
To appear in ACM TOG 33(4).

Self-Refining Games using Player Analytics

Matt Stanton1 Ben Humberston1 Brandon Kase1 James F. O’Brien2 Kayvon Fatahalian1 Adrien Treuille1

1Carnegie Mellon University 2University of California at Berkeley

+10+10+10+10+10+10+10+10+10+10+10+10+10+10

Figure 1: A self-refining liquid control game uses player analytics to guide precomputation to the most visited regions of the liquid’s state
space. The game’s quality continuously improves over time, ultimately providing a high-quality, interactive experience.

Abstract

Data-driven simulation demands good training data drawn from a
vast space of possible simulations. While fully sampling these large
spaces is infeasible, we observe that in practical applications, such
as gameplay, users explore only a vanishingly small subset of the
dynamical state space. In this paper we present a sampling ap-
proach that takes advantage of this observation by concentrating
precomputation around the states that users are most likely to en-
counter. We demonstrate our technique in a prototype self-refining
game whose dynamics improve with play, ultimately providing re-
alistically rendered, rich fluid dynamics in real time on a mobile de-
vice. Our results show that our analytics-driven training approach
yields lower model error and fewer visual artifacts than a heuristic
training strategy.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.5.1 [Pattern Recognition]:
Models—Statistical; I.6.8 [Simulation and Modeling]: Types of
Simulation—Gaming;

Keywords: games, data-driven animation, player models

1 Introduction

In interactive simulation, data-driven techniques trade precomputa-
tion time for runtime speed and detail, enabling stunningly realistic
animation of curling smoke [Treuille et al. 2006; Wicke et al. 2009],
flowing cloth [Guan et al. 2012; Kavan et al. 2011], and deforming
bodies [Barbič and James 2005]. The shift towards cloud comput-
ing services provides interesting new opportunities for data-driven
techniques by making it easier to perform ever more massive pre-
computations based on large quantities of data [Kim et al. 2013].

Data-driven methods, however, are only as good as their precompu-
tation. Even with vast computational resources, dynamical spaces
are so large that we cannot precompute everything. Fortunately, ex-
haustive precomputation is unnecessary: user interactions are typ-
ically structured and thus explore only a vanishingly small subset
of the configuration space. This is particularly true for the focus
of this paper, games, whose objectives can strongly shape player
interactions. The main challenge is to automatically discover struc-
ture from crowdsourced interaction data and exploit it to efficiently
sample the dynamical state space.

To address this challenge, we have developed a model self-refining

Figure 2: Our data-driven approach enables the high quality inter-
active simulation of free-surface fluids on a mobile device.

game whose dynamics improve as more people play. The game-
play, controls, and objective are simple: the player tilts their mobile
device and tries to cause a simulated liquid to splash through a tar-
get area of the domain (Fig. 1). Points are awarded according to
the volume of the fluid passing through the target. Although the
game is simple, the dynamics are not: free-surface fluids exhibit
rolling waves, droplet sprays, and separating sheets which cannot
be simulated and rendered in real time on today’s mobile devices.

Our data-driven solution is general, applicable to any dynamical
system whose controls can be represented as a selection of discrete
choices at discrete time intervals. We model the game as a state
graph whose vertices are states and whose edges are short transi-
tions between states. At runtime, the control (in this case, phone
tilt) determines which transition to follow. Typically, each tran-
sition is simulated, but because we can only precompute a finite
number of transitions, some edges blend simulations, returning to
a previously computed state. Following Kim et al. [2013], our
precomputation process interactively grows the state space by suc-
cessively replacing blend edges with real simulation edges and new
states.

The question then becomes: which states should we explore? We
show that naı̈ve growth strategies construct vast state graphs that
only barely overlap with states explored by real players; these
graphs also contain significant visual errors. Using player data,
however, enables a novel form of crowd-based sampling which con-
centrates on those states players actually visit, building significantly
better state graphs with far fewer visual artifacts.

Our main contributions are as follows. We present self-refining
games, whose dynamics are discretized into a state graph, along

1

To appear in ACM TOG 33(4).

with a sampling method to improve this graph based on player an-
alytics. Such games exhibit increased fidelity as more player data
is collected. Our continuous improvement process exploits a new
sampling strategy incorporating real player data in order to signifi-
cantly outperform previous strategies. [Kim et al. 2013] We present
an algorithm, STATERANK, which estimates the global probability
of each state relative to a player model, and we show how to boot-
strap game construction with a simple a priori player model. We
adapt this framework to free-surface fluids using a novel similar-
ity metric and blending technique. Finally, we discuss the systems
challenges in constructing, maintaining, compressing, and analyz-
ing large-scale simulation data in the cloud.

2 Related Work

Crowdsourcing has become a major research topic with applica-
tions including text recognition [von Ahn et al. 2008], drawing
classification [Eitz et al. 2012], and performing user studies [Kit-
tur et al. 2008]. One important subgenre of this research studies
games which intrinsically motivate players to perform tasks from
labeling images [von Ahn and Dabbish 2004; von Ahn et al. 2006]
to designing biomolecules [Cooper et al. 2010; Lee et al. 2014].

Another major application of crowdsourcing to games is using
player data to improve the gameplay experience. Zook et al. [2014]
tune game parameters based on gameplay traces, the DrawAFriend
game [Limpaecher et al. 2013] uses data from previous players
to build a drawing improvement engine for later players, and Mi-
crosoft Research’s Drivatar uses traces from a racing game to
improve in-game driving controllers [Microsoft 2013]. Smith et
al. [2011] describe a spectrum of different player models; in their
taxonomy, our bootstrap model (§4.1) is a Universal Synthetic Gen-
erative Action model, and our learned model (§4.2) is a Universal
Induced Generative Action model. Learned player-specific models
have been used to build player-adaptive AI [Houlette 2003], and to
generate customized levels [Zook et al. 2012] and stories [El-Nasr
2007; Thue et al. 2007].

