
Shader Components: Modular and High Performance Shader

Development

YONG HE, Carnegie Mellon University, USA

THERESA FOLEY, NVIDIA, USA

TEGUH HOFSTEE, Carnegie Mellon University, USA

HAOMIN LONG, Tsinghua University, China

KAYVON FATAHALIAN, Carnegie Mellon University, USA

Modern game engines seek to balance the conflicting goals of high rendering
performance and productive software development. To improve CPU perfor-
mance, the most recent generation of real-time graphics APIs provide new
primitives for performing efficient batch updates to shader parameters. How-
ever, modern game engines featuring large shader codebases have struggled
to take advantage of these benefits. The problem is that even though shader
parameters can be organized into efficient modules bound to the pipeline at
various frequencies, modern shading languages lack corresponding prim-
itives to organize shader logic (requiring these parameters) into modules
as well. The result is that complex shaders are typically compiled to use
a monolithic block of parameters, defeating the design, and performance
benefits, of the new parameter binding API. In this paper we propose to
resolve this mismatch by introducing shader components, a first-class unit
of modularity in a shader program that encapsulates a unit of shader logic
and the parameters that must be bound when that logic is in use. We show
that by building sophisticated shaders out of components, we can retain
essential aspects of performance (static specialization of the shader logic
in use and efficient update of parameters at component granularity) while
maintaining the modular shader code structure that is desirable in today’s
high-end game engines.

CCS Concepts: • Computing methodologies→ Graphics systems and
interfaces.

Additional Key Words and Phrases: shading languages, real-time rendering

ACM Reference Format:
Yong He, Theresa Foley, Teguh Hofstee, Haomin Long, and Kayvon Fata-
halian. 2017. Shader Components: Modular and High Performance Shader
Development. ACM Trans. Graph. 36, 4, Article 100 (July 2017), 11 pages.
https://doi.org/http://dx.doi.org/10.1145/3072959.3073648

1 INTRODUCTION

A modern game engine must achieve high performance to render
detailed scenes with complex materials and lighting. At the same

Authors’ addresses: Yong He, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh,
PA, 15213, USA; Theresa Foley, NVIDIA, 2701 San Tomas Expy, Santa Clara, CA,
95050, USA; Teguh Hofstee, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh,
PA, 15213, USA; Haomin Long, Tsinghua University, 30 Shuangqing Rd, Haidian Qu,
Beijing, , 100084, China; Kayvon Fatahalian, Carnegie Mellon University, 5000 Forbes
Ave, Pittsburgh, PA, 15213, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2017/7-ART100 $15.00
https://doi.org/http://dx.doi.org/10.1145/3072959.3073648

time, high productivity is required when authoring and maintaining
the large libraries of shader code that define materials and lighting
in these scenes. Today, a major challenge limiting the performance
of real-time rendering systems is the inability for the CPU (even
a multi-core CPU) to supply the GPU with rendering commands
at a sufficient rate. Many of these commands pertain to binding
shader parameters (textures, buffers, etc.) to the graphics pipeline.
This problem is sufficiently acute that a new generation of real-time
graphics APIs [Khronos Group, Inc. 2016; Microsoft 2017] has been
designed to provide new primitives for performing efficient batch
updates to shader parameters. However, modern game engines have
been unable to fully take advantage of this functionality.

The problem is that even though shader parameters can now be
organized into efficient modules and bound to the pipeline only at
the necessary frequencies, modern shading languages lack corre-
sponding primitives to organize shader logic (that requires these
parameters) into modules as well. As a result, complex shaders are
compiled into monolithic programs that access a monolithic block
of parameters. These parameters are typically updated en masse by
engines, defeating the design, and performance benefits, of the new
parameter binding API.

In this paper we propose a solution to this mismatch by introduc-
ing shader components, a first-class unit of modularity in a shader
program that encapsulates both the shader logic of a feature and the
parameters that must be bound when that feature is in use. From
the perspective of a shader writer, shader components provide a
mechanism that can be used to organize large shader codebases.
From the perspective of a game engine, shader components provide
both the logical units (e.g., a specific material, an animation effect,
and a lighting model) used to assemble shading features into com-
plete shaders, and also the granularity at which blocks of shader
parameters (needed as inputs to these features) are bound to the
graphics pipeline. By supporting shader components directly in a
shading language, our system is able to provide services such as
static checking of shader components against interfaces, specializa-
tion of complete shaders to a specific set of components (features)
in use, and generation of shader parameter block interfaces that
facilitate efficient binding. These services allow a well-written en-
gine to retain the benefits of modular shader software development,
while also realizing the low CPU overhead and high rendering per-
formance promised by modern graphics APIs.

Our specific contributions include:

• The design of the shader component concept and its imple-
mentation in a shader compiler library. This implementation

ACM Trans. Graph., Vol. 36, No. 4, Article 100. Publication date: July 2017.

https://doi.org/http://dx.doi.org/10.1145/3072959.3073648
https://doi.org/http://dx.doi.org/10.1145/3072959.3073648

100:2 • Yong He, Theresa Foley, Teguh Hofstee, Haomin Long, and Kayvon Fatahalian

includes a shading language front-end and host side APIs that
engines use to assemble components into complete shaders
and to allocate and bind blocks of shader parameters.

• A reference implementation of a large library of shader com-
ponents and a Vulkan-based rendering engine that achieves
high rendering performance when using shaders assembled
from these components. Specifically, we demonstrate that
our design simultaneously achieves modular shader author-
ing and efficient shader parameter binding, yielding over 2×
lower CPU cost than a system implemented using current
AAA engine best practices.

2 BACKGROUND

2.1 Organizing a Renderer for Performance

In order to achieve high performance, a renderer must minimize
changes to GPU state. This state comprises the configuration of
fixed-function pipeline stages, compiled shader kernels to be used
by programmable stages, and a set of shader parameter bindings that
provide argument values to kernel parameters.
Changing parts of the GPU state has costs, in both CPU and

GPU time. CPU costs include time spent by the application and
driver to prepare and send hardware commands. GPU costs include
possible hardware pipeline stalls waiting for work using an old
state to complete. Both kinds of costs can negatively impact frame
rates, depending on whether an application is CPU- or GPU-bound.
Reducing CPU costs during rendering frees CPU resources for other
key engine tasks such as AI, animation, audio, or input processing.
Every millisecond counts when, e.g., only 11ms are available per
frame in VR.

In order to reduce state changes, engines often organize rendering
work around different rates of change. For example, a rendering
pass can be thought of in terms of a set of nested loops, e.g.:

for(v in view)
for(m in materials)

for(o in objects)
draw(v, m, o);

The key observation is that some state (e.g., per-object transforma-
tions) changes at a higher rate than others (e.g., view parameters).
In order to maximize CPU efficiency when changing GPU state,

graphics APIs provide mechanisms to group state into objects that
can be updated en masse. For example, Direct3D 10 [Blythe 2006]
organized fixed-function state into coarse-grained objects. Modern
APIs such as Vulkan and Direct3D 12 allow shader parameter bind-
ing state to be grouped into modules, referred to as descriptor sets
and descriptor tables respectively. For clarity, we refer to such API
objects as shader parameter blocks. Multiple parameter blocks can
be bound to the GPU pipeline, and accessed by shaders, at one time.

