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Abstract The present work suggests that automatic segmenta-
Much of the motion capture data used in animationgjon of human motion data based on statistical properties
commercials, and video games is carefully segmenteaf the motion can be an efficient and quite robust alterna-
into distinct motions either at the time of capture or bytive to hand segmentation. Our goal is to segment motion
hand after the capture session. As we move toward cdhto distinct high-level behaviors (e.g., walking, running,
lecting more and longer motion sequences, however, apunching). The problem falls into the category of un-
tomatic segmentation techniques will become importargupervised learning in the sense that no prior or training
for processing the results in a reasonable time frame. models are available—we want to be able to create a seg-
We have found that straightforward, easy to implementation even when the behaviors have not been seen
ment segmentation techniques can be very effective f@efore. We focus on efficient techniques that are easy to
segmenting motion sequences into distinct behaviors. implement and scale well with the size of the input mo-
this paper, we present three approaches for automatic séign data.

mentation. The first two approaches are online, meaning Given these goals, we chose three alternative segmen-
that the algorithm traverses the motion from beginning tgation techniques to examine. These techniques treat the
end, creating the segmentation as it proceeds. The fifgjotion as an ordered sequence of poses assumed by the
assigns a cut when the intrinsic dimensionality of a logharacter (i.e., an ordered sequence of motion frames)
cal model of the motion suddenly increases. The seconghd segment the motion where there is a local change
places a cut when the distribution of poses is observed {g the distribution of poses. The first approach chooses
change. The third approach is a batch process and se@gmments using an indication of intrinsic dimensionality
ments the sequence where consecutive frames belongffem Principal Component Analysis (PCA), the second
different elements of a Gaussian mixture model. We agpproach creates segments using a probabilistic model of
sess these three methods on fourteen motion sequenggstion obtained from Probabilistic PCA, and the third
and compare the performance of the automatic methoggproach generates segments based on a Gaussian mix-
to that of transitions selected manually. ture model representation. We have found that very good
Key words: human motion, motion capture, motion Seg{gerfor_mance can be obtained from these simp_le _and fast
mentation. PCA echmques. The best of our methods (Probablllstl_c PCA)

' achieves over 90% precision for 95% recall, that is, very
1 Introduction few false alarms and false dismissals.

Motion capture is frequently used in movies and V|.de% Related Work
games because of the naturalness and subtle detail con-
tained in the motion. Currently, motion data are oftenin the vision community, model-based approaches to
stored in small clips to allow for easy hand sequencingecognition, tracking, and segmentation of high-level be-
and searches based on keywords describing the behavimiviors are widely used (e.gl.][9]._]21]). In graphics,
Extended sequences of motion have many advantaggskan, Forsyth, and O'Brieri |3] describe a model-based
over small motion clips. Longer shots may be more comapproach to motion annotation that could also be em-
fortable for the actors and will contain natural transitionployed for segmentation. These approaches, however,
from one behavior to the next. Collecting long sequenceegly on the presence of hand-annotated training data. In
of motion is also the only way to capture natural behaviocontrast, our goal is to segment motion based only on in-
over extended periods of time (e.g., in an office settingformation available in the current motion sequence (with-
However, segmentation of these sequences for indexingiit prior models), and we focus on related work that
retrieval, and other processing can be tedious. shares this goal.



A number of researchers have found that low-level moeessing of motion (see, e.d., [14] 7] 25]).
tion segmentation can be achieved in a straightforward
manner. Fod, Mataric, and Jenkins|[10] segment motiod Proposed Methods
data by detecting zero crossings of angular velocities. LThe goal of our algorithm is to segment long motion
Wang, and Shuni [19] explore a more sophisticated teclsequences automatically into distinct behaviors. Infor-
nique where low-level segmentextons are represented mally, we are looking for high-level behaviors, which
as the output of linear dynamic systems. A segmentatiomould be described with distinct verbs, possibly with ob-
of motion is also implicit in a state machine or motionjects (e.g., walk, run, jump, or wash the window). Mo-
graph representatiohl[5, 116,117, 2]. We are interested tion sequences which can be described with the same verb
segmenting motion into higher-level behaviors, such asut with changes in coordinate frame (e.g., walk straight,
walking, running, and sitting. Many low-level behaviorcurve left, then walk straight some mois)ould notre-
components would be observed within any one of thesault in distinct segments. Using the same verb with dif-
behaviors, and so a different approach is needed. ferent objects, on the other hand (e.g., clean the window,