We present a new application, self-refining games. These games
use player models learned from crowdsourced gameplay data to im-
prove the accuracy and fidelity of the game dynamics. Self-refining
games improve gameplay by generating a continually-improving
sampling of the game state space, which is then played back at run-
time. This playback mechanism is similar to video textures [Schödl
et al. 2000], although we are not limited to a single fixed input
video. It is also reminiscent of the video-playback mechanics of
Dragon’s Lair [Cinematronics 1983], although since we do not de-
pend on human animators we are capable of generating vastly larger
data sets. Our game improvement method is automatic and gener-
alizes across a large class of games.

While our approach is general, this paper focuses specifically on
precomputed fluids – a topic of extensive recent graphics research.
Early monolithic fluid models [Treuille et al. 2006] have been gen-
eralized to include fluid rendering [Gupta and Narasimhan 2007],
control [Barbič and Popović 2008], domain decomposition [Wicke
et al. 2009], and to capture non-polynomial dynamics [Kim and De-
laney 2013; Stanton et al. 2013]. Despite these advances, modeling
free-surface fluids remains a challenge for data-driven simulation,
due to the complexity of reducing the pressure discontinuity at the
surface. We successfully model-reduce such liquids using a state-
tabulation approach described below.

Our method explicitly tabulates arbitrary dynamics and rendering
in an offline process. This approach was pioneered by James and
Fatahalian [2003] who tabulated the dynamics of deformable mod-
els driven by a small palette of impulse forces. Kim et al. [2013]

extended this approach to cloth dynamics and used far greater com-
putational resources to form a near exhaustive portrait of clothing
motion on a moving character. Our graph structure and growth pro-
cess are similar to those of Kim et al., although we adapt these
ideas to liquids using a new similarity measure and blend function.
Rather than compress three-dimensional data, we render the liquid
from a fixed viewpoint producing tens of thousands of tiny video
clips which can be concatenated to form animation. In principle,
however, rendering could be decoupled and performed on either
the client or in the cloud. Most importantly, we show how to use
player data to counteract the effectively infinite complexity of the
state space.

Data-driven methods are only as good as their precomputation data.
Kim and James [2009] solve this problem by incrementally build-
ing a reduced model for a specific simulation trajectory. By con-
trast, we attempt to capture an entire space of trajectories through
a continuous state sampling process which uses game analytics to
focus on that subset of the dynamics that players really explore. To
achieve this goal, we estimate state visit probabilities using an al-
gorithm, STATERANK, which computes the stationary distribution
of a Markov chain [Feller 1968] with transition probabilities de-
rived from a player model, similar to the PAGERANK algorithm of
Page et al. [1999].

Other researchers have used user data to refine generative anima-
tion models. McCann and Pollard [2007] used gameplay traces to
select transition from a fixed motion graph, and Cooper et al. [2007]
focused on computer-in-the-loop sampling of human motion cap-
ture data for a fixed set of known objectives. In contrast, we learn
models of human player behavior in order to refine game dynam-
ics through adding new transitions to a continually-expanding state
graph.

Conventional simulation has also been adapted to capture real-time
fluids. Approaches include 2D shallow-water methods [Št’ava et al.
2008; Thurey et al. 2007; Chentanez and Müller 2010], particle-
based methods [Macklin and Müller 2013], grids [Crane et al.
2007], and hybrid methods [Chentanez and Müller 2011]. Typ-
ically, conventional fluid simulation offers greater flexibility than
data-driven methods in exchange for far higher runtime costs. By
contrast, our crowdsourcing approach enjoys the same runtime ef-
ficiency as other data-driven methods while enabling, in principle,
simulation of arbitrary trajectories.

3 State Graphs

We now describe a method for creating self-refining games based
on learned player behavior. The foundation for these games is the
state graph, whose vertices are game states, and whose edges are
transitions induced by player actions. These graphs are similar to
the secondary motion graphs of Kim et al. [2013]. A game could
be represented by a single graph, or could use multiple graphs to
represent different areas, levels, or challenges. To initialize a new
state graph we use a heuristic player model to bootstrap synthesis
of a minimally playable experience. Then, we make the game avail-
able to players and collect traces of the paths they take through this
graph during play. We use these paths to learn a model of player
behavior that is used to prioritize graph growth, adding states and
increasing fidelity in those regions players are most likely to visit.
By repeatedly collecting player data, updating our player model,
and using the updated model to grow the graph, we create a game
that continually improves over time. This process is general, and
can be applied to any precomputed game with discrete control.

In this section, we describe our game model and the mechanics of
graph growth. In the next section (§4), we describe how we learn

2

To appear in ACM TOG 33(4).

eb eb

ed
ed

e1 e2

e3 e4 e5 e6

e1 e2

ea

ec

e1 e2

ea

e5

ee ef

Figure 3: State graph initialization and growth. Solid edges corre-
spond to simulations and dashed edges correspond to blends. Left:
We initialize the graph by sampling a tree of simulation data. Cen-
ter: We transform the tree into a complete state graph by replacing
dead-end edges with blends. For example, ec is formed by blending
dead end e5 with e1. Right: We expand the graph to remove er-
ror along blend ec by removing ec, re-inserting e5, and simulating
new animations from e5 for each control. The new simulations form
new dead ends that are blended to create ee and ef . A self-refining
game repeats this last step continuously.

player behavior models from collected player data. The follow-
ing section (§5) applies this general framework to free-surface fluid
simulation.

In a state graph, each edge is associated with an animation connect-
ing its source and destination states. The format of these animations
is application-dependent, but they could be video clips, sequences
of triangle meshes, or any other encoding of the dynamics that we
wish to display. We consider games that sample player input from
a set of N discrete controls, so that each vertex has N outgoing
edges. At runtime, the system replays edge animations, determin-
ing which branch to take based on player control. If the transition
edges are sufficiently short (1/3 of a second in our application) the
game feels interactive. We discuss the choice of transition edge
durations further in §8.

To initialize a new state graph, we begin at a start state and simulate
every possible outgoing transition. We continue this process, gen-
erating N new simulations from each state until we create a small
N -ary tree (Fig. 3, left). Leaf edges represent dead ends in the state
graph which we eliminate by blending with interior edge transitions
leading back to an internal node. This blending procedure turns the
tree into a complete state graph (Fig. 3, center). Since we begin
with only a small tree, it is likely that many of these blends were
between dissimilar edges, and therefore of low quality.