Grouping parameter binding state into blocks has two main ben-
efits. First, the bulk nature of parameter blocks means that a single
API call can change a large portion of the GPU state; e.g., all of the
per-material parameter bindings. Second, because multiple parame-
ter blocks can be used at once, these changes can be organized by
expected frequency of update. For example, by grouping parameter
blocks according to the loop nesting illustrated above, an engine

can save work by ensuring that only a small amount of (per-object)
state needs to be changed in the inner rendering loop.

While modern APIs allow shader parameters to be defined using
multiple parameter blocks, other aspects of GPU state are set using
a monolithic pipeline state object (PSO). A PSO comprises state for
fixed-function stages, and a set of shader kernels to be used. We
refer to each unique combination of kernels as a shader variant. This
paper will ignore fixed-function state and focus only on generating
and selecting shader variants; statements made about the handling
of variants can be extended, without loss of generality, to PSOs.

2.2 Composing Shaders from Modules

Consider the nested loops from the previous section. The right
shader variant to use in the inner loop might depend on contribu-
tions from many sources. The object might contribute animation,
tessellation, or other geometric effects. The material might con-
tribute logic to fetch and composite texture layers. The render pass
itself might contribute logic to evaluate light sources, write to a G-
buffer, etc. Figure 1 depicts one way of composing a shader variant
from these different concerns.
For an engine featuring a large library of shaders and effects it

is desirable that disparate concerns or features can be defined as
composable modules. For example, any given surface shader should
work with any given light, and vice versa. Different modules are
illustrated as different boxes at the left in Figure 1, grouped by
concern.

In other domains, it is common to compose separately-developed
modules dynamically at runtime, by using a level of indirection
(e.g., using function pointers). However, in the context of real-time
shaders, the cost of runtime indirection is usually prohibitive, and
almost all shader composition is achieved by static specialization.

As illustrated in Figure 1, a typical way for an engine to perform
specialization is to use the C preprocessor to perform ad hoc code
generation. The code for a given feature is guarded with #ifdefs
and enabled by a #define. In this case, a shader compiler must be
invoked for each combination of features, to generate a statically
specialized variant that “links” different features together. When
shipping a game, all required variants are typically compiled ahead
of time, and stored in a variant database.

Because specialized variants are generated statically, the desired
behavior of composing modules dynamically at runtime must be
achieved by looking up an appropriate variant in the database. The
key used for lookup will depend on everything that can impact the
final shader code: e.g., the object, material, and render pass.

2.3 Modular Shaders and Efficient Binding Don’t Mix

Ideally, a game engine should be able to define and compose shader
features in a modular fashion, while also achieving efficient param-
eter binding using parameter blocks and knowledge of update rates.
In practice, it is challenging to achieve these goals with shading
languages in common use. To illustrate this challenge, we will dis-
cuss the Unreal Engine (UE4) [Epic Games 2015] as an example of a
game engine concerned with both modularity and performance.
Shader features for UE4 are authored in HLSL using traditional

#ifdef techniques. In order to improve modularity for dynamic

ACM Trans. Graph., Vol. 36, No. 4, Article 100. Publication date: July 2017.

Shader Components: Modular and High Performance Shader Development • 100:3

SkeletalAnim.hlsl

VertexMorphAnim.hlsl

StaticMesh.hlsl

GGX.hlsl

BSSRDF.hlsl

MaterialPattern1.hlsl

MaterialPattern2.hlsl

ForwardLighting.hlsl

ForwardTransparency.hlsl

GBufferGenerate.hlsl
CascadedShadow.hlsl

Material Features

Geometry Features

Render Pass Features

Shader Variant Definitions

#ifdef USE_SKELETAL_ANIM
#include “SkeletalAnim.hlsl”
#elif USE_VTX_MORPH_ANIM
#include “VertexMorphAnim.hsl”
#elif ...

#ifdef USE_GGX
#include “GGX.hlsl”
#elif USE_BSSRDF
#include “BSSRDF.hlsl”
#elif...

#ifdef FORWARD_LIGHTING
#include “ForwardLighting.hlsl”
#elif ...

common.hlsl

Shader Library

#define USE_SKELETAL_ANIM
#define USE_GGX
#define USE_MATERIAL_1
#define FORWARD_LIGHTING
#include “common.hlsl” Shader

Compiler
(FXC)#define USE_STATIC_MESH

#define USE_GGX
#define USE_MATERIAL_2
#define GBUFFER_GENERATE
#include “common.hlsl”

(define compilable shaders)

Fig. 1. A shader library organized as snippets of code which are combined together to define a compilable shader variant. In the example above, a measure of

code modularity is reached using the HLSL preprocessor. Different variants enable and disable features via preprocessor defines, and the necessary code is

brought together by selectively including it from the common shader template “common.hlsl”. Since modularity is achieved via preprocessor macros, module

information is lost by the time shader variant code reaches the shader compiler.

composition, important shader features are exposed as C++ classes
in host code. Instances of these classes encapsulate a choice of shader
features (#ifdef flags) and the values of shader parameters needed
by those features. Composition of shader features in UE4 is thus
expressed by runtime composition of C++ objects.

In order to bind shader parameters efficiently in modern APIs, it
is desirable to associate these C++ objects, which already hold the
values of shader parameters, with parameter blocks. The layout for
such a parameter block would need to be derived from the corre-
sponding shader code for the feature–and therein lies the problem.
When shader modules are defined in an ad hoc fashion using

preprocessor techniques, there is no way for a shader compiler to
utilize knowledge about modules to group parameters for efficient
binding. For example, the default behavior of the GLSL compiler is
to group all shader parameters into a single block. Engines which
rely on this default compiler behavior must therefore fill in and
bind a complete monolithic parameter block whenever switching
between shader features, even if only a few parameters need to be
changed.
To bind parameters more efficiently, using multiple parameter

blocks, a developer must currently use explicit directives to group
parameters, by manually assigning them to fixed binding locations.
However, such an approach comes at a cost to modular shader
development, as grouping and layout decisions must be coordinated
across modules. Rather than accept this complexity the developers of
many engines, including UE4, have opted for the simple alternative
of monolithic parameter blocks when initially porting their engines
to Vulkan or Direct3D 12 [McDonald 2016; Pranckevičius 2015].
We observe that the crux of this problem is the lack of a suit-

able modularity construct in the shading language, which can map
efficiently to the shader parameter binding model in modern APIs.

3 SYSTEM DESIGN

In this sectionwe describe our system design for synthesizing shader
modularity with efficient parameter binding. Elements of this design
will be familiar to some readers; we build upon concepts that have
appeared in various guises in prior work. Section 7 will discuss
connections between prior work and our design in detail.

camera: ViewParams

shader
variant

GPU
state

interface IObjectTransform {

component ViewParams

component StaticMesh : IObjectTransform

component GlossyPaint : IMaterialPattern parameter
blocks

shader generateGBuffer(
ViewParams V,
IMaterialPattern M,
IObjectTransform T)

{ ... }

entry point

component classes

component GroundPattern : IMaterialPattern
param texture2D albedoMap;
param float uvScale;

public vec3 albedo = albedoMap.Sample(...)
// ...

component instances

interface IMaterialPattern {
vec3 albedo;
float selfShadow(vec3 lightDir);

component interfaces

terrain: StaticMesh

dirt: GroundPattern

albedoMap:

normalMap:

uvScale: 2.0

variant
database

Fig. 2. Conceptual model for shader components. GPU state is driven from

a shader entry point function and component instances that serve as its

arguments. Shader features and their parameters are defined as component
classes. Instances of these classes encapsulate parameter values, and map to

parameter blocks in modern APIs. An entry point and component arguments

together determine a shader variant. Component classes and instances have

been color-coded to match the interfaces they implement.

