Results

The primary purpose of this work is to determine an effective
skeletal configuration for the shoulder in a standard motion
capture animation pipeline. We have tested skeletal struc-
tures with varying number of segments. Table 2 shows the
errors for the synthesized motion.

For evaluation purposes, we use the marker surface as a
skin to be animated by the skeleton. The surface is deformed
along with the movement of the skeleton by using a standard
skinning algorithm for single weight enveloping. Weight val-
ues used in the skinning algorithm are computed from our
skeletal model. The joint angles of the skeleton are computed
either using the full marker set or the reduced marker set.

We measure the quality of the skeletal model by compar-
ing the positions between deformed vertices and their corre-
sponding captured markers. Figure 5 summarizes the recon-
struction error for the training set. The values shown in the
graph are the average error values over the whole frame of
the training data as well as over all the markers. In the three
segments model (most similar to the conventional skeletal
model), there exist larger errors. However, adding one more
segment around the shoulder as shown in the four segments
model greatly reduces the error values. Interestingly, adding
more segments does not improve the error values further.
The graph also shows the effectiveness of our marker selec-
tion (red line). Although the skeletal motion estimated using
the dense markers shows consistently better results than the
selected small marker set, the global tendency over the num-
ber of clusters is consistent.

Table 2: The summary of the synthesis error (mm) when us-

ing the dense full marker set and the reduced marker set for

estimating the skeletal motion, respectively.

Number of Segments
Motion 3 4 5

avg max avg max avg max
(std) (min) (std) (min) (std) (min)

Training Full 15.87 34.13 13.30 27.80 13.20 28.57
(7.44) (0.00) (6.17) (0.00) (6.04) (0.00)

Reduced 20.79 50.30 16.01 41.51 17.04 35.92
(9.45) (0.00) (7.95) (0.00) (8.14) (0.00)

Body- Full 11.90 24.48 10.37 21.48 10.74 22.90
building (6.74) (0.00) (5.79) (0.00) (5.98) (0.00)

Reduced 17.70 45.96 13.87 25.54 12.98 22.30
(12.28) (0.00) (8.08) (0.00) (6.04) (0.00)

Golfing Full 16.84 27.33 13.99 20.01 13.52 18.66
(6.23) (0.00) (4.36) (0.00) (3.96) (0.00)

Reduced 26.17 42.51 21.21 35.31 19.04 28.52
(8.95) (0.00) (7.50) (0.00) (5.74) (0.00)

Jumping- Full 16.38 24.82 13.69 20.92 13.61 19.55
jack (6.20) (0.00) (4.90) (0.00) (4.66) (0.00)

Reduced 24.83 47.83 20.11 39.21 19.97 28.73
(10.54) (0.00) (9.46) (0.00) (7.12) (0.00)

Swimming Full 14.21 34.89 12.21 31.55 12.39 32.55
(5.76) (0.00) (5.11) (0.00) (5.38) (0.00)

Reduced 18.82 44.45 14.60 36.27 16.42 45.37
(7.80) (0.00) (6.73) (0.00) (8.03) (0.00)

Figure 5: Reconstruction error with varying number of seg-

ments is plotted when using the dense full marker set and the

reduced marker set for the training set.

We also synthesize the marker surface data for the test mo-
tion and measure the errors for the full and reduced marker
sets (Figure 6 and Figure 7). The size of the error is depen-
dent on the type of motion but the error values show similar
trends. We conclude that inserting one additional segment
between the chest and the upper arm greatly improves the
representation of the shoulder but that adding additional seg-
ments does not further improve the quality.

Figure 8 shows a screen shot of the results for recon-
structing the training set when the different estimated skele-
tal models are used to animate a detailed surface. Because of
the small number of degrees of freedom, the three segments
model has a shrinking shoulder when the actor stretches his
arm forward. The four and five segments models look sim-
ilar, and they appear to conserve volume. They also better
match the photo of Figure 8(d). Figure 8(e) shows the com-
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Figure 6: Synthesis error with varying number of segments

is plotted when using the dense full marker set for the test

motion.

10

12

14

16

18

20

22

24

26

28

3 4 5 6

A
v

g
. 
E

r
r
o

r
 (
m

m
)

Number of Segments

Body Building

Golfing

Jumping Jack

Swimming

Figure 7: Synthesis error with varying number of segments

is plotted when using the reduced marker set for the test mo-

tion.

parison between the three segments model (red) and the four
segments model (blue), in which the shrinking of the three
segments model is obvious. On the other hand, as shown in
Figure 8(f), the four segments model (blue) agrees closely
with that of the five segments model(green). Figure 9 and
Figure 10 illustrate the results when the models are applied
to the test motion. The four segments model is visually supe-
rior to the three segments model but adding additional seg-
ments does not show much further improvement.