We improve the quality of the graph by growing it using new sim-
ulation data, similar to [Kim et al. 2013]. We grow the graph by
replacing blend edges with simulation edges. To add a simulation
edge e to the graph, we simulate the N outgoing transitions which
follow e and blend these simulations into interior simulation edges
(Fig. 3, right) selected to minimize an estimate of the perceptual
error of the blend. Growing the graph can be a continuous process,
going on as long as we have space to store the results of new sim-
ulations. The key challenge is determining which blend edges to
replace.

We can view this question as one of graph quality evaluation. If we
can quantify each edge’s contribution to the quality of the graph,
a simple strategy to reduce error is to greedily replace the blend
edge most detrimental to the quality of the graph. The behavior of
this strategy depends strongly on which measure of graph quality
is selected. Kim et al. [2013] use a worst-case quality measure:
maxe∈B(err(e)), where B is the set of blend edges in the graph
and err is an application-defined estimate of a blend edge’s percep-
tual error. This metric, which we call BASELINE, suggests that we
should always replace the blend edge emax with the highest error.

In a simulation-based game, however, the game occupies a huge

state space, and the game objective encourages players to pursue
strategies that lead to rewards. Therefore, it is likely that players
will never visit the vast majority of the state space, rendering most
of BASELINE’s additions to the graph wasteful. Instead, we pro-
pose a different metric, STATERANK, which measures the expected
error:

∑
e∈B P (e)err(e), where P (e) is the probability of travers-

ing the edge e. This metric suggests we replace the blend edge
eexp with maximum expected error P (eexp)err(eexp). We infer
P (e) from a player model P (c|v) giving conditional probabilities
of controls c at each vertex v. Similar to the PAGERANK [Page
et al. 1999] procedure for ranking webpages, STATERANK com-
putes edge probabilities P (e) as the normalized first eigenvector of
the transition matrix implied by P (c|v).

If STATERANK correctly predicts edge probabilities, then this pro-
cedure will improve graph quality around precisely those states
players are most likely to visit. To accurately estimate P (e), how-
ever, we must have accurate estimates of the player control prob-
abilities P (c|v). In the next section we discuss how we learn this
player model P (c|v) from analytics data.

4 Player Model

The previous section explains how we can use a player model
P (c|v) to improve our sampling of huge state spaces. In this sec-
tion we describe both how we can learn player models from data
and how we use these models to create self-refining games. We
use two different player models: a heuristic model to bootstrap the
simulation, and a learned model to guide our exploration.

4.1 Bootstrap Model

When the game is first created, no player data exists. To bootstrap
state graph growth, we use a heuristic player model Ph(c|v) which
essentially guesses what players will do. Many heuristics are pos-
sible, and the best heuristic will vary by application. In this study,
we maintain the current control with probability α and otherwise
choose an alternate control uniformly at random:

Ph(c|v) =

{
α if c = cv
(1− α) /N otherwise.

(1)

Combining this heuristic player model with STATERANK produces
a growth strategy we call SR-HEURISTIC. This simple model can
initialize a state graph, but performs poorly when used exclusively
to generate a full game (§7.2). We therefore propose using the
heuristic model only for bootstrapping, then growing the graph us-
ing a player model learned from gameplay traces.

4.2 Player Analytics Model

Once we have a bootstrap model, we can begin to collect gameplay
traces to learn a more accurate player model. We learn our player
model from traces of player traversals of the state graph, each trace
consisting of a list of vertices visited and the control selected at each
vertex. Let Pobs(c|v) be the observed conditional control probabil-
ities computed by normalizing control counts at v, and Pobs(v) be
the observed probability of visiting v, obtained by normalizing the
number of visits to v by the total number of vertex visits. To gen-
eralize our model to unvisited states, we assume that players will
take similar actions in states that resemble each other closely. This
observation leads us to implement our player model using a kernel

3

To appear in ACM TOG 33(4).

density estimator combined with a Markov prior with weight ε:

P (c|v) ∝
∑
u∈V
cu=cv

wuPobs(c|u)Pobs(u) (2)

wu = ktri (r,pdist (u, v)) + ε,

where ktri(r, x) is a triangular kernel with radius r, cu and cv are
the controls of the simulation clips generating u and v, V is the
set of vertices in the graph, and pdist is an inexpensive distance
function (§5.2). Note that the condition cu = cv in the summa-
tion effectively creates a different player model for each control.
Also observe that this model can be evaluated even when v has not
been visited by any player. As a result, this model can be used to
guide sampling deep into the graph without having to wait for new
player data at every step. The model can even be used to transfer
predicted player behaviors gathered on one graph to explorations of
other similar graphs.

Combining this player model with our STATERANK technique de-
scribed in the previous section yields a crowdsourced graph quality
measure, SR-CROWD, which we can use to select blend edges to
replace as we grow the graph. We evaluate state graphs generated
using this player model in detail in §7.

5 Application to Liquids

In this section, we describe our construction of a liquid simula-
tion game using the generic game precomputation framework that
we described in §3. Our liquid simulations are generated using
PCISPH [Solenthaler and Pajarola 2009]. We represent the liquid
state at graph vertices v as lists of liquid particle positions and ve-
locities, and k-frame animations along graph edges as sequences of
signed distance functions e =

[
φ1, . . . , φk

]
, generated from parti-

cle data using the method of Zhu and Bridson [2005]. Each edge
also has an associated video rendered using Mitsuba [Jakob 2010].
In our application k = 10, which yields transitions of 1/3 of a sec-
ond. This latency in response to changes in player control is accept-
able for our liquids game, however, different game mechanics entail
different latency requirements. [Claypool and Claypool 2010]

We use two different metrics. For blending, we use a function
dist(ei, ej , c) based on energy and detailed liquid shape informa-
tion (§5.1). Our player model, however, requires more frequent dis-
tance computations, so we use a more efficient metric pdist(ei, ej)
which compares only coarse shape descriptors (§5.2). Finally, we
describe our clip blending function blend(ei, ej) in §5.3.