Segmentation of video sequences has been extensivél§an the floorshouldresult in distinct segments.
studied. Unsupervised approaches to modeling and seg-T0 state the problem mathematically, given a long mo-
mentation include entropy minimization to construct Hidtlon sequencé/, we wish to segment that sequence into
den Markov Models (HMMs), with high-level behaviors distinct behaviors\fy, . .., Mg, where the boundaries of
mapped to states of the HMNII[6], clustering based othe behaviors and the number of behaviSraire to be
distance metrics developed over a variety of tempor&letermined. Each motion sequenteis represented as
scales[[28], and online segmentation based on consi@-Sequence of frames, witl20 frames per second. Each
erations of information los$ [23]. Motion capture datdrame is represented by specifying the rotations (relative
is much simpler than video data. We hypothesize thd® the parent in the body hierarchy) for all the joints in
fast online techniques for segmenting video data (e.g., ¢ body at that particular time. Rotations are specified
in [23]) would work very well for segmentation of mo- by quaternions. We omit the absolute body position and
tion into higher-level behaviors, and we suggest that thody orientation information, so that the approach will be

power of HMMs for example, may not be required forindependent of the specific body position and orientation
good performance. in world coordinates.

From the data mining community subspace cluste@.1 PCA Approach to Segmentation
ing (e.g., [1]) is of particular interest. This approachThe PCA approach is based on the observation that sim-
is designed to identify low-dimensional clusters in high-ple motions exhibit lower dimensionality than more com-
dimensional data. A straightforward implementation oplex motions. Each frame; (i = 1,2,...,n) is repre-
this technique, however, would require us to consider maented as a point ifi6-dimensional space (denoted by
tion as an unordered set of poses. Our experience wikP®), because there adet joints in our body hierarchy,
Gaussian Mixture Models (Section 3.3) leads us to beand one quaternion is specified per joint. We treat quater-
lieve that clustering on unordered poses would not workions as vectors of length The motion sequence corre-
well, because it is often easier to locally capture a trarsponds to the trajectory iR*® and thecenter of motion
sition between two behaviors than it is to tease apart @an be defined as
large number of behaviors after they have been mapped 1
into the same space. T=—) . @)
Clustering has been used to improve the efficiency of =
searching through motion graphs (e.d.. |[17]), but to ouFor a simple motion, the frames form a cluster, that is
knowledge it has not been explored for the purpose @&fpread around the center of motion. Frames lie mostly in
high-level segmentation of human motion capture datgome low-dimensional hyperplane containingince the
We evaluate a similar clustering technique for the purposss dimensions are highly correlated. For example, when
of motion segmentation (Section 3.3) and describe twghe right hip moves the right leg forward during walking,
online techniques that achieve better performance on otie left hip is usually moving backwards. Similar corre-
dataset. lations exist for most simple motions. Thus, for a given
Finally, we note that many researchers in computetimensionality-, we can approximate frames as
graphics, robotics, computer vision, machine learning
and biomechanics have explored the use of Principal
Component Analysis and other dimensionality reductiowherev, vy, . . ., v, are unit orthogonal vectors forming
techniques to aid in clustering, modeling, and other prahe basis of the linear subspace corresponding to the hy-

T; =T+ a1 + QioUs + ... + QipUy (2



perplane, and;1, oo, . . . , oy, are coefficients determin- more sophisticated approaches for computing intrinsic di-
ing the specific frame. The less correlated the motionmmensionality of the data are availakle[20} (12, 4], but this
the higher the dimensionality that will be required to acsimple method worked well in our experiments.

curately represent the motion. According to our experiments, when= 0.9, we have
For any hyperplane containing we can orthogonall . NS "
y yperp nd g y r < 6 for 85% of simple motions from a database2if3

project the frames; on the hyperplane and call the re-" . I i btained b I . "
sulting projectiong:;. The projection introduces the error simple motions, obtained by manually segmenting a par
of a larger motion capture database. If a motion consists

n of two or more simple motions, more dimensions are nec-
e= Z lzs — =5, (3) essary to achieve the same projection error, because the
i=1 data exhibits more variety. Put another way, for a fixed
r, the projection error will be greater. This observation
Given the set of frames;; and dimensionalityr, a forms the basis of our algorithm: transition from one be-

r-dimensional hyperplane exists for which the projec-hav'or to another will coincide with the point along the

tion error is minimized. This hyperplane can be foundmtion wherg, for a fixed, the projection error begins to
by applying the widely used statistical technique offcrease rapidly.