We apply our suggested four segments shoulder model
to a full body character and compare it with the three seg-
ments shoulder model. We first adopt a conventional full
body skeletal model and adjust its upper body to include the
extra shoulder segment. The test motions are captured us-
ing 69 optical markers, with the markers on the chest, the
shoulders and the arms placed at the positions suggested by
our method. We also transfer the skin weight values of the
shoulder area obtained in Section 3.5 to the full body sur-
face model by aligning the shoulder-only surface onto the

(a) (b)

(c) (d)

(e) (f)

Figure 8: Visual evaluation of a pose from the training set

after rendering a detailed surface: (a) three segments; (b)

four segments (c) five segments; (d) photo; (e) comparison

between three segments result (red) and four segments result

(blue); (f) comparison between four segments (blue) and five

segments (green).

Table 3: Comparision of our method and the method of

MG03: the synthesis error (mm) when using the reduced

marker set to synthesize in our model and reduced marker

set in MG03’s model, respectively.

Methods
Motion Ours MG03

avg max avg max
(std) (min) (std) (min)

Training 16.01 41.51 20.55 59.90
(7.95) (0.00) (10.62) (0.00)

Body- 13.87 25.54 17.67 47.73
building (8.08) (0.00) (11.65) (0.00)
Golfing 21.21 35.31 31.10 53.25

(7.50) (0.00) (12.52) (0.00)
Jumping- 20.11 39.21 24.10 61.00

Jack (9.46) (0.00) (15.55) (0.00)
Swimming 14.60 36.27 18.46 41.25

(6.73) (0.00) (7.00) (0.00)

full body surface. Figure 11 shows the comparison results
between the two skeletal models. The artifact of the collaps-
ing shoulder is alleviated by our model.

Finally, we compare our method with the skinning method
proposed by Mohr and Gleicher [MG03], in which they
add extra joints procedurally to the locations where the lin-
ear blending skinning generates artifacts. For testing our
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(a) (b)

(c) (d)

Figure 9: Visual evaluation of a pose from body-building

motion in the test set: (a) three segments; (b) four segments;

(c) five segments; (d) six segments.

Figure 10: Visual evaluation of a pose from swimming mo-

tion in the test set after rendering a detailed surface: (a)

three segments; (b) four segments; (c) five segments; (d)

photo.

method, we use the four segments model built from the re-
duced marker set, whereas for testing their method, we use
the three segments model and add an extra joint to the shoul-
der joint, assigning a halfway interpolated angle to the added
joint. The weight values in each model are computed by fol-
lowing each paper. Table 3 shows the synthesis error of each
method. The comparison results show that our method yields
the smaller average error per marker, especially for golfing
and jumping jacks.

(a) (b)

Figure 11: Visual evaluation of a pose from cowboy in a

full body animation: (a) skeleton without the extra shoulder

segment; (b) skeleton with the extra shoulder segment

5. Discussion

We propose a new shoulder model which creates a visually
more pleasing skin surface when combined with standard
skinning algorithms. The new model is data-driven and ap-
proximates the skin surface data captured with an optical
motion capture system. We discover that adding one extra
joint to the common shoulder model improves the quality
of the resulting animation, whereas adding more joints does
not provide further improvement. We demonstrate the effec-
tiveness of our model by comparing with ground truth data
as well as with recorded video. We also show its practicality
by integrating it with the conventional rendering/animation
pipeline.

Our method has certain limitations. Because we use a
data-driven approach, the results are inherently subject-
specific, that is, the provided guideline in this paper is most
effective when applied to an animated subject having a sim-
ilar body type to that of our human test subject. It is possible
that a different body segmentation would provide better re-
sults for different body types. We would like to explore more
body types and possible generalization between body types.

Our results are also dependent on the choice of the train-
ing motion. We choose a range of motion exercise as the
training set. Because our optimization method relies on a
least-squares framework, the results can be biased with re-
spect to the number of the frames of similar poses. We
can overcome this problem by collecting only distinct poses
from the examples and making sure that our data include all
common shoulder poses.
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We assume that the skeletal structure from the clavi-
cle to the arm forms a single chain structure without any
branches. The method of using the minimum spanning tree
in [OBBH00] could be a good alternative for determining
the skeletal hierarchy in general.

We chose to study the shoulder complex because it often
creates problems in capturing and skinning of realistic hu-
man characters. Other body parts may also require more so-
phisticated models than the conventional skeletal model. For
example, it is well known that twisting the fore-arm shows
the candy-wrapper artifact in the conventional skeletal mode.
In this case, the simple rotary joint model does not accurately
present the skin surface.
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