5.1 Edge Distance

We define dist(ei, ej , c) to be a perceptually-motivated error func-
tion incorporating information both about the liquid’s shape and its
energy:

dist(ei, ej , c) = norme(ei, ej) (dists (ei, ej)+

wediste (ei, ej , c)) .
(3)

Here, dists and diste denote the parts of distance attributable to
the shapes and the energies of the two states, respectively; norme

is a normalization term that increases distance at low energies, re-
flecting that fact that errors are easier to perceive when the liquid is
moving more slowly. The weight we controls the relative priority
of the shape and energy terms of dist. We set we so that for edges
ri and rj where the fluid is nearly at rest,

dists (ri, rj) ≈ wediste (ri, rj , c) .

Shape distance. The dists metric penalizes the blending of anima-
tions which contain liquid in very different shapes. It is the sum of
the volumes of the symmetric difference (X4Y = X∪Y \X∩Y)
between each animation’s liquid volumes at each frame:

dists(ei, ej) =

k∑
f=1

vol
(
φf
i4φ

f
j

)
. (4)

Energy distance. The diste metric penalizes the blending of ani-
mations that have very different energies, and it strongly penalizes
blending an animation with low energy into an animation with high
energy, thus enforcing conservation of energy. Omitting diste can
result in the formation of small loops in the state graph far away
from energy minima, which look extremely unnatural.

We define energy at a vertex v asE(v, c) = T (v)+V (v, c), where
T is kinetic energy, V is potential energy and c is the incoming
control. Notice that energy depends on the current control since
selecting a gravity vector will change the potential energy. Let vi
and vj be the destination vertices (final frames) of ei and ej . The
energy error between edge ei and ej is given by

diste(ei, ej , c) = γ|E(vi, c)− E(vj , c)| (5)

γ =

{
cgain if |E(vi, c)− E(vj , c)| < T0

closs if |E(vi, c)− E(vj , c)| ≥ T0

where cgain � closs, and T0 is approximately the residual kinetic
energy of the fluid when it is visually at rest. We attempt to match
the energies as closely as possible, rather than anticipating an en-
ergy loss, since we are comparing energies between two clips at
identical points in time. We place the threshold between the minor
energy loss penalty and the major energy gain penalty at T0 to avoid
penalizing blends between visually indistinguishable animations of
static fluid.

Energy normalization. We normalize the previous two terms by
multiplying them by norme. Let vi and vj again be the des-
tination vertices of ei and ej , ci and cj be their controls, and
Tavg = 1

2
(T (vi) + T (vj)). Then

norme(ei, ej) =

{
0 if Tavg < T0 and ci = cj

1√
Tavg+T0

otherwise. (6)

Note that this implies that the distance between two edges with the
same control and kinetic energy below T0 is 0. Again, this threshold
prevents the unnecessary exploration of liquid states that are visu-
ally at rest. This unnecessary exploration would otherwise consume
the vast majority of our exploration effort since norme goes to in-
finity as the fluid energy goes to zero.

5.2 Player Model Distance

STATERANK requires us to perform neighbor searches using a
brute-force scan of all vertices in the graph, so the function we
use to compute vertex distances must be fast. We therefore use a
more efficient coarse shape similarity function pdist in our player
model. We compute a shape descriptor di for each edge ei by di-
viding the fluid domain into a 6 × 6 × 6 grid and computing the
average fraction of each cell that is occupied by liquid, and define

pdist(ei, ej) = ||di − dj ||2. (7)

4

To appear in ACM TOG 33(4).

5.3 Blending

We construct animations for blend edges by blending signed dis-
tance functions. A simple linear interpolation works well in cases
where the fluid surfaces do not contain many fine features. How-
ever, in the presence of droplets, splashes, and thin sheets, linear
interpolation can cause popping artifacts at the beginning and end
of the blend. We remedy this problem by blending, using convex
combinations of three signed distance functions: the source, φs, the
destination, φd, and the union of their shapes, min(φs, φd). We use
the following blend function, where 0 ≤ t ≤ 1 denotes the position
in the blend, clip clips its argument to lie between 0 and 1, and ` is a
parameter that limits the blending coefficient applied to the union:1

blend(φs, φd, t) = wsφs + wdφd + ws∪d min(φs, φd) (8)
ws = clip ((1 + `− 2t)/(1 + `))

wd = clip ((2t+ `− 1)/(1 + `))

ws∪d = 1− ws − wd

In our implementation, we use ` = 0.1 to avoid perceptible in-
creases in liquid volume during blends.

6 Implementation

We constructed a distributed simulation system to carry out the
large-scale state graph explorations required for our work. This
system consists of a pool of worker nodes, which perform simula-
tion and render animations, and a master node, which orchestrates
computation by maintaining the graph structure, computing edge
priorities and distances, and assigning work to the workers. We de-
ploy this system on Amazon EC2 in configurations featuring up to
40 worker nodes. In total for our high-viscosity and low-viscosity
experiments, this system performed over 8600 CPU-hours of com-
putation and generated over 1.6 TB of data, at a cost of approxi-
mately $500 in compute time.

The system initializes graph exploration with a minimal state graph
containing one vertex andN edges. Graph expansion then proceeds
as described in §3. During exploration, the master maintains a work
queue enumerating blend edges to explore. When workers become
available, the master extracts the highest priority blend from the
queue and assigns the corresponding simulation tasks to a worker.
When workers return simulation results to the master, the master
computes blends for the newly simulated edges, then updates the
graph. In STATERANK-based explorations, the master periodically
discards blend-edge priorities, recomputes STATERANK on the cur-
rent graph, then uses the results to re-initialize blend edge priorities.

6.1 Optimizations

A number of key optimizations were necessary to achieve high sys-
tem performance, as well as to ensure high-quality graphs.

Lazy relinking. Each time a new edge is added to the graph, near-
est neighbor relationships among edges in the graph may change.
Since it would be costly to recompute optimal graph blends after
each new inserted edge, our implementation does not attempt “re-
linking” of existing blend edges when new edges are created. In-
stead, prior to exploring any blend edge, the system first attempts to
relink this edge with existing edges in the graph. If a superior blend
can be found in the graph at this time, the new blend is immedi-
ately created and used to replace the existing blend. Lazy relinking

1The results in the accompanying video show an incorrect version of the
blend function that shortens the blend time by one frame at each end of the
transition.

ensures that simulation is only performed on edges for which there
are no good blend candidates in the graph, but it does not incur the
overhead of unnecessarily reevaluating edge nearest neighbors after
new edges are simulated.