Figure 2 illustrates the key concepts in our system, using a sim-
plified version of the examples we will present in Section 4. The
remainder of this section describes the concepts in this figure, and
has been organized around key principles that underlie the design.
Shader components serve as a bridge between shader and host

application code, and so we discuss both shader- and application-
facing design decisions together. An overriding goal of the design
is that a component should feel like a single coherent thing even as
it is accessed from both CPU and GPU code.

3.1 A shader component encapsulates both the code and

parameters of a feature

A typical shader feature, such as a surface material, requires a num-
ber of parameters, such as texture maps, to perform its computations.
Different implementations of the same type of feature (e.g., different
materials) will in general need different parameters. In order to
allow various implementations of a feature to be easily swapped in
and out, it must be possible to encapsulate their parameters.
In our design, a shader component class is a modular definition

of both the code and parameters of a particular shader feature.
For example, GroundPattern in Figure 2 (and later in Listing 1) is a

ACM Trans. Graph., Vol. 36, No. 4, Article 100. Publication date: July 2017.

100:4 • Yong He, Theresa Foley, Teguh Hofstee, Haomin Long, and Kayvon Fatahalian

component class with parameters for an albedo texture map and
a scale factor to apply to per-vertex texture coordinates. Another
material component class, like GlossyPaint, will in general have
different parameters.

3.2 A component is exposed to host code as an object

The modularity benefits of shader components should extend to
host code. In particular, the encapsulation of code and parameters
should be preserved, so that switching between different feature
implementations and/or combinations of parameter values can be
accomplished with a single operation.
Building on the idea of a shader component class, our design

allows host application code to allocate objects called shader compo-
nent instances from these classes. An instance stores concrete values
for the parameters declared in the class. For example, dirt in Fig-
ure 2 is an instance of the GroundPattern class that binds albedoMap
to a particular texture.

3.3 A component instance maps to a parameter block

By using multiple shader component instances, an application can
conveniently switch between sets of shader parameters. To make
this operation efficient, each component instance that an engine
allocates is backed by a parameter block in the target graphics
API. In Figure 2, the component instance dirt can be used to set a
parameter block in the GPU state.
It should be noted that in our design, shader component classes

are implemented by the shader compiler, while shader component
instances are implemented by a particular game engine; Specifi-
cally, we do not argue for a one-size-fits-all runtime library that
implements component instances for all engines. Instead, the com-
piler framework provides services that allow engines to implement
component instances efficiently using parameter blocks; we discuss
these services in Section 5.2.

3.4 Entry points are parameterized on interfaces

In our design, each render pass in a game engine corresponds to
a shader entry point, which coordinates the overall execution and
dataflow of shader code for the pass. For example, the generateGBuffer
entry point in Figure 2 (and Listing 2) corresponds to a G-buffer
generation render pass.

A key point of our design is that an entry point should be thought
of as incomplete, with “holes” where specific components will be
plugged in (these holes are parameters in a technical sense, but
should not be confused with shader parameters, so we avoid the
term). The shape of a hole can be given by concrete component
classes (e.g., ViewParams in Figure 2), or by component interfaces.
For example, the generateGBuffer() entry point depends on a sur-
face material component that must implement the IMaterialPattern

interface.
A component interface represents a kind of feature (e.g., materials,

lights) in a shader library, and declares the methods and fields that
all implementations of that feature must provide. For example, the
IMaterialPattern interface in Figure 2 (and Listing 3) declares a field
named albedo; the GroundPattern class must define a corresponding
field in order to implement the interface.

3.5 Components use static polymorphism

The terminology we use for shader components uses object-oriented
concepts like classes and interfaces, which are typically associated
with dynamic dispatch (e.g., virtual function tables). However, the
semantics of our model are those of static polymorphism, where
different code is generated for each combination of component
types. In essence, one can think of a shader entry point like the
following:

shader Simple(ILight light, IMaterial material) {...}

as being syntactic sugar for the following “templated” definition:

shader Simple<L, M>(L light, M material) {...}

An alternative approach would be to implement dispatch for
components dynamically. However, as discussed in Section 2.2, real-
time shader code typically benefits from aggressive specialization;
this is the default for preprocessor-based approaches, and static
polymorphism achieves a similar result for components.

3.6 The engine controls variant lookup and caching

At runtime, an engine will fill in all the holes in an entry point
with compatible components, and thereby select both the shader
parameters and variant to use. In our design, a variant depends
only on the classes of components used as arguments, and not on
dynamic parameter values, so it is possible to populate a variant
database by enumerating the space of possible component classes
ahead of time.
The performance of lookup in a variant database is critical, be-

cause variants may be selected in the inner-most rendering loop.
Rather than try to implement a one-size-fits-all variant database
in a language runtime library, our design leaves the responsibility
for caching and lookup up variants to the engine, with the com-
piler providing specific services to enable efficient implementation.
We discuss one implementation strategy, used in our engine, in
Section 5.5.

3.7 Components support multi-rate programming

Our design is implemented on top of a multi-rate shading language,
in order to better support shader modularity. In particular, multi-
rate shading can be used to support modular definition of geometry
effects that must work with (abstract over) any number of per-vertex
attributes. Most effects that use the programmable tessellation and
geometry shader stages of current GPUs fit this description. We also
find that it is natural to express shader entry points as multi-rate
programs, coordinating work across multiple pipeline stages.
Our multi-rate approach builds on RTSL [Proudfoot et al. 2001],

Spark [Foley and Hanrahan 2011], and Spire [He et al. 2016]. As in
Spire, we allow rate qualifiers to be elided in single-rate code, so
that most programmers need not be aware of multi-rate constructs.

4 EXAMPLES

4.1 Material Pattern Component

Listing 1 shows a shader component class, GroundPattern, which
evaluates the material pattern for a terrain. The syntax of our system
is largely based on that of GLSL.

ACM Trans. Graph., Vol. 36, No. 4, Article 100. Publication date: July 2017.

Shader Components: Modular and High Performance Shader Development • 100:5

component GroundPattern : IMaterialPattern
{
param texture2D albedoMap;
param texture2D normalMap;
param texture2D displacementMap;
param float uvScale;
// ...

require vec2 vertUV;
require vec4 viewVec;

float getGroundHeight(vec2 uvCoord) {
return displacementMap.Sample(samp, uvCoord).x;

}
using pom = ParallaxOcclusionMapping(
GetHeight: getGroundHeight,
viewDirTangentSpace: viewVec,
uv: vertUV * uvScale,
parallaxScale: 0.02

);
vec2 uv = pom.uvOut;

public vec3 albedo = albedoMap.Sample(samp, uv).xyz*0.7;
public vec3 normal =
normalize(normalMap.Sample(samp, uv).xyz*2.0-1.0);

public float roughness = 0.5;
public float metallic = 0.3;
public float specular = 1.0;
public float selfShadow(vec3 lightDir) {
return pom.selfShadow(lightDir);

}
}
// definition of ParallaxOcclusionMapping omitted

Listing 1. A shader component class for a surfacematerial pattern, simplified

from a material used in our evaluation (Section 6).

