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Abstract
Much of the motion capture data used in animations,

commercials, and video games is carefully segmented
into distinct motions either at the time of capture or by
hand after the capture session. As we move toward col-
lecting more and longer motion sequences, however, au-
tomatic segmentation techniques will become important
for processing the results in a reasonable time frame.

We have found that straightforward, easy to imple-
ment segmentation techniques can be very effective for
segmenting motion sequences into distinct behaviors. In
this paper, we present three approaches for automatic seg-
mentation. The first two approaches are online, meaning
that the algorithm traverses the motion from beginning to
end, creating the segmentation as it proceeds. The first
assigns a cut when the intrinsic dimensionality of a lo-
cal model of the motion suddenly increases. The second
places a cut when the distribution of poses is observed to
change. The third approach is a batch process and seg-
ments the sequence where consecutive frames belong to
different elements of a Gaussian mixture model. We as-
sess these three methods on fourteen motion sequences
and compare the performance of the automatic methods
to that of transitions selected manually.

Key words: human motion, motion capture, motion seg-
mentation, PCA

1 Introduction

Motion capture is frequently used in movies and video
games because of the naturalness and subtle detail con-
tained in the motion. Currently, motion data are often
stored in small clips to allow for easy hand sequencing
and searches based on keywords describing the behavior.

Extended sequences of motion have many advantages
over small motion clips. Longer shots may be more com-
fortable for the actors and will contain natural transitions
from one behavior to the next. Collecting long sequences
of motion is also the only way to capture natural behavior
over extended periods of time (e.g., in an office setting).
However, segmentation of these sequences for indexing,
retrieval, and other processing can be tedious.

The present work suggests that automatic segmenta-
tion of human motion data based on statistical properties
of the motion can be an efficient and quite robust alterna-
tive to hand segmentation. Our goal is to segment motion
into distinct high-level behaviors (e.g., walking, running,
punching). The problem falls into the category of un-
supervised learning in the sense that no prior or training
models are available—we want to be able to create a seg-
mentation even when the behaviors have not been seen
before. We focus on efficient techniques that are easy to
implement and scale well with the size of the input mo-
tion data.

Given these goals, we chose three alternative segmen-
tation techniques to examine. These techniques treat the
motion as an ordered sequence of poses assumed by the
character (i.e., an ordered sequence of motion frames)
and segment the motion where there is a local change
in the distribution of poses. The first approach chooses
segments using an indication of intrinsic dimensionality
from Principal Component Analysis (PCA), the second
approach creates segments using a probabilistic model of
motion obtained from Probabilistic PCA, and the third
approach generates segments based on a Gaussian mix-
ture model representation. We have found that very good
performance can be obtained from these simple and fast
techniques. The best of our methods (Probabilistic PCA)
achieves over 90% precision for 95% recall, that is, very
few false alarms and false dismissals.

2 Related Work

In the vision community, model-based approaches to
recognition, tracking, and segmentation of high-level be-
haviors are widely used (e.g., [9], [21]). In graphics,
Arikan, Forsyth, and O’Brien [3] describe a model-based
approach to motion annotation that could also be em-
ployed for segmentation. These approaches, however,
rely on the presence of hand-annotated training data. In
contrast, our goal is to segment motion based only on in-
formation available in the current motion sequence (with-
out prior models), and we focus on related work that
shares this goal.



A number of researchers have found that low-level mo-
tion segmentation can be achieved in a straightforward
manner. Fod, Mataric, and Jenkins [10] segment motion
data by detecting zero crossings of angular velocities. Li,
Wang, and Shum [19] explore a more sophisticated tech-
nique where low-level segments (textons) are represented
as the output of linear dynamic systems. A segmentation
of motion is also implicit in a state machine or motion
graph representation [5, 16, 17, 2]. We are interested in
segmenting motion into higher-level behaviors, such as
walking, running, and sitting. Many low-level behavior
components would be observed within any one of these
behaviors, and so a different approach is needed.