Pre-publish relinking. In our experiments we make graph data
available for play (“publishing”) at select checkpoints during ex-
ploration. In order to provide the best possible play experience,
before playing a graph we attempt to relink every blend edge. This
process ensures that all graph blends are the best possible blends
given available data at the time of play.

Animation caching. The primary scaling bottleneck of our sys-
tem is the high cost of distance computations during edge nearest-
neighbor search. These computations must be performed by the
master each time a worker returns new simulation data (to create
blends), and they are expensive because they require fetching fluid-
volume occupancy data from network storage. Rather than incur
substantial system complexity by parallelizing the master node’s
execution, we were able to accelerate distance computations needed
for nearest neighbor search by caching voxel occupancy informa-
tion in memory (our implementation uses memcached).

Energy pre-filtering. Even with the caching optimizations de-
scribed above, nearest-neighbor search remains expensive. (For ex-
ample, linear-time nearest neighbor search makes graph relinking a
quadratic-time operation, which is unacceptable even for graphs of
moderate size.). To accelerate nearest-neighbor search we only per-
form full distance evaluation on the k-closest graph edges accord-
ing to our energy distance metric described in §5.1. It is important
to set k appropriately; setting k too low can result in a failure to
find good blends even if high-quality blend targets do exist in the
graph. We have found k = 100 to work well in practice.

6.2 Mobile Client

We make games available to players using an Android client appli-
cation. The key feature of this client is its ability to continuously
play back short (1/3 second) videos without lag between them.
When a player selects a game, the client downloads the most re-
cent version of the game’s state graph, then downloads and caches
any videos for edges in the current graph that it has not already
cached. We use device accelerometer data to select game controls.
After each play session, the client uploads a list of visited graph
vertices and the control selected on each visit to our server.

7 Evaluation

We use the self-refining liquid control game described in §1 to eval-
uate the utility of STATERANK and player models learned through
crowdsourced data to explore a large dynamic space. Recall that the
player’s objective in this game is to interactively tilt their device so
as to splash fluid through a target region of the domain. The game
admits three possible controls (N=3) corresponding to holding the
device level and tilting it to the left and right. A sequence of screen
shots from the game is shown in Fig. 1, with the target region in the
upper-middle part of the space highlighted.

We grew state graphs for our fluid game using three different graph
error measures. The SR-HEURISTIC and SR-CROWD measures
described in §4 prioritize growth using STATERANK and either a
heuristic or crowdsourced player model, respectively. The sim-
plified BASELINE measure does not use STATERANK to globally
prioritize exploration. Instead, it only prioritizes growth using lo-
cal conditional control probabilities, P (c|v). To provide a better
comparison with STATERANK, we scale the maximum error in our
BASELINE metric by the conditional probabilities in Equation 1

5

To appear in ACM TOG 33(4).

SR-HEURISTIC

BASELINE

SR-CROWD

Figure 4: 200K-frame state graphs. BASELINE explores long
chains of low energy states. In contrast, both SR-HEURISTIC and
SR-CROWD prioritize more likely high energy states, yielding a
shallower graph structure.

with α = 0.8, but we do not calculate edge probabilities as in SR-
HEURISTIC or SR-CROWD.

All explorations use the energy-based fluid distance metric and fluid
animation blending techniques described in §5. Our fluid simula-
tions are 42K-particle PCISPH simulations. In addition to the re-
sults analyzed here, we performed experiments on a high viscosity
fluid configuration in order to observe system behavior under a sec-
ond set of fluid parameters; we show results in the video.

We grew each of our graphs until graph size reached 200K frames.
(Approximately 4,300 CPU-hours were used, per graph, to com-
pute each graph’s 1.8 hours of animation). We paused graph ex-
pansion at 20K, 50K, 100K, and 200K frames so that the graphs
could be played by a group of six test players, yielding gameplay
traces for all graphs at these checkpoints. After collection, the
checkpoint traces for the SR-CROWD graph were used to calculate
per-vertex conditional probabilities that informed the exploration of
SR-CROWD until the next checkpoint.

7.1 Predicting Player Behavior

To assess the predictive power of our models, we used the 200K-
frame BASELINE graph to evaluate SR-HEURISTIC’s and SR-
CROWD’s predictions of player behavior and overall graph qual-
ity against the observed data from gameplay. Fig. 8 (left, cen-
ter) illustrates predicted play behavior by coloring graph edges ac-
cording to predicted visit densities. At right, we show the ob-
served probabilities from player data (ground truth). It is clear
that SR-CROWD predicts behavior far more accurately than SR-
HEURISTIC. This entails a better estimate of the expected blend er-
ror that players encounter: SR-CROWD’s prediction is within 10%
of the observed value, while SR-HEURISTIC underestimates it by
nearly 50%. Note also that very little of the graph is actually vis-
ited by players since BASELINE has explored many “unimportant”
regions of the state space. Guiding exploration with player data
stands to create a graph that better samples the played regions.

Fig. 4 shows the 200K-frame state graphs produced by the BASE-
LINE, SR-HEURISTIC, and SR-CROWD; the graphs indeed ex-
hibit noticeably different structure. Specifically, the BASELINE
graph is approximately twice as deep as the STATERANK-produced
graphs. While the BASELINE graph samples many long sequences
of constant-control play (as per the heuristic model), our game’s
design does not encourage this form of play, so these paths do not
appear in the SR-CROWD graph.

Simulation Graph Size (frames)
20K 50K 100K 200K

0.0005

0.0004

0.0003

0.0002

0.0001

0

O
bs

er
ve

d
Er

ro
r (

Av
g) BASELINE

SR-HEURISTIC
SR-CROWD

Observed Error During Game Play

Figure 5: On average, test players observed the lowest error while
playing the sequence of graphs generated by SR-CROWD.

Observed Time Playing High-Error Animations
BASELINE
SR-HEURISTIC
SR-CROWD

20K 50K 100K 200K
Pe

rc
en

ta
ge

 o
f P

la
y

Simulation Graph Size (frames)

40%

30%

20%

10%

0

Figure 6: Animations observed by players of the 200K-frame SR-
CROWD graph exceeded our empirical high-error threshold during
only 3% of play time. Gameplay for the similarly-sized BASELINE
graph presented high-error animations ten times as often.

