
october 2008  |   vol.  51  |   no.  10  |   communications of the acm     87

doi:10.1145/1400181.1400202

Abstract
What can you do with a million images? In this paper, we 
present a new image completion algorithm powered by a 
huge database of photographs gathered from the Web. The 
algorithm patches up holes in images by finding similar im-
age regions in the database that are not only seamless, but 
also semantically valid. Our chief insight is that while the 
space of images is effectively infinite, the space of seman-
tically differentiable scenes is actually not that large. For 
many image completion tasks, we are able to find similar 
scenes which contain image fragments that will convinc-
ingly complete the image. Our algorithm is entirely data 
driven, requiring no annotations or labeling by the user. 
Unlike existing image completion methods, our algorithm 
can generate a diverse set of image completions and we al-
low users to select among them. We demonstrate the su-
periority of our algorithm over existing image completion 
approaches.

1. INTRODUCTION
Every once in a while, we all wish we could erase something 
from our old photographs. A garbage truck right in the mid-
dle of a charming Italian piazza, an ex-boyfriend in a family 
photo, a political ally in a group portrait who has fallen out 
of favor.13 Other times, there is simply missing data in some 
areas of the image: (a) an aged corner of an old photograph 
(b) a hole in an image-based 3D reconstruction due to oc-
clusion, and (c) a dead bug on the camera lens. Image com-
pletion (also called inpainting or hole-filling) is the task of 
filling in or replacing an image region with new image data 
such that the modification cannot be detected.

There are two fundamentally different strategies for im-
age completion. The first aims to reconstruct, as accurately 
as possible, the data that should have been there, but some-
how got occluded or corrupted. Methods attempting an ac-
curate reconstruction have to use some other source of data 

in addition to the input image (Figure 1), such as video (us-
ing various background stabilization techniques) or multi-
ple photographs of the same scene.1,19

The alternative is to try finding a plausible way to fill in 
the missing pixels, hallucinating data that could have been 
there. This is a much less easily quantifiable endeavor, re-
lying instead on the studies of human visual perception. 
The most successful existing methods4,6,24,25 operate by ex-
tending adjacent textures and contours into the unknown 
region. These algorithms are similar to texture synthesis 
algorithms such as,8,7,14,15 sometimes with additional con-
straints to explicitly preserve Gestalt cues such as good con-
tinuation,23 either automatically 4 or by hand.20 Importantly, 
all of the existing image completion methods operate by 
filling in the unknown region with content from the known 
parts of the input source image.

Searching the source image for usable texture makes a 
lot of sense. The source image often has textures at just the 
right scale, orientation, and illumination as needed to seam-
lessly fill in the unknown region. Some methods6,25 search 
additional scales and orientations to gain additional source 
texture samples. However, viewing image completion as 
constrained texture synthesis limits the type of completion 
tasks that can be tackled. The assumption present in all of 
these methods is that all the necessary image data to fill in 
an unknown region is located somewhere else in that same 
image. We believe this assumption is flawed and that the 
source image simply does not provide enough data except 
for trivial image completion tasks.

Typical demonstrations of previously published algo-
rithms are object removal tasks such as removing people, 
signs, horses, or cars from relatively simple backgrounds. 
The results tend to be fairly sterile images because the algo-
rithms are only reusing image content that appeared some-
where else in the same image. For situations in which the in-
complete region is not bounded by texture regions, or when 
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Figure 1: Given an input image with a missing region, we use matching scenes from a large collection of photographs to complete the image.
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there is too little useful texture, existing algorithms have 
trouble completing scenes (Figure 2).

2. OVERVIEW
In this paper, we perform image completions by leveraging 
a massive database of images. There are two compelling 
reasons to expand the search for image content beyond the 
source image. (1) In many cases, a region will be impossible 
to fill plausibly using only image data from the source image. 
For instance, if the roof of a house is missing or the entire 
sky is masked out. (2) Even if there is suitable content in the 
source image, reusing that content would often leave obvi-
ous duplications in the final image, e.g. replacing a missing 
building with another building in the image. By performing 
hole filling with content from other images, entirely novel 
objects and textures can be inserted.

However, there are several challenges with drawing content 
from other images. The first challenge is computational. Even 
in the single image case some existing methods report running 
times in the hours6,8 because of the slow texture search. Tex-
ture synthesis-based image completion methods are difficult 
to accelerate with traditional nearest-neighbor or approximate 
nearest-neighbor methods because of the high dimensionality 
of the features being searched and because the known dimen-
sions of the feature being matched on change depending on 
the shape of the unknown region at each iteration.