Segmentation of video sequences has been extensively
studied. Unsupervised approaches to modeling and seg-
mentation include entropy minimization to construct Hid-
den Markov Models (HMMs), with high-level behaviors
mapped to states of the HMM [6], clustering based on
distance metrics developed over a variety of temporal
scales [28], and online segmentation based on consid-
erations of information loss [23]. Motion capture data
is much simpler than video data. We hypothesize that
fast online techniques for segmenting video data (e.g., as
in [23]) would work very well for segmentation of mo-
tion into higher-level behaviors, and we suggest that the
power of HMMs for example, may not be required for
good performance.

From the data mining community subspace cluster-
ing (e.g., [1]) is of particular interest. This approach
is designed to identify low-dimensional clusters in high-
dimensional data. A straightforward implementation of
this technique, however, would require us to consider mo-
tion as an unordered set of poses. Our experience with
Gaussian Mixture Models (Section 3.3) leads us to be-
lieve that clustering on unordered poses would not work
well, because it is often easier to locally capture a tran-
sition between two behaviors than it is to tease apart a
large number of behaviors after they have been mapped
into the same space.

Clustering has been used to improve the efficiency of
searching through motion graphs (e.g., [17]), but to our
knowledge it has not been explored for the purpose of
high-level segmentation of human motion capture data.
We evaluate a similar clustering technique for the purpose
of motion segmentation (Section 3.3) and describe two
online techniques that achieve better performance on our
dataset.

Finally, we note that many researchers in computer
graphics, robotics, computer vision, machine learning
and biomechanics have explored the use of Principal
Component Analysis and other dimensionality reduction
techniques to aid in clustering, modeling, and other pro-

cessing of motion (see, e.g., [14, 7, 25]).

3 Proposed Methods

The goal of our algorithm is to segment long motion
sequences automatically into distinct behaviors. Infor-
mally, we are looking for high-level behaviors, which
would be described with distinct verbs, possibly with ob-
jects (e.g., walk, run, jump, or wash the window). Mo-
tion sequences which can be described with the same verb
but with changes in coordinate frame (e.g., walk straight,
curve left, then walk straight some more)should notre-
sult in distinct segments. Using the same verb with dif-
ferent objects, on the other hand (e.g., clean the window,
clean the floor)shouldresult in distinct segments.

To state the problem mathematically, given a long mo-
tion sequenceM , we wish to segment that sequence into
distinct behaviorsM1, . . . ,MS , where the boundaries of
the behaviors and the number of behaviorsS are to be
determined. Each motion sequenceM is represented as
a sequence of frames, with120 frames per second. Each
frame is represented by specifying the rotations (relative
to the parent in the body hierarchy) for all the joints in
the body at that particular time. Rotations are specified
by quaternions. We omit the absolute body position and
body orientation information, so that the approach will be
independent of the specific body position and orientation
in world coordinates.

3.1 PCA Approach to Segmentation
The PCA approach is based on the observation that sim-
ple motions exhibit lower dimensionality than more com-
plex motions. Each framexi (i = 1, 2, . . . , n) is repre-
sented as a point in56-dimensional space (denoted by
R56), because there are14 joints in our body hierarchy,
and one quaternion is specified per joint. We treat quater-
nions as vectors of length4. The motion sequence corre-
sponds to the trajectory inR56 and thecenter of motion
can be defined as

x =
1
n

n∑
i=1

xi . (1)

For a simple motion, the frames form a cluster, that is
spread around the center of motion. Frames lie mostly in
some low-dimensional hyperplane containingx, since the
56 dimensions are highly correlated. For example, when
the right hip moves the right leg forward during walking,
the left hip is usually moving backwards. Similar corre-
lations exist for most simple motions. Thus, for a given
dimensionalityr, we can approximate frames as

x′i = x + αi1v1 + αi2v2 + . . . + αirvr , (2)

wherev1, v2, . . . , vr are unit orthogonal vectors forming
the basis of the linear subspace corresponding to the hy-



perplane, andαi1, αi2, . . . , αir are coefficients determin-
ing the specific frame. The less correlated the motion,
the higher the dimensionality that will be required to ac-
curately represent the motion.