PCA [15]. To perform PCA, the singular value decom- First we use a fixed number of framedo determine
position (SVD) is used. The center of motion is first subthe number of dimensionsto sufficiently represent the
tracted from the frames, and the centered frames are thgrt k. frames of motion, using the rulg, > . Param-
organized in an x 56 matrix D, wheren >> 56 equals eter k is set t0240 (2 secs) for our experiments. For
the number of frames. The SVD decomposition yieldgyery value ofi, wherei is steadily increasing by one,
matricesU/, V, andX, such that we compute the SVD decomposition of framethrough

i, and evaluate the total erref using Equatiofi |5. For

a simple motion, the erraof; rises at an approximately
constant slope, because the hyperplane does not change
much within a single simple motion, and new frames will
on average introduce about the same error. When tran-
sitioning into a new motion, however; will rise much
more quickly. To detect the transition, we observe the dis-
rete derivativel, = e; — e¢;_,, where parametet must

e large enough to avoid noise in the data. We set it to
= 60. The initial value ofi is k. To avoid the initial os-

where|z| denotes the standard Euclidean norn®it{.

D=UxVT. 4)

Columns ofU andV are orthogonal unit vectors, and the
matrix X is a56 x 56 diagonal square matrix, with non-
negative decreasingingular valuess; on its diagonal.
The firstr columns ofl” give the basi®q, vs, . .. v, of the
optimal hyperplane of dimensiaonProjecting the frames
on the optimal hyperplane is equivalent to discarding aﬁ
singular values except the largestand the projection ¢

erroris cillation of the average due to the small number of frames
n 56 and data pointg;, we begin testing for a cut only after
e= Z |lzi — 2} = Z 5. (5) i has become larger than some specified paramgtér
i=1 j=r+1 our experiment, we usg = k+¢ = 300. Note that these

) choices of parameters imply that any simple motion must

The ratio o last at least 2.5 seconds for the algorithm to detect it. Al-
E, = Zégl 95 (6) most all of simple motions in our motion database satisfy

> 2107 this criterion.

is an indicator of how much information is retained by For a simple motion, the derivativg is more or less
projecting the frames on the optimeddimensional hy- constant, with minor oscillations around the average af-
perplane. The dimensionalitycan be determined by se- ter an initial period of noise due to the small number of
lecting the smallest such thatF,. > 7, wherer < 1is frames. When a motion transition occurs, the derivative
some specified parameter. Such determination of dimet; rises sharply above the constant value (Figdre 1). At
sionality  is typical for PCA analysid [11]. Our exper- any given value of, we can check for a possible cut by
iments show that choosing = 0.9 introduces very lit- computing the average and standard deviation of all the
tle change to the appearance of motion and preserves fi@vious data pointg;, wherej < i. If the current data
features that a human might likely use to tell one motiopointd; is more thark, = 3 standard deviations from the
apart from another. Note that dimensionality reduction iaverage, we assign a motion cut to that frame. To process
performed only on the joints of the body, while the bodythe rest of the motion, we restart the algorithm at the cut
position and orientation remain unaltered. A number dframe.
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Figure 1: Transition from walking to running. The verti-  Figure 2: Plot of H as K is repeatedly increased by A.
cal line at the frame 861 corresponds to the cut detected
by the algorithm. The solid line shows the derivative
d;. The central dotted line represents the average of the
derivative. The two outer dotted lines show the range
corresponding to one standard deviation from the aver-
age. Derivative average and standard deviation at frame
1 are computed over all previous data points d;, i.e., over
all j < 1.

We use PPCA to model the firéf frames of the mo-
tion as a Gaussian distribution, represented by nean
and covarianc&€’, whereC' is defined based on the the
estimated intrinsic dimensionality of the motion. We es-
timate intrinsic dimensionality using the technique spec-
ified in the PCA approach. We set= 0.95. This ap-
proach provides an accurate model of a particular behav-
ior because it captures the correlation in the motion of
3.2 Probabilistic PCA Approach to Segmentation different joint angles as well as the variance of all joint
In the second approach, we use Probabilistic PCANgles. After we compute and C, we estimate how
(PPCA) to estimate the distribution of the motion datalikely are motion frames<” + 1 throughK + 7" to belong
PPCA is an extension of the traditional PCA _|[24] 26]to the Gaussian distribution defined byandC. We do
and defines a proper probability model for PCA. this by computing an average Mahalanobis distante [8],