The GroundPattern class declares several shader parameters using
the param keyword. For example, the albedoTex parameter is a texture
map that will be used to fetch surface albedo. GroundPattern also
implements the IMaterialPattern interface, shown in Listing 3. To
meet the requirements of the interface, GroundPattern exports fields
like albedo and methods like selfShadow() using the public keyword.
As a convenience, our compiler allows an interface to provide default
implementations of fields and methods; for example, GroundPattern
does not export a value for isDoubleSided and so uses the default
value of false.

This paper focuses on shader parameters provided by a host
application, but a shader component may also depend on values that
will be provided by other shader code, using the require keyword.
For example, GroundPattern depends on a texture coordinate, vertUV,
that will be provided by another component.

Our system allows one component to directly invoke another by
name; this is conceptually similar to a constructor call. Our example
surface pattern invokes the ParallaxOcclusionMapping component
with the using keyword. A component may export multiple values
with public, so the using construct collects these values under a
user-selected name (in this case, pom), so that they can be used in
subsequent computations.

shader generateGBuffer(ViewParams V,
IMaterialPattern M,
IObjectTransform T)

{
using viewParams = V();
using va = VertexAttributes();

using xform = T();
vec3 P_world = xform.TransformPoint(va.P);
vec3 TanU_world = xform.TransformVector(va.TanU);
// ...
vec3 V_world = normalize(viewParams.eyePos - P_world);
vec3 V_tangent = WorldToTangentSpace(V_world);
using mat = M(vertUV: va.uv, viewVec: V_tangent);
// ...

public out vec4 outputAlbedo =
vec4(mat.albedo, mat.opacity);

public out vec4 outputPbr =
vec4(mat.roughness, mat.metallic,

mat.specular, mat.ao);
public out vec4 outputNormal =
vec4(mat.normal*0.5+0.5,

mat.isDoubleSided ? 1.0 : 0.0);
}
// omitted: ViewParams, IObjectTransform, and VertexAttributes

Listing 2. Shader entry point for a G-buffer generation pass, parameterized

on interfaces for thematerial pattern and transformation/animation features

of objects being rendered.

4.2 Shader Entry Point

Listing 2 shows an example shader entry point, generateGBuffer(),
which coordinates the execution of a G-buffer generation render
pass. This entry point sequences the overall shader execution by
using different components. These include components passed as
arguments, like T, but can also include components referenced di-
rectly by name, such as VertexAttributes. When a component has
required inputs, their values must be provided at the using site. In
this example, a texture coordinate (vertUV) and view vector (viewVec)
are explicitly provided to the material pattern M.
While much shader logic is expressed in components, a shader

entry point can also perform computation. The entry point in List-
ing 2 invokes methods on the transformation component to trans-
form values into world space, then transforms quantities to tangent
space before invoking the material pattern. Finally, the entry point
packs computed values into a small number of framebuffer outputs,
marked out.

5 IMPLEMENTING SHADER COMPONENTS

We have developed an open-source1 implementation of shader com-
ponents. Because a shader component bridges shader and host ap-
plication code, our implementation comprises both a compiler and
a high-performance reference rendering engine. The compiler is re-
sponsible for translating the shader component language into GLSL
kernels. The rendering engine is responsible for the implementation
of shader component instances, and for the lookup and caching of
variants.

1https://github.com/spire-lang/spire

ACM Trans. Graph., Vol. 36, No. 4, Article 100. Publication date: July 2017.

https://github.com/spire-lang/spire

100:6 • Yong He, Theresa Foley, Teguh Hofstee, Haomin Long, and Kayvon Fatahalian

interface IMaterialPattern
{
vec3 albedo = vec3(1.0);
vec3 normal = vec3(0.0, 0.0, 1.0);
float roughness;
float metallic;
float specular;
float opacity = 1.0;
float ao = 1.0;
bool isDoubleSided = false;
float selfShadow(vec3 lightDir) { return 1.0; }

}

Listing 3. Shader component interface for material patterns, defining the

outputs expected by the entry point in Listing 2.

// (a) Loading and inspecting shader code
void loadLibraryFromFile(const char* path);
void loadLibraryFromSource(const char* source);
ComponentClass* findComponent(const char* name);
Shader* findEntryPoint(const char* name);

// (b) Inspecting parameter block layouts
enum ResourceType { TEXTURE, BUFFER, ... };
int getResourceGroupCount(ComponentClass* cls)
ResourceType getResourceGroupType(ComponentClass* cls,

int index);
int getResourceGroupSlotCount(ComponentClass* cls,

int index);
int getUniformGroupSize(ComponentClass* cls, int index);

// (c) Generating shader variants
enum Stage { VERTEX, FRAGMENT, ... };
Variant* compileVariant(Shader* entryPoint,

ComponentClass** argClasses,
int argCount);

const char* getStageKernel(Variant*, Stage);

// (d) Specialization to parameter values
ComponentClass* specializeClass(ComponentClass* cls,

int const* paramValues,
int paramCount);

Fig. 3. Compiler API services provided to support engines using shader

components.

Because we have already covered the details of our language
design in Sections 3 and 4, the remainder of this section focuses on
the engine implementation, and in particular on the API services
that the compiler library must provide to enable that engine to
achieve high-performance binding of shader parameters. Figure 3
summarizes these services.
Our engine supports both Vulkan and OpenGL rendering; this

section focuses primarily on the Vulkan path.

5.1 Compiling and Loading Shader Code

The engine must first load a library of shader code before it can use
the components and entry points it defines:

loadLibraryFromFile("shaderlib.spire");

After this call, engine code can look up shader component classes
and entry points by name:

ComponentClass* ground = findComponent("GroundPattern");
Shader* gbufferGen = findEntryPoint("generateGBuffer");

In our current compiler API, libraries are always loaded from
source code. A more production-ready implementation might in-
troduce a serialized binary format to amortize the cost of front-end
parsing and checking.

5.2 Allocating Parameter Blocks

At runtime, the engine needs to allocate component instances, in-
cluding the underlying API objects that represent a parameter block.
In the context of our Vulkan engine, a parameter block comprises
a descriptor set, which holds references to resource parameters of
various kinds (textures, buffers, samplers, etc.), and (when required)
a uniform buffer to hold values of simple scalar, vector, and matrix
parameters. A component instance is represented with a C++ class
like the following:

class ComponentInstance {
ComponentClass* componentClass;
VkDescriptorSet descriptorSet;
VkBuffer uniformBuffer;
// ...

};

When creating a component instance, the engine must determine
the required layout and size for its descriptor set and uniform buffer.
To this end, the compiler provides an API for inspecting the parame-
ters of a component class, shown in Figure 3(b). The parameters of a
component are packed into “resource groups”, each of which can be
queried for the type of resource (buffer, texture, etc.) and the num-
ber of “slots” of that type that are used. For a group that represents
uniform parameters, the required buffer size can be queried. Our
API also provides a traditional reflection interface for looking up
the index/offset of an individual shader parameter by name, within
a component class.

5.3 Generating Shader Variants

Our engine populates a variant database as a pre-process, eliminat-
ing any need to generate variants on the fly at runtime. In order
to generate a complete varaint database, the engine enumerates all
of its entry points, and for each entry point, the combinations of
shader component classes that could be used as its arguments. For
each possible combination of entry point and arguments, the engine
invokes compiler services in Figure 3(c) to generate per-stage kernel
code for a variant:
ComponentClass* argClases[] = {
viewParams, ground, simpleTransform

};
Variant* v = compileVariant(gbufferGen, argClasses, 3);
const char* fragmentGLSL = getStageKernel(v, FRAGMENT);
// ...