The second challenge is that as the search space increas-
es, there is higher chance of a synthesis algorithm finding 
locally matching but semantically invalid image fragments. 
Existing image completion methods might produce sterile 
images but they do not risk putting an elephant in some-
one’s back yard or a submarine in a parking lot.

The third challenge is that content from other images is 
much less likely to have the right color and illumination to 
seamlessly fill an unknown region compared to content from 
the same image. More than other image completion meth-
ods, we need a robust seam-finding and blending method to 
make our image completions plausible.

In this work, we alleviate both the computational and 
semantic challenges with a two-stage search. We first try to 
find images depicting semantically similar scenes and then 
use only the best matching scenes to find patches which 
match the context surrounding the missing region. Scene 
matching reduces our search from a database of one million 

images to a manageable number of best matching scenes 
(60 in our case), which are used for image completion. We 
use a low-dimensional scene descriptor16 so it is relatively 
fast to find the nearest scenes, even in a large database. Our 
approach is purely data driven, requiring no labeling or 
supervision.

In order to seamlessly combine image regions we em-
ploy Poisson’s blending. To avoid blending artifacts, we first 
perform a graph cut segmentation to find the boundary for 
the Poisson blending that has the minimum image gradient 
magnitude. This is in contrast to minimizing the intensity 
domain difference along a boundary25 or other heuristics 
to encourage a constant intensity offset for the blending 
boundary.11 In Section 4, we explain why minimizing the 
seam gradient gives the most perceptually convincing com-
positing results.

The image completion work most closely resembling our 
own, Wilczkowiak et al.25 also demonstrates the search of 
multiple images. However, in their case it was only a few im-
ages that were hand selected to offer potentially useful image 
regions. Also related are methods which synthesize semanti-
cally valid images either from text or image constraints.5,12 
These methods create semantically valid images through 
explicit semantic constraints using image databases with 
semantically labeled regions. The database labeling process 
must be supervised5 or semisupervised.12

3. SEMANTIC SCENE MATCHING
Since we do not employ user-provided semantic constraints 
or a labeled database, we need to acquire our semantic 
knowledge from the data directly. This requires us to sam-
ple the set of visual images as broadly as possible. We con-
structed our image collection by downloading all of the pho-
tographs in 30 Flickr.com groups that focus on landscape, 
travel, or city photography. Typical group names are “lonely 
planet,” “urban fragments,” and “rural decay.” Photographs 
in these groups are generally high quality. We also down-
loaded images based on keyword searches such as “travel,” 
“landscape,” and “river.” We discarded all duplicate images 
and all images that did not have at least 800 pixels in their 
largest dimension and 500 pixels in their smallest dimen-
sion. All images were down-sampled, if necessary, such that 
their maximum dimension was 1024 pixels. Our database 
downloading, preprocessing, and scene matching are all 

Figure 2: Results from image completion algorithms including Microsoft Digital Image Pro Smart Erase.
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distributed among a cluster of 15 machines. In total we ac-
quired about 2.3 million unique images totalling 396 giga-
bytes of JPEG compressed data.

In order to successfully complete images, we need to 
find image regions in our database that are not just seam-
less and properly textured but also semantically valid. We do 
not want to complete hillsides with car roofs or have ducks 
swimming in city pavement which locally resembles a lake. 
To help avoid such situations, we first look for scenes which 
are most likely to be semantically equivalent to the image re-
quiring completion. The use of scene matching is the most 
important element of our image completion method. With-
out it, our search would not be computationally feasible and 
our image completion results would rarely be semantically 
valid. Our scene matching, in combination with our large 
database, allows us to do image completion without resort-
ing to explicit semantic constraints as in previous photo syn-
thesis work.5,12

We use the gist scene descriptor16,22 which has been shown 
to perform well at grouping semantically similar scenes 
(e.g., city, tall buildings, office, fields, forest, and beach) and 
for place recognition. It must be noted that a low-level scene 
descriptor in and of itself cannot encode high-level seman-
tic information. Scenes can only be trusted to be semanti-
cally similar if the distance between them is very small. The 
way we address this issue is by collecting a huge dataset of 
images making it more likely that a very similar scene to the 
one being searched is available in the dataset. Indeed, our 
initial experiments with the gist descriptor on a dataset of 
ten thousand images were very discouraging. However, in-
creasing the image collection to one million yielded a quali-
tative leap in performance (see Figure 3 for a typical scene 
matching result). Independently, Torralba et al.21 have ob-
served a similar effect with a dataset of up to 70 million tiny 
(32×32) images.