In PCA the directions “outside” the subspace are sim{ for framesk + 1 throughK + T
ply discarded, whereas in PPCA they are modeled with K+T
noise. First, thg average square of discarded singular H— 1 Z (2; —7)TC(z; — ). (10)
values can be defined as

i=K+1
56 . .
o2 = 1 Z 2 ) An advantage of using the Mahalanobis measurement for
56 —r M) v discrimination is that distances are calculated in units of

standard deviation from the mean and are therefore data
The entire data set can then be modeled by a Gaussiatependent.
distribution, where the mean equals the center of motion We next increasél by a small number of framesg),
T and the covariance matriX is determined by the equa- and repeat the estimation of distribution for the fikst
tions: frames K := K + A), and of the average Mahalanobis
W =V, (22 - o21)'/? (8) distance,H, for framesK + 1 : K + T with respect
1 . to the new distribution. For our experiments, we used
WwWT 4 6% = —1V22VT. (9 T = 150 frames,A = 10 frames, and the initial value
e of K = T. A reasonable estimate @f is half of the
Here, we follow the notation of Equatiph 4, and introducenticipated number of frames in the smallest behavior in
V.. to denote the first columns of matrixV, and, to the database.
denote the upper-leftx r block of matrixX. Matrix X is Figurg 2 shows a characteristic patterbfit initially
ab6 x 56 diagonal matrix, obtained frofa by replacing decreases, then forms a valley, increases and decreases
all discarded singular values by again, forming a peak. The first decreasddrhappens

C:

n—1



when framed : K andK + 1 : K + T both belong to

the same behavior. As we increake the algorithm es- drink
timates progressively more accurate distributions of this \
behavior, making frame& + 1 : K + T more likely.
When the model converges, the valley is reached. The in- |
crease i occurs when the new behavior enters frames_
K +1: K+ T. The subsequent decreaseHnbegins )
when the frames of the new behavior start appearing in
framesl : K, and as a result the distribution begins to ac-__ ) ) o )
commodate the new behavior. Thus, a reasonable choitkure 3 Two-dimensional projection of groups of sim-
for the segmentation takes place wherforms a peak. Ple motions: (a) Walking, running, and drinking; (b)
Then, framesl : K contain the old motion and frames walking, sitting down, and standing idle. Frames of each
K +1: K + T contain the first” frames of the new mo- motion form their. OVYH clusters. The projection is done
tion. The algorithm declares a cut when a valleyHris on the first two pr1nc1pgl componez.lt.s for each sequence.
followed by a peak, and the difference between the two IQ? (a), the natural continuous transitions among different
at least some threshold. For our experiments, we sgt  Clusters are not shown.

to 15. In general, increasing results in fewer segments

that correspond to more distinct behaviors, whereas de-We use the Expectation Maximization (EM) algorithm

creasingft results in a finer segmentation. The next Cu%o estimate the Gaussian Mixture Model of the data. In

|tisofr(l)und by repeating the algorithm on the rest of the moy pre-processing step, we use PCA to project the frames

! o , onto a lower dimensional subspace. This dimensionality

In rare cases the first behavior is characterized by & ,ction is meant to speed up the EM algorithm. The
“wide® d|s_tr|but|on, Wwhereas _the_ foI_Iowmg be_hawor 'S number of principal components is chosen so that 90% of
characterized by a narrow distribution, that lies almoske yariance of the original data distribution is preserved.
completely within the first distribution. In this €ase, The number of principal components here is algias
frames from the second behavior are considered likelyo ooy pjete sequences are not simple. In the ideal case,
to have come from the first distribution and the algorithm, cpy cyster is represented by a single Gaussian distribu-
will fail to detect the segmentation. However, if we oo Thys, a collection of clusters can be represented
a backward pass of the algorithm, the segmentation Wilfy, 5 mixture ofk Gaussian distributions. The EM al-
be detected because frames from the first distribution ab%rithm is used to estimate the parameters of the GMM

unlikely to come from the second distribution. Thereforesuch as meann;, covariance matrixz;, and prior,;,

sit down

and backward direction, and adding new cuts at each paSSsters are not of equal size. For example, longer mo-

u_ntil convergence (no new cuts are found). In practice, flon segments have more points and thus form larger clus-
single forward pass detects almost all behaviors and gl 14 capture these size differences, EM also estimates
most one backward pass is required. the probabilityn; of a point belonging to a cluster;.