10%
5%

10%
5%

Pe
rc

en
ta

ge
 o

f P
la

y

Simulation Error0.0001 0.001

“high error” threshold BASELINE

SR-CROWD

Observed Error During Game Play

Figure 7: Histogram of blend errors observed by players on two
of the 200K-frame graphs. In contrast to BASELINE, the error dis-
tribution for SR-CROWD is largely concentrated below our high-
error threshold.

The unique structure of the SR-CROWD state graph results in a
higher quality game experience. Fig. 5 plots the average error
observed by players at all graph sizes. (Error is defined using
the perceptually-motivated metric described in §5.) While SR-
HEURISTIC alone provides a modest benefit over the BASELINE
method, average observed error is nearly a factor of two lower for
SR-CROWD games. The gameplay data acquired at each check-
point during the graph growth process helps focus simulation effort
on the state space regions that players are most likely to encounter.

7.2 Error Analysis

While state explorations prioritized by STATERANK successfully
reduce observed error on average, they risk leaving severe blend
edges in the graph if they are deemed unlikely to be visited. While
small animation errors are difficult for a player to notice, large er-

6

To appear in ACM TOG 33(4).

SR-HEURISTIC prediction SR-CROWD prediction Observed player behavior

200K-frame BASELINE Graph

Figure 8: Visualization of edge-visit densities predicted by SR-HEURISTIC (left), by SR-CROWD (center), and the densities from recorded
gameplay (right) for a 200K-frame BASELINE graph. Edges visited at least 10% as frequently as the most visited edge are red, edges visited
2-10% as frequently are orange, and all others are gray. Blend edges are hidden to reduce clutter. SR-CROWD accurately predicts player
visit densities while SR-HEURISTIC does not, indicating the value of player analytics in informing STATERANK’s probability estimates.

rors, even if infrequent, can significantly reduce the perceived qual-
ity of the game. Through gameplay testing, we empirically deter-
mined that blend animations with error scores exceeding 0.0005
corresponded to visually objectionable animations. We plot the
fraction of time that players spent viewing these high-error anima-
tions in Fig. 6.

In the large 200K-frame graph produced by SR-CROWD, players
view high-error animations significantly less often than in the other
methods (only 3% of the time). In fact, gameplay for the small 20K-
frame SR-CROWD graph showed high-error animations less often
than play through a BASELINE graph ten times as large. The frac-
tion of observed high-error frames does not significantly diminish
in the BASELINE graphs as they grow beyond 50K frames. A more
detailed view of the distribution of errors encountered when play-
ing 200K-frame BASELINE and SR-CROWD graphs is provided in
Fig. 7.

Our experiences playing the games corroborate these numerical re-
sults. In all cases, playing the SR-CROWD games showed the high-
est quality animation. Play through the 200K-frame SR-CROWD
graph for high viscosity simulations reveals virtually no artifacts
at all. In low viscosity simulations, the fluid exhibits more geo-
metric variety, and artifacts are occasionally visible (as indicated
by Fig. 6), but their frequency is greatly reduced in SR-CROWD
compared to other methods. As desired, animation is of the high-
est quality when the player plays with intention, attempting to score
maximum points, and thus conforming closely to the actions of pre-
vious players. We refer the reader to the accompanying video to
inspect the quality of the generated animations.

As a final experiment, we also measured SR-CROWD’s ability to
predict player behavior on the 200K-frame graph that it produced.
This prediction is compared to ground truth observed player data
in Fig. 9. Interestingly, although SR-CROWD still produces an
expected edge error within 10% of the observed value, its pre-
dictions of player visit behavior on this final graph are relatively
poor as compared to its predictions on the baseline graph (Fig. 8).
We hypothesize that although our player model is accurate, self-
referentially growing a graph based on this model amplifies small
inaccuracies, even while significantly lowering error. Thus, Fig. 9
suggests that creating more sophisticated models of player behav-
ior from the acquired play data could aid in sampling the game state
space even more efficiently.

8 Limitations

Our game was designed as a simple research vehicle both to explore
the potential of leveraging crowdsourced player data to efficiently
sample large state spaces, and to demonstrate a new form of self-
refining game using complex 3D liquid dynamics as a primary el-

ement. Our results demonstrate that models built from player data
can concentrate precomputation in an important (but tiny) subset of
the full state space, a result that overcomes a major hurdle in scal-
ing data-driven techniques. Nevertheless, our current approach has
several limitations which we hope further research can address.

Total dynamic complexity. To our knowledge, our fluid example
represents one of the most complex systems ever precomputed at
a large scale. However, even simple generalizations of the dynam-
ics would overwhelm our system. For example, inserting floating
objects would explode the state space. We emphasize that our com-
pletely monolithic technique of precomputing everything about a
simulation state represents just one (extreme) end of a spectrum
of approaches. Precomputed and live elements can be decom-
posed, composited together, and even coupled. Precomputed sys-
tems could also be generalized (e.g., using multi-way blends), po-
tentially turning our discrete state graph representation into a con-
tinuous space of precomputed dynamics.

Limits of control. Our system offers only a small number of dis-
crete controls and samples control to 1/3 of a second. Increasing the
temporal or spatial control resolution not only explodes the state
space, but also causes specific technical problems. Because our
state graphs have complete N -way branching at every vertex, the
blend edge fraction is (N − 1)/N . In the limit of increasing con-
trol resolution, nearly every clip will be a blend. We believe the
solution is to sparsely sample control, inserting control branches
only when player data indicates they are necessary. At run-time,
the system would trade off simulation and control error. It may be
possible to even scale this approach to (multi-dimensional) contin-
uous controls. Similarly, clip length has implications for blending.
As the clip length approaches one frame, blends become jump dis-
continuities. We believe this issue could be addressed by globally
optimizing state graphs to ensure smooth transitions.