For any hyperplane containingx, we can orthogonally
project the framesxi on the hyperplane and call the re-
sulting projectionsx′i. The projection introduces the error

e =
n∑

i=1

||xi − x′i||2 , (3)

where||x|| denotes the standard Euclidean norm inR56.
Given the set of framesxi and dimensionalityr, a
r-dimensional hyperplane exists for which the projec-
tion error is minimized. This hyperplane can be found
by applying the widely used statistical technique of
PCA [15]. To perform PCA, the singular value decom-
position (SVD) is used. The center of motion is first sub-
tracted from the frames, and the centered frames are then
organized in an × 56 matrix D, wheren � 56 equals
the number of frames. The SVD decomposition yields
matricesU, V, andΣ, such that

D = UΣV T . (4)

Columns ofU andV are orthogonal unit vectors, and the
matrix Σ is a56 × 56 diagonal square matrix, with non-
negative decreasingsingular valuesσi on its diagonal.
The firstr columns ofV give the basisv1, v2, . . . vr of the
optimal hyperplane of dimensionr. Projecting the frames
on the optimal hyperplane is equivalent to discarding all
singular values except the largestr, and the projection
error is

e =
n∑

i=1

||xi − x′i||2 =
56∑

j=r+1

σ2
j . (5)

The ratio

Er =

∑r
j=1 σ2

j∑56
j=1 σ2

j

(6)

is an indicator of how much information is retained by
projecting the frames on the optimalr-dimensional hy-
perplane. The dimensionalityr can be determined by se-
lecting the smallestr such thatEr > τ, whereτ < 1 is
some specified parameter. Such determination of dimen-
sionality r is typical for PCA analysis [11]. Our exper-
iments show that choosingτ = 0.9 introduces very lit-
tle change to the appearance of motion and preserves the
features that a human might likely use to tell one motion
apart from another. Note that dimensionality reduction is
performed only on the joints of the body, while the body
position and orientation remain unaltered. A number of

more sophisticated approaches for computing intrinsic di-
mensionality of the data are available [20, 12, 4], but this
simple method worked well in our experiments.

According to our experiments, whenτ = 0.9, we have
r ≤ 6 for 85% of simple motions from a database of203
simple motions, obtained by manually segmenting a part
of a larger motion capture database. If a motion consists
of two or more simple motions, more dimensions are nec-
essary to achieve the same projection error, because the
data exhibits more variety. Put another way, for a fixed
r, the projection error will be greater. This observation
forms the basis of our algorithm: transition from one be-
havior to another will coincide with the point along the
motion where, for a fixedr, the projection error begins to
increase rapidly.

First, we use a fixed number of framesk to determine
the number of dimensionsr to sufficiently represent the
first k frames of motion, using the ruleEr > τ. Param-
eter k is set to240 (2 secs) for our experiments. For
every value ofi, wherei is steadily increasing by one,
we compute the SVD decomposition of frames1 through
i, and evaluate the total errorei using Equation 5. For
a simple motion, the errorei rises at an approximately
constant slope, because the hyperplane does not change
much within a single simple motion, and new frames will
on average introduce about the same error. When tran-
sitioning into a new motion, however,ei will rise much
more quickly. To detect the transition, we observe the dis-
crete derivativedi = ei − ei−`, where parameter̀ must
be large enough to avoid noise in the data. We set it to
` = 60. The initial value ofi is k. To avoid the initial os-
cillation of the average due to the small number of frames
and data pointsdj , we begin testing for a cut only after
i has become larger than some specified parameteri0. In
our experiment, we usei0 = k+` = 300. Note that these
choices of parameters imply that any simple motion must
last at least 2.5 seconds for the algorithm to detect it. Al-
most all of simple motions in our motion database satisfy
this criterion.