The gist descriptor aggregates oriented edge responses 
at multiple scales into very coarse spatial bins. We found a 
gist descriptor built from six oriented edge responses at five 
scales aggregated to a 4×4 spatial resolution to be the most 
effective. We augment the scene descriptor with the color 

information of the query image down-sampled to the spatial 
resolution of the gist.

Searching for similar scenes first rather than directly 
looking for similar patches speeds up our search dramati-
cally. Instead of looking for image patches in all one million 
images at multiple offsets and scales, we can instead elimi-
nate 99.99% of the database quickly by finding the nearest 
neighbor scenes based on the relatively low-dimensional 
scene descriptor.

Given an input image to be hole-filled, we first compute 
its gist descriptor with the missing regions excluded. This is 
done by creating a mask which weights each spatial bin in 
the gist in proportion to how many valid pixels are in that bin. 
We compute the L1 distance between the gist of the query im-
age and every gist in the database, weighted by the mask. The 
color distance is computed in the L*a*b* color space. These 
distances are combined and weighted such that the gist con-
tributes roughly twice as much as the color information to the 
final distance.

Because we match scenes using arbitrary dimensions 
of the descriptor (depending on which regions of a query 
image are missing), we cannot use principal components 
analysis  (PCA) dimensionality reduction as suggested in16 
For the same reason, we do not use any approximate nearest-
neighbor scheme since they tend to incur large relative errors 
when matching on arbitrary dimensions of descriptors with 
hundreds of dimensions. However, the descriptors are small 
enough to exhaustively search in a few minutes using a clus-
ter of 15 machines.

4. LOCAL CONTEXT MATCHING
Having constrained our search to semantically similar 
scenes, we can use traditional template matching to more 
precisely align those matching scenes to the local image 
context around the missing region. The local context is all 
pixels within an 80 pixel radius of the hole’s boundary. This 
context is compared against the 200 best matching scenes 
across all valid translations and three scales (0.81, 0.90, 1) 
using pixel-wise SSD error in L*a*b* color space. Only place-
ments (translations and scales) for which the context is fully 
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Figure 3: The first 164 nearest neighbor scenes for the incomplete image in the center. Most of the scenes are semantically and structurally 
similar; many are even from the same city (London). 



contained in the matching scene are considered. Since we 
expect our matching scenes to already be roughly aligned 
with the incomplete image, we discourage spurious, distant 
matches by multiplying the error at each placement by the 
magnitude of the offset.

We composite each matching scene into the incomplete 
image at its best scoring placement using a form of graph 
cut seam finding15 and standard Poisson’s blending.17 Using 
a seam finding operation to composite the images is argu-
ably undesirable for hole filling since a user might want to 
preserve all of the image data in the input image. Past image 
completion algorithms4 have treated the remaining valid pix-
els in an image as hard constraints which are not changed. 
We relax this, as in25 and allow the seam-finding operation to 
remove valid pixels from the query image but we discourage 
the cutting of too many pixels by adding a small cost for re-
moving each pixel in the query image which increases with 
distance from the hole.

When performing a seam-finding operation and gradient 
domain fusion in sequence, it makes sense to optimize the 
seam such that it will minimize the artifacts left behind by 
the gradient domain fusion. Jia et al.11 uses iterative dynam-
ic programming optimizations to find a seam which leaves 
minimum intensity difference between the two images af-
ter allowing some constant intensity offset. The intuition 
is that humans are not sensitive to relatively large shifts in 
color and intensity as long as the shifts are seamless and low 
frequency. Inspired by this, as well as the fact that our scene 
matches tend to have colors similar to our query image, we 
propose a seam-finding heuristic which ignores intensity 
differences entirely and instead minimizes the difference 
in image gradients. This heuristic finds seams that avoid 
cutting high-frequency image content for which Poisson’s 
blending would cause obvious artifacts.

An advantage of our heuristic is that we can quickly 
find  the optimal seam using a graph cut procedure.3 The 
details of our graph cut setup can be found in our origi-
nal SIGGRAPH publication.9 A very similar metric was 
mentioned but not demonstrated in1 As in,1 we allow the 

Poisson blending to operate on the entire image domain 
instead of correcting one of the images. We use the Poisson 
solver of.2

Finally, we assign each composite a score which is the sum 
of the scene matching distance, the local context matching 
distance, the local texture energy distance, and the cost of 
the graph cut. All four components of the score are scaled to 
contribute roughly equally. We present the user with the 20 
composites with the lowest scores.