3.3 GMM Approach to Segmentation The EM algorithm for GMM is one of the classical tech-

In the third approach we employ a Gaussian Mixturdiques ir_l machine_ learning, and we refer the readérito [8]
Model (GMM) to model the entire sequence and the'flor algorithm details. After the GMM parameters are es-
segment the sequence whenever two consecutive setdiBtated, we can compute a most likely cluster for each
frames belong to different Gaussian distributions, Th&@me of the motion. A change of a behavior is then de-
underlying assumption is that the frames from differenteCted at time if framesz; andz;, belong to different
simple motions form separate clusters, and each clustgHSters.

can be described reasonably well by a Gaussian distribu-1n practice, if a segment is shorter than 1 second (120
tion. Figurg 3 shows the distributions of frames from twdrames), it is merged with its neighboring segments, i.e.,
motion sequences, each of which consisted of three sirfle segment is split into two halves and its cluster labels
ple motions concatenated together. Each sequence [#€ changed to those of the segments before and after.
been projected onto the first two principa| Componentghis heuristic worked well and it often removed small
computed for the full sequence. The frames of the simplgegments that occur on the transitions between behaviors.
motions form clusters that can be modeled by GaussianFigure[4 shows the segmentation of a motion cap-
distributions, suggesting that GMM is a reasonable modélire data sequence composed of 7 simple motions in
for segmentation. the following order: walking, jumping forward, walk-
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Figure 4: The clusters for a motion capture sequence of Figure 5: The error matrix for the PCA algorithm.
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human observer. Figufg 4 also shows the cluster labels Figure 6: The error matrix for the PPCA algorithm.
(1,2, 3,4) assigned to the frames along the vertical axis

of the graph. In this case we fit a GMM model /o= 4
clusters. The segmentation assignment of cluster labedae random frame from every part. In this case, the ini-
also successfully identified similar simple actions. Herejal points are less likely to fall into the same final cluster,
the three walking motions are assigned the cluster labehich helped the convergence rate and in our case pro-
2, and the two punching motions are assigned the clustduced a slightly better result. However, the improvement
label 1. over fully random initialization was small.

Unfortunately, we have to specify the number of clus- )
ters k for each execution of the GMM, and we usually4 Experiments
do not know the number of clusters in a data set. As alm this section, we present the results of two experiments
alternative, GMM s often estimated for various valuezonducted on a motion capture database containing 14 se-
of k, and the mixture model that maximizes some critequences, each consisting of approximately 8000 frames.
rion, such as the Bayesian Information Criterion (BICEach sequence is a series of about 10 simple motions.
[22] is chosen. This approach, however, did not seem fypical human activities are represented, such as walk-
be useful for our data because it often returned a smallerg, running, sitting, standing idle, exercising, climbing,
than optimal number of clusters. Instead, fixihgat a performing martial arts, washing a window, and sweep-
small value such a$ seemed to produce reasonable reing a floor.
sults without additional complexity. The first experiment illustrates the fundamental as-

We initialize the GMM clusters with random frames.sumptions behind our algorithms. The PCA approach is
Repeated experiments show that after removing shdrased on the idea that the intrinsic dimensionality of a
(noisy) segments, major segmentation points could athotion sequence containing a single behavior should be
ways be identified, independently of the initialization ofsmaller than the intrinsic dimensionality of a motion se-
the clusters. This insensitivity to the initial conditionsquence containing multiple behaviors. To illustrate this
may be due to the characteristics of our database (skkea, we selected 7 distinct simple behaviors: walking,
Figure[3). Alternatively, we also performed experimentsunning, sitting down, forward jumping, climbing, arm
where we partitioned the entire motion sequence #to stretching and punching. For each behavior, we extracted
consecutive parts, and created the initial guess by pickingo distinct occurrences from the database. The length of



each occurrence was uniformly chosen to be 240 frameBhis comparison demonstrates the assumption behind the
Let us denote the extracted sequencesXfy X?, for ~PPCA approach.