Range of applicable phenomena. Our approach assumes it is pos-
sible to meaningfully blend two simulations without obvious visual
artifacts. Fluids work well because the eye often ignores errors
in turbulence. Some phenomena might be less forgiving. We ob-
serve, however, that blending has been successfully applied to a
wide range of phenomena, from human motion graphs to image
morphing. Blending should work for any sufficiently well-sampled
continuous phenomenon, making the ability to densely sample im-
portant subsets of the state space – the very goal of this paper – even
more important.

Single-viewpoint rendering. We chose to include rendering in our
precomputation to achieve rich visual effects. This decision con-
strains our game to single-viewpoint rendering. However, render-
ing could be decoupled from the precomputation and performed
either on the server or the client. A server-based rendering system
would stream rendered images from any viewpoint. Client-based

7

To appear in ACM TOG 33(4).

SR-CROWD prediction Observed player behavior

200K-frame SR-CROWD Graph

Figure 9: Edge-visit densities predicted by SR-CROWD (left) and the recorded densities from actual gameplay (right) for a 200K-frame
SR-CROWD state graph. While its prediction of the expected edge blend error remains accurate, SR-CROWD no longer predicts player
behavior on this graph well, suggesting an opportunity for better prediction models based on the acquired player data.

rendering is also possible, although efficient compression of 3D
data would be required, a particular challenge for fluid data with
temporally changing surface topology.

Storage requirements. Our 200K-frame state graphs correspond
to about 5 GB of data. Unlike our prototype, practical implemen-
tations of complex data-driven games would likely rely on cloud-
based animation storage and streaming. We used off-the-shelf video
compression for simplicity, but our video corpus contains enormous
redundancy across clips that standard video compression methods
do not exploit. Deduplicating similar video sequences (perhaps by
linear dimension reduction, or by applying frame prediction be-
tween clips) could potentially yield vast savings.

Applicability to existing games. Some types of open-world
games encourage exploration and the discovery of new experience
and content. However, many categories of games do encourage
stereotyped player behavior, and even games that prioritize novelty
will likely feature substantial overlap in player behaviors that our
method can exploit.

9 Conclusion

This paper presents a first step towards self-refining games whose
dynamics continuously improve based on player analytics. We ob-
serve that game objectives cause players to explore only a small
fraction of the entire state space, making data-driven simulation
feasible even for complex dynamical systems. We adapt the data-
driven simulation method of Kim et al. [2013] to liquids, and re-
place the precomputation phase with a continuous process that con-
centrates state sampling in the subset of the dynamics that players
really explore.

We compare three strategies to sample the game dynamics and show
that using real player data (SR-CROWD) significantly outperforms
both a more simplistic player model (SR-HEURISTIC) and a base-
line model without player data (BASELINE). Interestingly, even our
best player model significantly mispredicts player actions (Fig. 9),
suggesting that further improvements are possible. Nevertheless,
our results strongly indicate that player data can be successfully
exploited to capture very complex dynamical systems.

Our method is well suited to mobile platforms with limited control
precision and computational capacity. Player-driven state sampling
enables us to deliver high quality rendered content in realtime with
bounded simulation error. In addition to improving existing games,
these ideas could enable a new class of cloud-based games where
designers no longer have to worry about simulating and rendering
the world in fractions of a second.

The ideas presented in this paper suggest several interesting ques-
tions and generalizations. How much player data is required to suf-
ficiently sample a space? How does adding states affect the diffi-
culty and the strategy of the game? How can we adapt our sampling
approach to applications beyond games? Further research could

yield more powerful techniques to composite precomputed dynam-
ics models like ours with other virtual elements, create more flexi-
ble models through decomposition, decouple rendering from simu-
lation, and address other limitations (§8). More generally, we hope
that player-driven state sampling provides practitioners with a pow-
erful new tool to create compelling and immersive virtual worlds.

Acknowledgements

This material is based upon work supported by the National Sci-
ence Foundation under Grant Nos. IIS-0915462 and IIS-0953985,
and by generous gifts from Google, Intel, NVIDIA, and Pixar. We
would like to thank Doyub Kim for his SPH simulator and the
anonymous reviewers for their valuable comments.

References

BARBIČ, J., AND JAMES, D. 2005. Real-time subspace integra-
tion for St. Venant-Kirchhoff deformable models. ACM Trans.
Graph. 24, 3 (July), 982–990.

BARBIČ, J., AND POPOVIĆ, J. 2008. Real-time control of physi-
cally based simulations using gentle forces. ACM Trans. Graph.
27, 5 (Dec.), 163:1–163:10.

CHENTANEZ, N., AND MÜLLER, M. 2010. Real-time simulation
of large bodies of water with small scale details. In Proceed-
ings of the 2010 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’10, 197–206.

CHENTANEZ, N., AND MÜLLER, M. 2011. Real-time Eulerian
water simulation using a restricted tall cell grid. ACM Trans.
Graph. 30, 4 (July), 82:1–82:10.

CINEMATRONICS, 1983. Dragon’s Lair. [Arcade].

CLAYPOOL, M., AND CLAYPOOL, K. 2010. Latency can kill:
Precision and deadline in online games. In Proceedings of the
First ACM Multimedia Systems Conference.

COOPER, S., HERTZMANN, A., AND POPOVIĆ, Z. 2007. Active
learning for real-time motion controllers. ACM Trans. Graph.
26, 3 (July).

COOPER, S., KHATIB, F., TREUILLE, A., BARBERO, J., LEE, J.,
BEENEN, M., LEAVER-FAY, A., BAKER, D., AND POPOVIĆ,
Z. 2010. Predicting protein structures with a multiplayer online
game. Nature 466 (August).

CRANE, K., LLAMAS, I., AND TARIQ, S. 2007. Real Time Simu-
lation and Rendering of 3D Fluids. Addison-Wesley, ch. 30.

EITZ, M., HAYS, J., AND ALEXA, M. 2012. How do humans
sketch objects? ACM Trans. Graph. 31, 4 (July), 44:1–44:10.

8

To appear in ACM TOG 33(4).

EL-NASR, M. S. 2007. Interaction, narrative, and drama: Creating
an adaptive interactive narrative using performance arts theories.
Interaction Studies 8, 2 (June), 209–240.

FELLER, W. 1968. An Introduction to Probability Theory and Its
Applications. Wiley.