After extracting per-stage kernel code from a variant, our engine
uses the Vulkan API to generate a suitable pipeline state object. Our
engine assigns each variant a unique ID, simply derived from the
name of the entry point and component classes used; the unique ID
can be used to identify a variant across process invocations.

5.4 Binding Parameter Blocks

Recall the simplified loop structure for a render pass from section
2.1. Equivalent pseudo-code for our engine would be:

ACM Trans. Graph., Vol. 36, No. 4, Article 100. Publication date: July 2017.

Shader Components: Modular and High Performance Shader Development • 100:7

for(v in view)
bindParameterBlock(0, v);
for(m in materials)

bindParameterBlock(1, m);
for(o in objects)

bindParameterBlock(2, o);
bindVariant(...);
draw();

In our engine implementation, each of these loops corresponds to a
loop over component instances, and the nesting of loops corresponds
to the argument list of a shader entry point (see Listing 2). Each
iteration of one of these loops binds a single parameter block (a
Vulkan descriptor set). Parameter block binding is performed by
engine code, without any interaction with our compiler API.

5.5 Looking up Shader Variants

For each iteration of the inner-most loop in a render pass, the engine
might need to bind a new shader variant. The appropriate variant
to use depends on the entry point in use and the classes of all its
argument components. A naive implementation strategy would
construct a unique ID, as described in Section 5.3, and use it as a
lookup key for, e.g., a hash table.
In our experience, looking up variants is performance critical,

so an engine should avoid an inefficient choice of key (such as a
variable-length unique ID string). To optimize variant lookup, our
engine assigns sequential small integers, called dynamic IDs to all
entry points and component classes, at load time. Note that dynamic
IDs are assigned to component classes–not instances, or composed
variants–so even a 16-bit ID can be sufficient.

When our engine needs to look up a shader variant, it concate-
nates the dynamic IDs of the entry point and components in use to
form a variant key. Our implementation uses a 128-bit variant key,
which is sufficient for entry points using up to 7 parameter blocks.
The variant key is then used to index a hash table. We evaluate the
performance impact of our variant lookup strategy in Section 6.2.

5.6 Specializing to Parameter Values

So far we have described how our system supports specialization of
a shader entry point to a particular choice of components. There
are also cases where it may be useful to specialize shader code to
particular values. For example, we may want to generate lighting
code specialized for different numbers of lights in a forward renderer.
We have extended our language to support specializable shader

parameters. Specializable parameters build upon the param syntax.
For example, a component class for lighting might declare:
component Lighting {
specializable bool enableShadowFiltering;
specializable int pointLightCount;
...

}

The specializable keyword may be added to shader parameter of
type bool or int, and indicates that the given parameter is usable
for specialization.
By default, our compiler does not perform specialization, and

specializable parameters are compiled as ordinary uniform param-
eters. Instead, a specialized version of a component class can be
explicitly requested during variant generation:

int paramValues[] = { false, 3 };
ComponentClass* threeLights = specializeClass(
lighting, paramValues, 2);

The result of value specialization is a new component class, which
will be given its own dynamic ID. As a result, all of the systems
described above, such as variant lookup, transparently work with
both the original class and any generated specializations.

5.7 Limitations

The design of shader components assumes a one-to-one correspon-
dence between a shader code module, a host-side object (such as a
material), and an API parameter block. This assumption works well
in cases such as materials, meshes, cameras, etc. but is strained when
a shader is logically parameterized on a collection of things: e.g., a
list of lights. This issue can be mitigated by identifying more coarse-
grained components (e.g., a lighting environment), but it is possible
that future extensions or modifications to the shader component
design could address collections of input more directly.

Our compiler implementation statically checks component classes
against their declared interfaces, but we have not yet implemented
similar checking for entry points; like a C++ template, the body
of an entry point is only fully checked when a concrete shader
variant is compiled. In the presence of dynamic composition, it is
not immediately clear what validation can be performed statically,
and which can only be performed at runtime.

6 EVALUATION

The goal of shader components is to provide both the software en-
gineering benefits of shader code modularity and the performance
benefit of efficient shader parameter binding for modern graphics
APIs. To evaluate the extent to which this goal was achieved, we
implemented a large, modular library of shader components and
entry points, and a high-performance renderer that uses these com-
ponents via the interfaces described in Section 5. We first report
on the experience of creating this shader library, then provide a
detailed analysis of rendering performance.

6.1 Shader Component Library

As described in Section 2.2, a modular shader code library allows
many different shading effects to be composed from reusable pieces.
To gain experience authoring shaders in terms of shader compo-
nents, we implemented a large library of shading effects as compo-
nents.
Our shader component library is patterned after functionality

present in AAA game engines with publicly available source [Ama-
zon 2016; Epic Games 2015], and it consists of over 40 components.
The library includes the following features:

• Skeletal animation
• PN-triangle tessellation [Vlachos et al. 2001]
• Cascaded shadow maps [Engel 2006]
• Directional lighting
• Physically based environment lighting [Karis 2013]
• Parallax occlusion mapping [Tatarchuk 2006]
• Atmosphere scattering [Bruneton and Neyret 2008]
• Per-material pattern generation (20 unique patterns)

ACM Trans. Graph., Vol. 36, No. 4, Article 100. Publication date: July 2017.

100:8 • Yong He, Theresa Foley, Teguh Hofstee, Haomin Long, and Kayvon Fatahalian

boxes / boxes1K factory1 factory2 rome

Fig. 4. Views of scenes used for performance evaluation. Statistics of these views can be found in Table 1.

Ex
ec

ut
io

n
tim

e
(m

s)

0
FACTORY1 FACTORY2

4

8

ROMEBOXES BOXES1K
0

5

15

10

0

VK total frame time
VK CPU time

VKMONO total frame time
VKMONO CPU time

GL total frame time
GL CPU time0

6

18

12

10

30

20

Fig. 5. Single-core CPU time (ms) and full-frame time for all three renderers. All implementations achieve high frame throughput, but vk uses over 2× less

CPU time compared to vkmono and gl. Note that total frame time includes CPU time; the bars are overlapped, not stacked. Full results are in Table 1.

• Material defined vertex animation
• Double-sided lighting
• Transparency and alpha masking

Our renderer also features three types of render passes imple-
mented as shader entry points: a G-buffer generation pass for opaque
objects, a forward lighting pass for transparent objects, and a pass
for shadow map generation.

By authoring shaders using shader components, we were able to
cleanly separate different concerns into independent modules (e.g.,
PN-triangle tessellation is decoupled from vertex transformation and
material pattern generation), and (via component interfaces) make
data dependencies between modules clear. While our shader imple-
mentations obviously do not incur the full complexity or software
legacy of code in a production game engine, detailed inspection of
the shader libraries in publicly available AAA engines suggests that
our component-based shader library is significantly cleaner, shorter,
and easier to read than implementations that attempt to leverage
the C preprocessor to achieve similar modularity and performance
goals.

6.2 Performance

A well-engineered renderer should be able to achieve high shader
parameter binding performance when using modern graphics APIs
with a shader component library. Specifically, it should render com-
plex scenes featuring many materials with low CPU overhead. In
the case of CPU-bound rendering, reducing CPU costs translates
directly into higher frame rate. In a GPU-bound scenario, reducing
CPU costs remains valuable since it enables more time to be spent
on other application tasks (e.g., AI, animation, physics).