i = 1,...,7, where X/ and X}, are distinct represen-  When capturing motion sequences for the database, the
tatives of the same type of a motion. Given two arbitrargctor was asked to perform a number of distinct behaviors
extracted240-frame motionsX, X', we first estimated in a specified order (overall 35 distinct behaviors were
the number of dimensionsrequired to represent the first ysed throughout the database). To test the segmentation
motion X. Then, we combined frames of motioh and  of continuous motion sequences in the database we first
X' to obtain a set ofi80 frames. For the purposes of processed the database manually to determine the correct
this experiment, the particular ordering of frames is irpositions for motion transitions. These correct positions
relevant, and identical results would have been obtainegere implicitly defined by the choice of particular behav-
had the frames been permuted by a random permutatiqsrs to be performed by the actor in a particular motion
For the set oft30 frames, we computed the total projec-sequence. Then, we ran the three algorithms proposed in
tion error when these frames were reduced @imen-  this paper and compared the results to the manually de-
sions, as directed by Equatiph 5. These steps essential¢mined transitions. Figufg 7 shows the results of these
mimic the approach taken by the PCA method. We reexperiments. Figuig 8 shows representative poses for the

peated this process for the x 14 possible ordered pairs behaviors that comprise one of the motion sequences in
of motions X, X’ and stored the projection errors in athe database.

14 x 14 matrix, with row index corresponding & and We compared the three algorithms using the standard
column index corresponding 8. The resulting matrix e ision/recall framework. Precision is defined as the
can be seen in Figufg 5. For the PCA method to Segais of reported correct cuts versus the total number of
ment successfully, each motion must be much closer (@, ted cuts. Recall is defined as the ratio of reported
itself and to other representatives of the same kind of Mg, et cuts versus the total number of correct cuts. The
tion than it is to other distinct motions. For every row ofoqer precision and recall are tothe more accurate the

the matrix, the smallest element is on the diagonal, Cofgqrithm is. Figuré]9 gives precision and recall scores
responding to joining two identical motions. The next, . iha three algorithms.

smallest element corresponds to joining the motion to its
similar, but distinct motion. A much larger error is ob-5 piscussion
tained when concatenating two completely different be-

haviors, because the number of dimensions that we est/é have described and tested three methods for motion

mated is just enough to represent the first behavior, biedmentation. Of the three, probabilistic PCA provided
too small to represent two different behaviors. the best performance on our dataset. We hypothesize that

this superior performance occurs because PPCA tracks

The PPCA approach is based on the assumption th&€ changes in the distributions that characterize motions
Gaussian models of two separate behaviors will be quite find cut points while PCA considers only the change
different. We illustrate this assumption in a similar fashin dimensionality. In other words, there are joint range
ion. To compare the Gaussian models for two behavio@f motion limits implicit in PPCA, while PCA encodes
X and X’, we estimated the distribution for the first be-only correlations between joints. PPCA also estimates a
havior using Equatioﬁ] 9, and Computed the average |V|§1ngle distribution for each individual behavior. GMM, in
halanobis distance of the second behavior relative to t@ntrast, treats all frames as independent and, as a result,
distribution of the first motion using Equati¢n]|10. Be-may construct a single distribution that covers different
cause the PPCA-based segmentation algorithm is doifghaviors and may also estimate two separate distribu-
both a forward and a backward pass, it also computdi®ns for a single behavior. Nevertheless, both PCA and
the Mahalanobis distance of the first behavior relativ&MM provided good performance.
to the distribution of the second motion and uses it for We assessed the performance of these three methods
segmentation. To include this effect in our experimentpn a database in which the transitions between behav-
we also estimated the distribution for the second behaiers had been hand labeled. This process is imperfect be-
ior and computed the average Mahalanobis distance cduse two observers will certainly pick different frames
the first behavior relative to the distribution of the secfor a transition and may even disagree on what consti-
ond behavior. The resulting symmetrid x 14 matrix tutes a transition. For example, should three consecutive
in Figure[6 shows the maximum of the two Mahalanobigorward jumps be considered three separate behaviors or
distances for each pair of behaviors. As with PCA, théhree cycles of a forward hopping gait? The answer prob-
element size is much smaller on the diagonal and for firstbly depends on the application. As we analyzed the tran-
off-diagonal elements than it is elsewhere in the matrixsitions that were mistakenly identified or missed by the
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can also be found on our webpage at: http://graphics.cs.cmu.edu

Figure 8: Representative poses for the simple motions that comprise the sequence in the upper-left chart in Figure
[ The seven simple motions are: walking, forward jumping, walking, arm punching, walking, leg kicking, and arm

punching.
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| Method || Precision| Recall | proximately the same number of behaviors and a constant

PCA 0.79 0.88 k gives good performance.