For a simple motion, the derivativedi is more or less
constant, with minor oscillations around the average af-
ter an initial period of noise due to the small number of
frames. When a motion transition occurs, the derivative
di rises sharply above the constant value (Figure 1). At
any given value ofi, we can check for a possible cut by
computing the average and standard deviation of all the
previous data pointsdj , wherej < i. If the current data
pointdi is more thankσ = 3 standard deviations from the
average, we assign a motion cut to that frame. To process
the rest of the motion, we restart the algorithm at the cut
frame.



Figure 1: Transition from walking to running. The verti-
cal line at the frame 861 corresponds to the cut detected
by the algorithm. The solid line shows the derivative
di. The central dotted line represents the average of the
derivative. The two outer dotted lines show the range
corresponding to one standard deviation from the aver-
age. Derivative average and standard deviation at frame
i are computed over all previous data points dj , i.e., over
all j < i.

3.2 Probabilistic PCA Approach to Segmentation
In the second approach, we use Probabilistic PCA
(PPCA) to estimate the distribution of the motion data.
PPCA is an extension of the traditional PCA [24, 26]
and defines a proper probability model for PCA.

In PCA the directions “outside” the subspace are sim-
ply discarded, whereas in PPCA they are modeled with
noise. First, the average square of discarded singular
values can be defined as

σ2 =
1

56− r

56∑
i=r+1

σ2
i . (7)

The entire data set can then be modeled by a Gaussian
distribution, where the mean equals the center of motion
x and the covariance matrixC is determined by the equa-
tions:

W = Vr(Σ2
r − σ2I)1/2 (8)

C =
1

n− 1
(WWT + σ2I) =

1
n− 1

V Σ̃2V T . (9)

Here, we follow the notation of Equation 4, and introduce
Vr to denote the firstr columns of matrixV, andΣr to
denote the upper-leftr×r block of matrixΣ. Matrix Σ̃ is
a56× 56 diagonal matrix, obtained fromΣ by replacing
all discarded singular values byσ.

Figure 2: Plot of H as K is repeatedly increased by ∆.

We use PPCA to model the firstK frames of the mo-
tion as a Gaussian distribution, represented by meanx
and covarianceC, whereC is defined based on the the
estimated intrinsic dimensionality of the motion. We es-
timate intrinsic dimensionality using the technique spec-
ified in the PCA approach. We setτ = 0.95. This ap-
proach provides an accurate model of a particular behav-
ior because it captures the correlation in the motion of
different joint angles as well as the variance of all joint
angles. After we computex and C, we estimate how
likely are motion framesK +1 throughK +T to belong
to the Gaussian distribution defined byx andC. We do
this by computing an average Mahalanobis distance [8],
H for framesK + 1 throughK + T :

H =
1
T

K+T∑
i=K+1

(xi − x)T C−1(xi − x). (10)

An advantage of using the Mahalanobis measurement for
discrimination is that distances are calculated in units of
standard deviation from the mean and are therefore data
independent.

We next increaseK by a small number of frames,∆,
and repeat the estimation of distribution for the firstK
frames (K := K + ∆), and of the average Mahalanobis
distance,H, for framesK + 1 : K + T with respect
to the new distribution. For our experiments, we used
T = 150 frames,∆ = 10 frames, and the initial value
of K = T . A reasonable estimate ofT is half of the
anticipated number of frames in the smallest behavior in
the database.