To understand the performance benefits of efficiently managing
shader and shader parameter binding, we implemented a Vulkan-
based renderer (vk). The renderer creates all component instances
at scene load time and pre-allocates a Vulkan descriptor set for each
component instance. As discussed in Section 5.4, switching com-
ponent instances results in binding a single Vulkan descriptor set.

When drawing consecutive objects with different material parame-
ters, only three Vulkan commands are generated to bind descriptor
sets for the material and object components and issue the draw
call. To avoid unnecessary CPU work or GPU pipeline stalls, the
renderer sorts scene objects by material during opaque rendering
passes (sorting cannot be done when rendering transparent objects)
and only binds new shader variants when required.

We compared the performance of vk against two baseline render-
ers. The first (vkmono) is a Vulkan-based renderer that simulates
common practice in many state-of-the-art game engines (see Sec-
tion 2.3) by dynamically allocating and initializing a monolithic
descriptor set for all shader parameters before each draw call (in-
stead of pre-allocating separate descriptor sets). The second (gl) is a
well-optimized OpenGL-based renderer that issues only necessary
state-change API calls between draw calls. All renderers run in a
single thread, so the Vulkan-based renderers do not take advantage
of CPU parallelism opportunity offered by Vulkan.
We evaluated all three renderers on three variations of a mi-

crobenchmark scene (used as performance stress tests) and two full
scenes purchased from the Unreal Marketplace.

• boxes. Our microbenchmark scene consists of 10,000 ran-
domly placed boxes. All objects share the same material (re-
sulting in two shader variants: one for forward rendering pass
and one for the shadow generation pass). As this scene re-
quires only one parameter block binding per draw call (for the
transformation component), it serves as a high-watermark
for rendering performance.

• boxes1K. The same microbenchmark scene as above, but with
1,000 unique materials requiring 100 unique shader variants
per entry point (200 in total). This microbenchmark simulates
a scene with high material diversity.

• boxes1KSp. The same microbenchmark scene, but with a
unique shader variant per material (2000 total). This scene
simulates situations where an engine chooses to specialize
shaders by “baking”material parameters into code as constant
immediate values (as in UE4).

ACM Trans. Graph., Vol. 36, No. 4, Article 100. Publication date: July 2017.

Shader Components: Modular and High Performance Shader Development • 100:9

Scene Draw Calls Variants / Binds Materials / Binds CPU / Total (vk) CPU / Total (vkmono) CPU / Total (gl)
boxes 17,431 2 5 1 5 4.1 4.4 10.8 11.4 14.9 15.6
boxes1K 17,431 200 480 1,000 3,635 11.2 11.6 23.9 24.7 25.3 25.9
boxes1KSp 17,431 2,000 3,635 1,000 3,635 56.2 57.1 63.0 63.9 85.8 86.9
factory1 8,755 26 130 84 421 1.8 6.4 4.0 7.0 6.5 6.8
factory1Sp 8,755 162 418 84 421 1.9 6.5 4.1 7.1 7.6 7.9
factory2 10,988 26 220 84 537 2.2 7.1 5.0 7.9 8.6 9.0
factory2Sp 10,988 162 533 84 537 2.3 7.0 5.1 7.8 9.9 10.5
rome 26,834 24 129 67 829 5.1 6.6 11.9 12.4 16.5 16.9
romeSp 26,834 158 833 67 822 5.5 6.6 12.1 12.6 19.0 19.4

Table 1. Full statistics for all scenes. Draw Calls: number of draw calls made to render the view, Variants: number of distinct shader variants (+ number of

variant changes per frame), Materials: number of distinct surface pattern component instances (+ number of parameter set changes per frame). The table also

provides single core CPU time (ms) and full-frame time using all three renderers.

• factory1 and factory2 are views of a factory environment
from the Unreal Marketplace. The scene has 84 unique mate-
rials (26 shader variants) and contains transparent geometry
(preventing sorting by material) that increases the total num-
ber of required shader variant and material switches during
rendering. factory1Sp and factory2Sp are versions of the
same scenes, but with a unique specialized shader variant per
material as discussed above (162 total shader variants).

• rome (and its specialized version romeSp) is a second complex
environment from the Unreal Marketplace.

All scenes are rendered at 1920×1080 with directional lighting
using four shadow map cascades and image-based environment
lighting. Renderings of these views are shown in Figure 4, and key
statistics such as number of draw calls, shader variant changes, and
shader parameter changes per frame, are shown in Table 1.
Figure 5 shows the performance of all renderers on all scenes.

Detailed data and performance of specialized scene versions are
available in Table 1. Measurements were performed on a machine
with an Intel i7-5820K CPU (only one render thread) and an NVIDIA
GeForce GTX 980Ti GPU. All renderers achieved high rendering
throughput despite high draw-call complexity of the scenes, indi-
cating that the baselines are well optimized.
The vkmono baseline follows common practice in commercial

engines and achieves a similar level of performance to UE4 (when
configured to use D3D12). For example, vkmono renders the entire
factory1Sp scene with a total frame time of 4.1ms, while UE4
running on the same machine takes 4.0ms of CPU time to complete
just its shadow and base passes. This comparison is not direct; we
exclude passes from the UE4 timing where our engine does not have
equivalent features. As such, this data should only be taken as an
indication that vkmono is a strong baseline.
Benefits of efficient parameter binding. The results in Figure 5

demonstrate that minimizing changes to shader parameter state can
notably reduce CPU cost. In the factory1, factory2, and rome
scenes, the vk renderer incurs over 2× lower CPU cost than vkmono.
While this CPU cost savings translates into a 5-50% reduction in
overall frame time for these scenes, the most important benefit of
the vk renderer’s efficiency would be realized by other game engine
subsystems. As expected, the performance benefits of vk are most

extreme on the boxes microbenchmark, where vk incurs 2.6× and
3.6× less CPU time than vkmono and gl. (The vk renderer issues
near 4 million draw calls per second from a single CPU core on
boxes.) The CPU cost difference between vk and the vkmono and
gl baselines shrinks to 2.1× and 2.3× on boxes1K, where the 1000
unique materials require more frequent parameter binding.
Effects of aggressive shader specialization. As expected, the per-

formance benefit of vk compared to vkmono narrows when an
engine excessively specializes shaders to parameter values, since
frequent parameter and shader variant binding changes are required
in this style of renderer design. This effect is most visible for the
boxes1KSp scene, where vk provides only a 10% improvement in
CPU overhead, compared to an over 2× improvement for boxes1K
(Table 1). In more realistic scenarios, the benefit of vk remains sig-
nificant even with aggressive specialization: over 2× lower CPU
overhead than vkmono for factory1Sp, factory2Sp, and romeSp .
The synthetic boxes1K scene was created specifically to evalu-

ate the cost of frequent material changes. boxes1K and boxes1KSp
use over 10× more materials than the factory and rome scenes.
At this scale, work done per-material and per-variant starts to
dominate frame time, so the additional binding work caused by
over-specialization has a larger impact: the vk rendering time for
boxes1KSp is over 5× that of boxes1K.