PPCA 0.92 0.95 We were pleasantly surprised that the PCA-based

GMM 0.77 0.71 methods worked so well. Typical human motions appar-
Figure 9: Precision and recall scores for the PCA, PPCA enFly lead to highly correlated motion capture sequences.
and GMM algorithms. This phenomenon suggests that PCA needs very few

components to capture most of the motion. Had this not
been the case, the curse of dimensionality would make

three methods, we found the following examples: walkth® problem very difficult because in high dimensions,
ing straight and then turning while walking; jumping for- Most points are far away from each other and will look
ward repeatedly: sitting down on a chair, and then imlike outliers or discontinuities.
mediately standing up; punching with the right hand and Our PCA-based methods worked well because the data
then with the left; washing a window in a left-to-right we were operating on are apparently well modeled by
hand motion, and then switching to circular motion. Alsdsaussian clouds. Of course, more sophisticated tools,
note that our approaches won't detect changes in velocitjke Independent Component Analysis (ICA) [13] 18] or
as velocity information is not used in our algorithms.  Locally Weighted Precision Recall[27] may well achieve
The exact frame of the transition is particularly diffi-€ven better cut detection. Nevertheless, the Gaussian as-

cult to determine when the motion capture subject maké/mption and PCA provided surprisingly good results on

a smooth transition from one behavior to another. Cons&€ motions in our database.

quently, we allowed a range of frames to be specified as As motion capture databases grow, segmenting them

the ground truth by the human subjects. manually either at the time of capture or during data
Our metrics for detecting transitions weights all de€lean-up will become more difficult. Furthermore, no

grees of freedom equally. This assumption might ndg®ne segmentation will necessarily be right for all appli-

always be correct. For example, if the motion Capturgations. A method with tunable parameters such as ours

subject jumped on his right foot several times in a rovhay be able to provide both the short segments required

and then continued jumping but added a swinging motiof! learning a transition graph (e.g., for interactive con-

of the arms, the human observer would probably classififol of a character) and the longer segments that provide

the two behaviors as both jumping rather than separati®statistical description of a particular behavior. HMMs

them with a cut point. However, the addition of arm mo-2nd other clustering techniques bring added power to the

tion might cause the automatic segmentation algorithnfoblem, but require an expensive search process and/or

to declare that a transition has occurred because the arf¥ery good initial guess. We were pleased to find that we

are of equal statistical importance to the legs. The délidn’t need the extra power of these techniques.

grees of freedom of the motion trajectory could be scaled

by the effective inertia at each joint. In this way, joints”*cknowledgments

where movement required more effort would be given &his research was supported in part by NSF EIA-

greater weight. Also, global position and orientation in9196217 and 11S-0205224.

formation could be included in the segmentation criteria.

This would likely change the semantics of our segment&eferences

as, for example, locations of turns during walking would [1] R. Agrawal, J. Gehrke, D. Gunopulos, and

become candidates for transitions. P. Raghavan. Automatic subspace clustering of high
Each of the three methods requires the selection of a  dimensional data for data mining applications. In

small number of parameters. These were chosen based on Proc. of ACM SIGMODpages 94—-105, 1998.

the performance of the methods on a small set of motions ) o

and then applied without alteration to the full database[2] O- Arikan and D. A. Forsyth. Synthesizing con-

For PCA, we need to set the energy thresholthe dis- strained rr_10t|ons from example&CM Transactions

continuity threshold,, and the window size parameters on Graphics 21(3):483-490, July 2002.

k, ¢, andio. For PPCA, we need to set the peak thresh-[3] O. Arikan, D. A. Forsyth, and J. F. O'Brien. Motion

_olc_i R and the window parametef§ A. The_thresh_olc_R synthesis from annotation®ACM Transactions on
is independent of the data but can be adjusted if finer or Graphics 22(3):402—408, July 2003.

coarser segmentation is desired. For GMM, we needed to
set the number of clusteks Thus, that method is most [4] C. Bishop. Bayesian PCAProc. of Neural Infor-
useful when all the sequences in the database contain ap- mation Processing Systenid :382—-388, 1998.



[5] M. Brand and A. Hertzmann. Style machines[19]
In Proc. of SIGGRAPH pages 183-192. ACM
Press/Addison-Wesley Publishing Co., 2000.