Figure 2 shows a characteristic pattern ofH : it initially
decreases, then forms a valley, increases and decreases
again, forming a peak. The first decrease inH happens



when frames1 : K andK + 1 : K + T both belong to
the same behavior. As we increaseK, the algorithm es-
timates progressively more accurate distributions of this
behavior, making framesK + 1 : K + T more likely.
When the model converges, the valley is reached. The in-
crease inH occurs when the new behavior enters frames
K + 1 : K + T . The subsequent decrease inH begins
when the frames of the new behavior start appearing in
frames1 : K, and as a result the distribution begins to ac-
commodate the new behavior. Thus, a reasonable choice
for the segmentation takes place whenH forms a peak.
Then, frames1 : K contain the old motion and frames
K + 1 : K + T contain the firstT frames of the new mo-
tion. The algorithm declares a cut when a valley inH is
followed by a peak, and the difference between the two is
at least some thresholdR. For our experiments, we setR
to 15. In general, increasingR results in fewer segments
that correspond to more distinct behaviors, whereas de-
creasingR results in a finer segmentation. The next cut
is found by repeating the algorithm on the rest of the mo-
tion.

In rare cases the first behavior is characterized by a
“wide” distribution, whereas the following behavior is
characterized by a narrow distribution, that lies almost
completely within the first distribution. In this case,
frames from the second behavior are considered likely
to have come from the first distribution and the algorithm
will fail to detect the segmentation. However, if we do
a backward pass of the algorithm, the segmentation will
be detected because frames from the first distribution are
unlikely to come from the second distribution. Therefore,
we run our algorithm several times, alternating forward
and backward direction, and adding new cuts at each pass
until convergence (no new cuts are found). In practice, a
single forward pass detects almost all behaviors and at
most one backward pass is required.

3.3 GMM Approach to Segmentation

In the third approach we employ a Gaussian Mixture
Model (GMM) to model the entire sequence and then
segment the sequence whenever two consecutive sets of
frames belong to different Gaussian distributions. The
underlying assumption is that the frames from different
simple motions form separate clusters, and each cluster
can be described reasonably well by a Gaussian distribu-
tion. Figure 3 shows the distributions of frames from two
motion sequences, each of which consisted of three sim-
ple motions concatenated together. Each sequence has
been projected onto the first two principal components
computed for the full sequence. The frames of the simple
motions form clusters that can be modeled by Gaussian
distributions, suggesting that GMM is a reasonable model
for segmentation.

Figure 3: Two-dimensional projection of groups of sim-
ple motions: (a) Walking, running, and drinking; (b)
walking, sitting down, and standing idle. Frames of each
motion form their own clusters. The projection is done
on the first two principal components for each sequence.
In (a), the natural continuous transitions among different
clusters are not shown.

We use the Expectation Maximization (EM) algorithm
to estimate the Gaussian Mixture Model of the data. In
a pre-processing step, we use PCA to project the frames
onto a lower dimensional subspace. This dimensionality
reduction is meant to speed up the EM algorithm. The
number of principal components is chosen so that 90% of
the variance of the original data distribution is preserved.
The number of principal components here is about32, as
the complete sequences are not simple. In the ideal case,
each cluster is represented by a single Gaussian distribu-
tion. Thus, a collection ofk clusters can be represented
by a mixture ofk Gaussian distributions. The EM al-
gorithm is used to estimate the parameters of the GMM
such as mean,mj , covariance matrix,Σj , and prior,πj ,
for each of the Gaussians in the mixture. Note that the
clusters are not of equal size. For example, longer mo-
tion segments have more points and thus form larger clus-
ters. To capture these size differences, EM also estimates
the probabilityπj of a point belonging to a clusterCj .
The EM algorithm for GMM is one of the classical tech-
niques in machine learning, and we refer the reader to [8]
for algorithm details. After the GMM parameters are es-
timated, we can compute a most likely cluster for each
frame of the motion. A change of a behavior is then de-
tected at timei if framesxi andxi+1 belong to different
clusters.

In practice, if a segment is shorter than 1 second (120
frames), it is merged with its neighboring segments, i.e.,
the segment is split into two halves and its cluster labels
are changed to those of the segments before and after.
This heuristic worked well and it often removed small
segments that occur on the transitions between behaviors.