GUAN, P., REISS, L.AND HIRSHBERG, D., WEISS, A., AND
BLACK, M. J. 2012. DRAPE: DRessing Any PErson. ACM
Trans. Graph. 31, 4 (July), 35:1–35:10.

GUPTA, M., AND NARASIMHAN, S. G. 2007. Legendre fluids: A
unified framework for analytic reduced space modeling and ren-
dering of participating media. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’07, 17–25.

HOULETTE, R. 2003. Player modeling for adaptive games. In
AI Game Programming Wisdom 2, S. Rabin, Ed. Charles River
Media.

JAKOB, W., 2010. Mitsuba renderer. http://www.mitsuba-
renderer.org.

JAMES, D. L., AND FATAHALIAN, K. 2003. Precomputing inter-
active dynamic deformable scenes. Tech. Rep. CMU-RI-TR-03-
33, Carnegie Mellon University Robotics Institute.

KAVAN, L., GERSZEWSKI, D., BARGTEIL, A. W., AND SLOAN,
P.-P. 2011. Physics-inspired upsampling for cloth simulation in
games. ACM Trans. Graph. 30, 4 (July), 93:1–93:10.

KIM, T., AND DELANEY, J. 2013. Subspace fluid re-simulation.
ACM Trans. Graph. 32, 4 (July), 62:1–62:9.

KIM, T., AND JAMES, D. L. 2009. Skipping steps in deformable
simulation with online model reduction. ACM Trans. Graph. 28,
5 (Dec.), 123:1–123:9.

KIM, D., KOH, W., NARAIN, R., FATAHALIAN, K., TREUILLE,
A., AND O’BRIEN, J. F. 2013. Near-exhaustive precomputa-
tion of secondary cloth effects. ACM Trans. Graph. 32, 4 (July),
87:1–7.

KITTUR, A., CHI, E. H., AND SUH, B. 2008. Crowdsourcing user
studies with Mechanical Turk. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’08,
453–456.

LEE, J., KLADWANG, W., LEE, M., CANTU, D., AZIZYAN, M.,
KIM, H., LIMPAECHER, A., YOON, S., TREUILLE, A., DAS,
R., AND ETERNA PARTICIPANTS. 2014. RNA design rules
from a massive open laboratory. Proceedings of the National
Academy of Sciences. 2014. (Preprint).

LIMPAECHER, A., FELTMAN, N., TREUILLE, A., AND COHEN,
M. 2013. Real-time drawing assistance through crowdsourcing.
ACM Trans. Graph. 32, 4 (July), 54:1–54:8.

MACKLIN, M., AND MÜLLER, M. 2013. Position based fluids.
ACM Trans. Graph. 32, 4 (July), 104:1–104:12.

MCCANN, J., AND POLLARD, N. 2007. Responsive characters
from motion fragments. ACM Trans. Graph. 26, 3 (July).

MICROSOFT, 2013. Drivatar website.
http://research.microsoft.com/en-us/projects/drivatar.

PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. 1999.
The PageRank citation ranking: bringing order to the Web. Tech-
nical Report 1999-66, Stanford InfoLab, November.

SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I.
2000. Video textures. In Proceedings of SIGGRAPH 2000, Com-
puter Graphics Proceedings, Annual Conference Series, 489–
498.

SMITH, A. M., LEWIS, C., HULLETT, K., SMITH, G., AND SUL-
LIVAN, A. 2011. An inclusive taxonomy of player modeling.
Tech. Rep. UCSC-SOE-11-13, University of California, Santa
Cruz.

SOLENTHALER, B., AND PAJAROLA, R. 2009. Predictive-
corrective incompressible SPH. ACM Trans. Graph. 28, 3 (July),
40:1–40:6.

STANTON, M., SHENG, Y., WICKE, M., PERAZZI, F., YUEN, A.,
NARASIMHAN, S., AND TREUILLE, A. 2013. Non-polynomial
Galerkin projection on deforming meshes. ACM Trans. Graph.
32, 4 (July), 86:1–86:14.

ŠT’AVA, O., BENEŠ, B., BRISBIN, M., AND KŘIVÁNEK, J. 2008.
Interactive terrain modeling using hydraulic erosion. In Proceed-
ings of the 2008 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’08, 201–210.

THUE, D., BULITKO, V., SPETCH, M., AND WASYLISHEN, E.
2007. Interactive storytelling: A player modelling approach. In
The Third Conference on Artificial Intelligence and Interactive
Digital Entertainment, AIIDE ’07.

THUREY, N., MÜLLER-FISCHER, M., SCHIRM, S., AND GROSS,
M. 2007. Real-time breaking waves for shallow water simula-
tions. In Proceedings of the 15th Pacific Conference on Com-
puter Graphics and Applications, PG ’07, 39–46.

TREUILLE, A., LEWIS, A., AND POPOVIĆ, Z. 2006. Model re-
duction for real-time fluids. ACM Trans. Graph. 25, 3 (July),
826–834.

VON AHN, L., AND DABBISH, L. 2004. Labeling images with a
computer game. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’04, 319–326.

VON AHN, L., LIU, R., AND BLUM, M. 2006. Peekaboom:
a game for locating objects in images. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
CHI ’06, 55–64.

VON AHN, L., MAURER, B., MCMILLEN, C., ABRAHAM, D.,
AND BLUM, M. 2008. reCAPTCHA: Human-based character
recognition via web security measures. Science 321, 5895 (Au-
gust), 1465–1468.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modular
bases for fluid dynamics. ACM Trans. Graph. 28, 3 (July), 39:1–
39:8.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
ACM Trans. Graph. 24, 3 (July), 965–972.

ZOOK, A., LEE-URBAN, S., DRINKWATER, M. R., AND RIEDL,
M. O. 2012. Skill-based mission generation: A data-driven
temporal player modeling approach. In Proceedings of the 7th
International Conference on the Foundations of Digital Games,
FDG ’12.

ZOOK, A., FRUCHTER, E., AND RIEDL, M. O. 2014. Automatic
playtesting for game parameter tuning via active learning. In
Proceedings of the 9th International Conference on the Founda-
tions of Digital Games, FDG ’14.

9

http://research.microsoft.com/en-us/projects/drivatar