[6] M. E. Brand and V. Kettnaker. Discovery and seg-
mentation of activities in videdEEE Trans. on Pat- [20]
tern Analysis and Machine Intelligence (TPAMI)
22(8):844-851, 2000.

[7] F. De la Torre and M. J. Black. A framework for [21]
robust subspace learningnternational Journal of
Computer Vision54(1-3):117-142, 2003.

[8] R.O. Duda, P.E.Hart, and D.G.StorRattern Clas-
sification Wiley & Sons, New York, 2001.

[9] D. J. Fleet, M. J. Black, Y. Yacoob, and A. D. Jep-
son. Design and use of linear models for image mo-
tion analysis. International Journal of Computer [23]
Vision, 36(3):171-193, 2000.

[10] A. Fod, M. J. Mataric, and O. C. Jenkins. Auto-
mated derivation of primitives for movement classi-
fication. Autonomous Robaqt42(1):39-54, 2002.  [24]

[22]

[11] K. Fukunaga. Statistical Pattern Recognition, 2nd
Edition. John Hopkins University Press, Baltimore,
1989. [25]

[12] K. Fukunaga and D. Olsen. An algorithm for find-
ing intrinsic dimensionality of datdEEE Trans. on

Computers20(2), 1971. [26]
[13] A.Hyvarinen, J. Karhunen, and E. OJadependent
Components AnalysisJohn Wiley & Sons, New

York, 2001.

[14] O. C. Jenkins and M. J. Mataric. Deriving action
and behavior primitives from human motion data.
In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IRQ&)ges 2551-2556,
2002. [28]

[15] L.T. Jolliffe. Principal Component Analysis
Springer Verlag, New York, 1986.

[16] L. Kovar, M. Gleicher, and F. Pighin. Motion
graphs ACM Transactions on Graphic21(3):473—
482, July 2002.

[17] J. Lee, J. Chai, P. Reitsma, J. K. Hodgins, and N. S.
Pollard. Interactive control of avatars animated with
human motion dataACM Transactions on Graph-
ics, 21(3):491-500, July 2002.

(27]

[18] T.-W. Lee and M.S. Lewicki. Unsupervised image
classification, segmentation, and enhancement us-
ing ICA mixture models. IEEE Trans. on Image
Processing11(3):270-279, 2002.

Y. Li, T. Wang, and H.-Y. Shum. Motion texture: A
two-level statistical model for character motion syn-
thesis.ACM Transactions on Graphic21(3):465—
472, July 2002.

T. P. Minka. Automatic choice of dimensionality
for PCA. InProc. of Neural Information Processing
Systemspages 598-604, 2000.

N. Oliver, E. Horvitz, and A. Garg. Layered repre-
sentations for human activity recognition. Faurth
IEEE Int. Conf. on Multimodal Interfacepages 3—
8, 2002.

D. Pelleg and A. Moore. X-means: Extending K-
means with efficient estimation of the number of
clusters. InProc. of the Seventeenth Int. Conf. on
Machine Learningpages 727—734, 2000.

N. Peyrard and P. Bouthemy. Content-based video
segmentation using statistical motion models. In
Proc. of British Machine Vision Conf. BMVC’'02,
Cardiff, volume 2, pages 527-536, 2002.

S. Roweis. EM algorithms for PCA and SPCA.
In Proc. of Neural Information Processing Systems
volume 10, pages 626—632. The MIT Press, 1998.

M. Santello, M. Flanders, and J. F. Soechting. Pat-
terns of hand motion during grasping and the influ-
ence of sensory guidancéournal of Neuroscienge
22(4):1426-1435, 2002.

M. E. Tipping and C. M. Bishop. Probabilistic prin-
cipal component analysis. of the Royal Statistical
Society, Series,B51(3):611-622, 1999.

S. Vijayakumar and S. Schaal. LWPR : An o(n)
algorithm for incremental real time learning in
high dimensional space. IRroc. of Int. Conf. on
Machine Learning (ICML200Q)pages 1079-1086,
2000.

L. Zelnik-Manor and M. Irani. Event-based video
analysis. InProc. of IEEE Int. Conf. on Computer
Vision and Pattern Recognition (CVERplume 2,
pages 123-130. IEEE, 2001.



	Introduction
	Related Work
	Proposed Methods
	PCA Approach to Segmentation
	Probabilistic PCA Approach to Segmentation
	GMM Approach to Segmentation

	Experiments
	Discussion