Figure 4 shows the segmentation of a motion cap-
ture data sequence composed of 7 simple motions in
the following order: walking, jumping forward, walk-



Figure 4: The clusters for a motion capture sequence of
7 simple motions (walking, jumping forward, walking,
punching, walking, kicking, punching). GMM is used to
find a mixture of k = 4 clusters. GMM provides the cor-
rect segmentation and also identifies similar simple mo-
tions.

ing, punching, walking, kicking, and punching. The ver-
tical lines are the ground truth of the segmentations. Cut
points between two motions are given as intervals cov-
ering the time period of the transition. Each cut point is
presented by three vertical lines, indicating the start, mid-
dle, and end of the motion transition as determined by a
human observer. Figure 4 also shows the cluster labels
(1, 2, 3, 4) assigned to the frames along the vertical axis
of the graph. In this case we fit a GMM model ofk = 4
clusters. The segmentation assignment of cluster labels
also successfully identified similar simple actions. Here,
the three walking motions are assigned the cluster label
2, and the two punching motions are assigned the cluster
label 1.

Unfortunately, we have to specify the number of clus-
tersk for each execution of the GMM, and we usually
do not know the number of clusters in a data set. As an
alternative, GMM is often estimated for various values
of k, and the mixture model that maximizes some crite-
rion, such as the Bayesian Information Criterion (BIC)
[22] is chosen. This approach, however, did not seem to
be useful for our data because it often returned a smaller
than optimal number of clusters. Instead, fixingk at a
small value such as4 seemed to produce reasonable re-
sults without additional complexity.

We initialize the GMM clusters with random frames.
Repeated experiments show that after removing short
(noisy) segments, major segmentation points could al-
ways be identified, independently of the initialization of
the clusters. This insensitivity to the initial conditions
may be due to the characteristics of our database (see
Figure 3). Alternatively, we also performed experiments
where we partitioned the entire motion sequence intoK
consecutive parts, and created the initial guess by picking

Figure 5: The error matrix for the PCA algorithm.

Figure 6: The error matrix for the PPCA algorithm.

one random frame from every part. In this case, the ini-
tial points are less likely to fall into the same final cluster,
which helped the convergence rate and in our case pro-
duced a slightly better result. However, the improvement
over fully random initialization was small.

4 Experiments

In this section, we present the results of two experiments
conducted on a motion capture database containing 14 se-
quences, each consisting of approximately 8000 frames.
Each sequence is a series of about 10 simple motions.
Typical human activities are represented, such as walk-
ing, running, sitting, standing idle, exercising, climbing,
performing martial arts, washing a window, and sweep-
ing a floor.

The first experiment illustrates the fundamental as-
sumptions behind our algorithms. The PCA approach is
based on the idea that the intrinsic dimensionality of a
motion sequence containing a single behavior should be
smaller than the intrinsic dimensionality of a motion se-
quence containing multiple behaviors. To illustrate this
idea, we selected 7 distinct simple behaviors: walking,
running, sitting down, forward jumping, climbing, arm
stretching and punching. For each behavior, we extracted
two distinct occurrences from the database. The length of



each occurrence was uniformly chosen to be 240 frames.
Let us denote the extracted sequences byXa

i , Xb
i , for

i = 1, . . . , 7, whereXa
i andXb

i , are distinct represen-
tatives of the same type of a motion. Given two arbitrary
extracted240-frame motionsX, X ′, we first estimated
the number of dimensionsr required to represent the first
motionX. Then, we combined frames of motionX and
X ′ to obtain a set of480 frames. For the purposes of
this experiment, the particular ordering of frames is ir-
relevant, and identical results would have been obtained
had the frames been permuted by a random permutation.
For the set of480 frames, we computed the total projec-
tion error when these frames were reduced tor dimen-
sions, as directed by Equation 5. These steps essentially
mimic the approach taken by the PCA method. We re-
peated this process for the14× 14 possible ordered pairs
of motionsX, X ′ and stored the projection errors in a
14 × 14 matrix, with row index corresponding toX and
column index corresponding toX ′. The resulting matrix
can be seen in Figure 5. For the PCA method to seg-
ment successfully, each motion must be much closer to
itself and to other representatives of the same kind of mo-
tion than it is to other distinct motions. For every row of
the matrix, the smallest element is on the diagonal, cor-
responding to joining two identical motions. The next
smallest element corresponds to joining the motion to its
similar, but distinct motion. A much larger error is ob-
tained when concatenating two completely different be-
haviors, because the number of dimensions that we esti-
mated is just enough to represent the first behavior, but
too small to represent two different behaviors.