Costs of dynamic shader variant lookup. Finally, we measured the
CPU cost of the dynamic shader variant lookup procedure described
in Section 5.5. Although our implementation of variant lookup could
be further optimized, we find that the cost of variant lookup is
already low: less than 5% of total CPU render thread time in the
factory scenes, and 12% in the boxes microbenchmark stress test.
When objects have statically-assigned materials and the pipeline
state to render an object does not change dynamically (true in our
scenes), it is possible to cache the shader variant associated with
each object in the object itself, avoiding the need for any dynamic
shader variant lookup; we have implemented this optimization, but
do not enable it for the results in this section.

7 RELATED WORK

We believe shader components are an elegant solution, embodying
a carefully chosen set of design principles. Many of these same

ACM Trans. Graph., Vol. 36, No. 4, Article 100. Publication date: July 2017.

100:10 • Yong He, Theresa Foley, Teguh Hofstee, Haomin Long, and Kayvon Fatahalian

principles have been embodied in prior systems, and in this section
we identify common threads across prior approaches. In some cases,
similarities in prior work have been obscured by differences in
terminology, syntax, or implementation, so we align them all to the
conceptual model and terminology of shader components.

7.1 Components encapsulating code and parameters

Cg interfaces [Mark et al. 2003; Pharr 2004], HLSL interfaces [Microsoft
2011], and Spark [Foley and Hanrahan 2011] allow components to be
expressed in a shading language using object-oriented classes which
encapsulate both code and associated (parameter) data; our system
follows this approach. The use of metaprogramming in Sh [McCool
and Du Toit 2004; McCool et al. 2002] allows shader components to
be implemented as C++ classes in host code. RTSL [Proudfoot et al.
2001] uses function syntax for components, but takes inspiration
from the RenderMan Shading Language, where shaders are seman-
tically treated as classes [Hanrahan and Lawson 1990, Section 3.3].

GLSL shader subroutines [Kessenich et al. 2014; Khronos Group,
Inc. 2009] introduce a modularity construct (a kind of restricted
function pointer) that can encapsulate a choice of code, but not the
corresponding parameter data (there is no support for closures).
Most production shader code is written in a procedural style

using HLSL or GLSL, without their interface or subroutine features,
respectively. An important, but seldom discussed feature of both
HLSL and GLSL is that shader parameters are typically declared at
the global scope (rather than in the parameter list of a shader entry
point, which might seem more natural and explicit). Support for
parameter declarations at global scope enables ad hoc modularity to
be achieved by defining the code and parameters for each feature in
a separate file, so that features may be included or excluded using
the preprocessor (e.g., as shown in Figure 1 in Section 2.2).

7.2 Components exposed to host code as objects

As discussed in Section 2.3, the Unreal Engine exposes important
shader features to host code as C++ objects. This kind of usage
is directly supported by Sh, when components are authored as
host application classes. Spark automatically generates similar C++
classes to expose shader components to host code.
The runtime API for RTSL conflates shader component classes

and instances; the effect is as if only a single instance of each class
is allowed. GLSL does not need a notion of component instances,
because its subroutines only encapsulate code, not data.

The runtime API for Cg interfaces allows component instances to
be allocated and referred to by handles. The Direct3D 11 API (which
supports HLSL interfaces) includes only a minimal amount of low-
level support for component instances; a more complete Cg-like API
could be layered on top of this. Our work is most similar to HLSL
and Direct3D 11 in this regard, as we argue that the implementation
of a runtime library for component instances is best done in engine
code, rather than a one-size-fits-all runtime.

Our system is the first to propose mapping components in a shad-
ing language to parameter blocks. However, prior systems predate
Vulkan and Direct3D 12, so parameter blocks were not available as
an implementation choice.

7.3 Entry points parameterized on interfaces

Cg and HLSL both allow a shader entry point, as well as arbitrary
functions, to be parameterized on interfaces. GLSL shader subrou-
tines and their use sites are statically checked against separately-
declared subroutine types, which serve as interfaces. When using
Sh, a host application function can serve as an entry point, with
C++ abstract classes serving as interfaces.
Spark does not have a separate notion of an entry point, and

instead expects the overall dataflow for a render pass to arise solely
from a composition of components.
At first it appears that RTSL has no notion of entry points or

interfaces. However, RTSL supports declarations of surface and
light shaders, and these keywords can be seen as associating each
shader with one of two built-in interfaces. There is effectively a
single built-in entry point in RTSL, which is parameterized on a
single surface shader component and zero or more light components.

7.4 Semantics of polymorphic component dispatch

Both Cg and Spark implement their object-oriented syntax with
static polymorphism, as does our system (Section 3.5). Because Sh
is metaprogrammed, dynamic dispatch in a host application can be
used to achieve the same result.
In contrast, both HLSL interfaces and GLSL subroutines are de-

signed to expose a limited form of dynamic dispatch. For example,
the HLSL front-end translates a call through an interface into an
indirect branch using a jump table. The use of dynamic dispatch
effectively trades off GPU efficiency for a possible reduction in CPU
overhead (because fewer state changes are made to switch shader
kernels). Our experience suggests that with the CPU overhead reduc-
tions made possible by modern APIs (see Section 6.2), such trade-offs
may not be worth it.

A key difference of our design from prior systems is that we argue
(in Section 3.6) that the generation, specialization, and selection of
shader variants should be controlled by engine-specific code, rather
than an opaque language runtime or GPU driver.

8 DISCUSSION

This paper has shown that while modular shader development and
high rendering performance might appear to be at odds, this is not
actually the case. By introducing a first-class modularity construct,
shader components, to a real-time shading language, and by imple-
menting that construct efficiently onmodern graphics APIs, we have
shown that modularity and performance can be complementary,
rather than conflicting, goals.
Our contribution rests on the observation that a similar decom-

position arises when organizing a renderer or graphics API around
rates of change as when modularizing a shader codebase around
features. Despite the simplicity of this observation, it has not been
made explicit in prior work.

Two of the modularity constructs we discussed in Section 7–GLSL
subroutines and HLSL interfaces–are supported by mainstream
graphics APIs–OpenGL and Direct3D 11, respectively. It is worth
noting, that support for these constructs was removed as part of the
shift to Vulkan and Direct3D 12. We take this as further evidence

ACM Trans. Graph., Vol. 36, No. 4, Article 100. Publication date: July 2017.

Shader Components: Modular and High Performance Shader Development • 100:11

that the link between efficient rendering and shader modularity is
non-obvious, even to experts in the field.
The shift to modern graphics APIs has also seen the introduc-

tion of low-level intermediate language (IL) interfaces for shaders,
such as SPIR-V [Kessenich et al. 2016]. With IL interfaces comes the
prospect of an ecosystem of shading languages and tools built by
and for game developers, and with the freedom to experiment and
innovate outside of any API standard processes, we are hopeful that
our work will provide inspiration to a new generation of production
shader programming models.

ACKNOWLEDGMENTS

Support for this research was provided by the National Science Foun-
dation (IIS-1253530), a NVIDIA Faculty Partnership, and a NVIDIA
Graduate Fellowship. We would like to thank Nir Benty for his
valuable feedback.