The PPCA approach is based on the assumption that
Gaussian models of two separate behaviors will be quite
different. We illustrate this assumption in a similar fash-
ion. To compare the Gaussian models for two behaviors
X andX ′, we estimated the distribution for the first be-
havior using Equation 9, and computed the average Ma-
halanobis distance of the second behavior relative to the
distribution of the first motion using Equation 10. Be-
cause the PPCA-based segmentation algorithm is doing
both a forward and a backward pass, it also computes
the Mahalanobis distance of the first behavior relative
to the distribution of the second motion and uses it for
segmentation. To include this effect in our experiment,
we also estimated the distribution for the second behav-
ior and computed the average Mahalanobis distance of
the first behavior relative to the distribution of the sec-
ond behavior. The resulting symmetric14 × 14 matrix
in Figure 6 shows the maximum of the two Mahalanobis
distances for each pair of behaviors. As with PCA, the
element size is much smaller on the diagonal and for first
off-diagonal elements than it is elsewhere in the matrix.

This comparison demonstrates the assumption behind the
PPCA approach.

When capturing motion sequences for the database, the
actor was asked to perform a number of distinct behaviors
in a specified order (overall 35 distinct behaviors were
used throughout the database). To test the segmentation
of continuous motion sequences in the database we first
processed the database manually to determine the correct
positions for motion transitions. These correct positions
were implicitly defined by the choice of particular behav-
iors to be performed by the actor in a particular motion
sequence. Then, we ran the three algorithms proposed in
this paper and compared the results to the manually de-
termined transitions. Figure 7 shows the results of these
experiments. Figure 8 shows representative poses for the
behaviors that comprise one of the motion sequences in
the database.

We compared the three algorithms using the standard
precision/recall framework. Precision is defined as the
ratio of reported correct cuts versus the total number of
reported cuts. Recall is defined as the ratio of reported
correct cuts versus the total number of correct cuts. The
closer precision and recall are to1, the more accurate the
algorithm is. Figure 9 gives precision and recall scores
for the three algorithms.

5 Discussion

We have described and tested three methods for motion
segmentation. Of the three, probabilistic PCA provided
the best performance on our dataset. We hypothesize that
this superior performance occurs because PPCA tracks
the changes in the distributions that characterize motions
to find cut points while PCA considers only the change
in dimensionality. In other words, there are joint range
of motion limits implicit in PPCA, while PCA encodes
only correlations between joints. PPCA also estimates a
single distribution for each individual behavior. GMM, in
contrast, treats all frames as independent and, as a result,
may construct a single distribution that covers different
behaviors and may also estimate two separate distribu-
tions for a single behavior. Nevertheless, both PCA and
GMM provided good performance.

We assessed the performance of these three methods
on a database in which the transitions between behav-
iors had been hand labeled. This process is imperfect be-
cause two observers will certainly pick different frames
for a transition and may even disagree on what consti-
tutes a transition. For example, should three consecutive
forward jumps be considered three separate behaviors or
three cycles of a forward hopping gait? The answer prob-
ably depends on the application. As we analyzed the tran-
sitions that were mistakenly identified or missed by the



Figure 7: Motion separation points as assigned by a human observer and the three algorithms. Each chart corresponds
to one motion from the database, the x-axis corresponds to the frame number, and the vertical bars specify the cut
points assigned by the algorithms. For the human observer, the range (instead of a single frame) in which the transition
occurred is given, as all the frames in the range are acceptable positions for a motion cut. The sequences corresponding
to the upper-left chart (person taking exercise), and the next-to-last chart in the right column (janitor cleaning a room)
can also be found on our webpage at: http://graphics.cs.cmu.edu .

Figure 8: Representative poses for the simple motions that comprise the sequence in the upper-left chart in Figure
7. The seven simple motions are: walking, forward jumping, walking, arm punching, walking, leg kicking, and arm
punching.



Method Precision Recall

PCA 0.79 0.88
PPCA 0.92 0.95
GMM 0.77 0.71

Figure 9: Precision and recall scores for the PCA, PPCA
and GMM algorithms.

three methods, we found the following examples: walk-
ing straight and then turning while walking; jumping for-
ward repeatedly; sitting down on a chair, and then im-
mediately standing up; punching with the right hand and
then with the left; washing a window in a left-to-right
hand motion, and then switching to circular motion. Also
note that our approaches won’t detect changes in velocity,
as velocity information is not used in our algorithms.

The exact frame of the transition is particularly diffi-
cult to determine when the motion capture subject makes
a smooth transition from one behavior to another. Conse-
quently, we allowed a range of frames to be specified as
the ground truth by the human subjects.

Our metrics for detecting transitions weights all de-
grees of freedom equally. This assumption might not
always be correct. For example, if the motion capture
subject jumped on his right foot several times in a row
and then continued jumping but added a swinging motion
of the arms, the human observer would probably classify
the two behaviors as both jumping rather than separating
them with a cut point. However, the addition of arm mo-
tion might cause the automatic segmentation algorithms
to declare that a transition has occurred because the arms
are of equal statistical importance to the legs. The de-
grees of freedom of the motion trajectory could be scaled
by the effective inertia at each joint. In this way, joints
where movement required more effort would be given a
greater weight. Also, global position and orientation in-
formation could be included in the segmentation criteria.
This would likely change the semantics of our segments,
as, for example, locations of turns during walking would
become candidates for transitions.

Each of the three methods requires the selection of a
small number of parameters. These were chosen based on
the performance of the methods on a small set of motions
and then applied without alteration to the full database.
For PCA, we need to set the energy thresholdτ, the dis-
continuity thresholdkσ, and the window size parameters
k, `, andi0. For PPCA, we need to set the peak thresh-
old R and the window parametersT,∆. The thresholdR
is independent of the data but can be adjusted if finer or
coarser segmentation is desired. For GMM, we needed to
set the number of clustersk. Thus, that method is most
useful when all the sequences in the database contain ap-

proximately the same number of behaviors and a constant
k gives good performance.

We were pleasantly surprised that the PCA-based
methods worked so well. Typical human motions appar-
ently lead to highly correlated motion capture sequences.
This phenomenon suggests that PCA needs very few
components to capture most of the motion. Had this not
been the case, the curse of dimensionality would make
the problem very difficult because in high dimensions,
most points are far away from each other and will look
like outliers or discontinuities.

Our PCA-based methods worked well because the data
we were operating on are apparently well modeled by
Gaussian clouds. Of course, more sophisticated tools,
like Independent Component Analysis (ICA) [13, 18] or
Locally Weighted Precision Recall [27] may well achieve
even better cut detection. Nevertheless, the Gaussian as-
sumption and PCA provided surprisingly good results on
the motions in our database.

As motion capture databases grow, segmenting them
manually either at the time of capture or during data
clean-up will become more difficult. Furthermore, no
one segmentation will necessarily be right for all appli-
cations. A method with tunable parameters such as ours
may be able to provide both the short segments required
for learning a transition graph (e.g., for interactive con-
trol of a character) and the longer segments that provide
a statistical description of a particular behavior. HMMs
and other clustering techniques bring added power to the
problem, but require an expensive search process and/or
a very good initial guess. We were pleased to find that we
didn’t need the extra power of these techniques.
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