REFERENCES

Amazon. 2016. Lumberyard Engine. https://aws.amazon.com/lumberyard/. (2016).
David Blythe. 2006. The Direct3D 10 System. ACM Transactions on Graphics 25, 3 (July

2006), 724–734. DOI:https://doi.org/10.1145/1141911.1141947
Eric Bruneton and Fabrice Neyret. 2008. Precomputed Atmospheric Scattering. Com-

puter Graphics Forum (2008). DOI:https://doi.org/10.1111/j.1467-8659.2008.01245.x
Woflgang F. Engel. 2006. Cascaded Shadow Maps. In ShaderX5 - Advanced Rendering

Techniques, Woflgang F. Engel (Ed.). Boston, Massachusetts, Chapter 4, 197–206.
Epic Games. 2015. Unreal Engine 4 Documentation. http://docs.unrealengine.com.

(2015).
Tim Foley and Pat Hanrahan. 2011. Spark: Modular, Composable Shaders for Graphics

Hardware. ACM Trans. Graph. 30, 4, Article 107 (July 2011), 12 pages.
Pat Hanrahan and Jim Lawson. 1990. A Language for Shading and Lighting Calculations.

SIGGRAPH Comput. Graph. 24, 4 (Sept. 1990), 289–298.
Yong He, Tim Foley, and Kayvon Fatahalian. 2016. A System for Rapid Exploration

of Shader Optimization Choices. ACM Trans. Graph. 35, 4, Article 112 (July 2016),
12 pages.

Brian Karis. 2013. Real Shading in Unreal Engine 4. In SIGGRAPH 2013 Course Notes:
Physically Based Shading in Theory and Practice. http://blog.selfshadow.com/
publications/s2013-shading-course/.

John Kessenich, Dave Baldwin, and Randi Rost. 2014. The OpenGL© Shading Language
(Version 4.50). https://www.opengl.org/registry/doc/GLSLangSpec.4.50.pdf.

John Kessenich, Boaz Ouriel, and Raun Krisch. 2016. SPIR-V Specification Provisional
(Version 1.1, Revision 4). https://www.khronos.org/registry/spir-v/specs/1.1/SPIRV.
pdf.

Khronos Group, Inc. 2009. ARB_shader_subroutine. https://www.opengl.org/registry/
specs/ARB/shader_subroutine.txt. (2009).

Khronos Group, Inc. 2016. Vulkan 1.0.38 Specification.
William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. 2003. Cg: A

System for Programming Graphics Hardware in a C-like Language. ACM Trans.
Graph. 22, 3 (July 2003), 896–907.

Michael D. McCool and Stefanus Du Toit. 2004. Metaprogramming GPUs with Sh. A K
Peters. I–XVII, 1–290 pages.

Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. 2002. Shader Metaprogramming.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware (HWWS ’02). 57–68. http://dl.acm.org/citation.cfm?id=569046.569055

John McDonald. 2016. High Performance Vulkan: Lessons Learned from Source 2. In
GPU Technology Conference 2016 (GTC). http://on-demand.gputechconf.com/gtc/
2016/events/vulkanday/High_Performance_Vulkan.pdf.

Microsoft. 2011. Interfaces and Classes. https://msdn.microsoft.com/en-us/library/
windows/desktop/ff471421.aspx. (2011).

Microsoft. 2017. Direct3D 12 Programming Guide. https://msdn.microsoft.com/en-
us/library/windows/desktop/dn899121(v=vs.85).aspx. (2017).

Matt Pharr. 2004. An Introduction to Shader Interfaces. In GPU Gems: Programming
Techniques, Tips and Tricks for Real-Time Graphics, Randima Fernando (Ed.). Pearson
Higher Education.

Aras Pranckevičius. 2015. Porting Unity to new APIs. In SIGGRAPH 2015 Course Notes:
An Overview of Next-generation Graphics APIs. DOI:https://doi.org/10.1145/2776880.
2787704 http://nextgenapis.realtimerendering.com/presentations/7_Pranckevicius_
Unity.pptx.

Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov, and Pat Hanrahan. 2001. A
Real-Time Procedural Shading System for Programmable Graphics Hardware. In

Proceedings of SIGGRAPH 01, Annual Conference Series. ACM, New York, NY, USA,
159–170.

Natalya Tatarchuk. 2006. Dynamic Parallax Occlusion Mapping with Approximate
Soft Shadows. In Proceedings of the 2006 Symposium on Interactive 3D Graphics and
Games (I3D ’06). ACM, New York, NY, USA, 63–69. DOI:https://doi.org/10.1145/
1111411.1111423

Alex Vlachos, Jörg Peters, Chas Boyd, and Jason L. Mitchell. 2001. Curved PN Triangles.
In Proceedings of the 2001 Symposium on Interactive 3D Graphics (I3D ’01). ACM,
New York, NY, USA, 159–166. DOI:https://doi.org/10.1145/364338.364387

ACM Trans. Graph., Vol. 36, No. 4, Article 100. Publication date: July 2017.

https://aws.amazon.com/lumberyard/
https://doi.org/10.1145/1141911.1141947
https://doi.org/10.1111/j.1467-8659.2008.01245.x
http://docs.unrealengine.com
http://blog.selfshadow.com/publications/s2013-shading-course/
http://blog.selfshadow.com/publications/s2013-shading-course/
https://www.opengl.org/registry/doc/GLSLangSpec.4.50.pdf
https://www.khronos.org/registry/spir-v/specs/1.1/SPIRV.pdf
https://www.khronos.org/registry/spir-v/specs/1.1/SPIRV.pdf
https://www.opengl.org/registry/specs/ARB/shader_subroutine.txt
https://www.opengl.org/registry/specs/ARB/shader_subroutine.txt
http://dl.acm.org/citation.cfm?id=569046.569055
http://on-demand.gputechconf.com/gtc/2016/events/vulkanday/High_Performance_Vulkan.pdf
http://on-demand.gputechconf.com/gtc/2016/events/vulkanday/High_Performance_Vulkan.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/ff471421.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff471421.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn899121(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn899121(v=vs.85).aspx
https://doi.org/10.1145/2776880.2787704
https://doi.org/10.1145/2776880.2787704
http://nextgenapis.realtimerendering.com/presentations/7_Pranckevicius_Unity.pptx
http://nextgenapis.realtimerendering.com/presentations/7_Pranckevicius_Unity.pptx
https://doi.org/10.1145/1111411.1111423
https://doi.org/10.1145/1111411.1111423
https://doi.org/10.1145/364338.364387

	Abstract
	1 Introduction
	2 Background
	2.1 Organizing a Renderer for Performance
	2.2 Composing Shaders from Modules
	2.3 Modular Shaders and Efficient Binding Don't Mix

	3 System Design
	3.1 A shader component encapsulates both the code and parameters of a feature
	3.2 A component is exposed to host code as an object
	3.3 A component instance maps to a parameter block
	3.4 Entry points are parameterized on interfaces
	3.5 Components use static polymorphism
	3.6 The engine controls variant lookup and caching
	3.7 Components support multi-rate programming

	4 Examples
	4.1 Material Pattern Component
	4.2 Shader Entry Point

	5 Implementing Shader Components
	5.1 Compiling and Loading Shader Code
	5.2 Allocating Parameter Blocks
	5.3 Generating Shader Variants
	5.4 Binding Parameter Blocks
	5.5 Looking up Shader Variants
	5.6 Specializing to Parameter Values
	5.7 Limitations

	6 Evaluation
	6.1 Shader Component Library
	6.2 Performance

	7 Related Work
	7.1 Components encapsulating code and parameters
	7.2 Components exposed to host code as objects
	7.3 Entry points parameterized on interfaces
	7.4 Semantics of polymorphic component dispatch

	8 Discussion
	References