5. RESULTS AND COMPARISON
We test our algorithm on a set of 51 images with missing re-
gions. All test images come from either the LabelMe data-
base18 or our own personal photo collections, none of which 
are contained in our downloaded database. Images in the 
test set, about a half megapixel each, are higher resolution 
than the images used in most previous works4,6 and like-
wise the missing regions are quite large (56,000 pixels on 
average). The regions we removed from the photos all had 
semantic meaning such as unwanted objects, store-fronts, 
walls with graffiti, roads, etc. The test set is made freely avail-
able on the authors’ Web page.

Image completion is an inherently underconstrained 
problem. There are many viable ways to fill a hole in an im-
age. Previous approaches, which operate by reusing texture 
from the input image, can offer relatively few viable, alterna-
tive completions (perhaps by changing parameters such as 
the patch size). While some such results might look slightly 
better than others, the semantic interpretation of the image 
is unlikely to change. On the other hand, our algorithm can 
offer a variety of semantically valid image completions for 
a given query image (Figure 4). After compositing, the best-
matching patches we present a user with the 20 top image 
completions (roughly equivalent to one page of image search 
results). In some cases, many of these completions are of ac-
ceptable quality and the user can select the completion(s) 
which they find most compelling. In other cases, only a few 
or none of the results were acceptable. The quality of our re-
sults benefits from this very simple user interaction and it 

90    communications of the acm    |   october 2008  |   vol.  51  |   no.  10

research highlights 

 

Figure 4: The algorithm presents to the user a set of alternative image completions for each input. Here, we show three such alternatives.

Original Input Alternative completions
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is difficult for conventional image completion methods to 
offer an analogous selection of results.

Some of our image completions are shown in Figure 5. 
The bottom result is interesting because the scaffolding 
on  the cathedral that was masked out has been replaced 
with another image patch of the same cathedral. The data-
base happened to contain an image of the same cathedral 
from a similar view. It is not our goal to complete scenes and 
objects with their true selves in the database, but with an in-
creasingly large database such fortuitous events do occur.

In all of the successful cases, the completion is semanti-
cally valid but there might be slight low-level artifacts such 
as resolution mismatch between the image and patch, blur-
ring from Poisson’s blending, or fine-scale texture differenc-
es between the image and patch. For failure cases these low-
level artifacts are often much more pronounced (Figure 6, 
top). Another source of failure is a lack of good scene match-
es which happens more often for atypical scenes (Figure 6, 
middle). Semantic violations (e.g., half-objects) account for 
another set of failures. The latter is not surprising since the 
algorithm has no object recognition capabilities and thus 
no notion of object boundaries.

For uniformly textured backgrounds (Figure 7, top), exist-
ing image completion algorithms perform well. However, 
our algorithm struggles since our scene matching is un-
likely to find the exact same texture in another photograph. 
Furthermore, image completion algorithms such as Crimi-
nisi et al.4 have explicit structure propagation which helps in 
some scenes (Figure 7, bottom).

Our hole filling algorithm requires about 5 min to process 
an input image. The scene matching, local context match-
ing, and compositing would take about 50, 20, and 4 min 
respectively on a single central processing unit (CPU) but 
we parallelize all of these across 15 CPUs. Our algorithm is 
implemented in MATLAB and all of the timings are for Pen-
tium 4 processors.

5.1. Quantitative evaluation
It is difficult to rigorously define success or failure for an im-
age completion algorithm because so much of it depends 
on human perception. While previous approaches demon-
strate performance qualitatively by displaying a few results, 
we believe that it is very important to also provide a quantita-
tive measure of the algorithm’s success. Therefore, to evalu-
ate our method, we performed a perceptual study to see how 
well naive viewers could distinguish our results, as well as 
those of a previous approach,4 from real photographs. The 
study was performed on a set of 51 test images that were de-
fined a priori and spanning different types of completions. 
We were careful not to include any potentially recognizable 
scenes or introduce bias that would favor a particular algo-
rithm. We generated three versions of each image—the real 
photograph from which the image completion test cases 
were constructed, the result from Criminisi et al., and the 
result from our algorithm.

Each of our 20 participants viewed a sequence of images 
and classified them as real or manipulated. Of the 51 images 
each participant examined, 17 were randomly chosen from 
each source, but such that they do not see multiple versions 

of the same image. The order of presentation was also ran-
domized. The participants were told that some of the im-
ages would be real, but they were not told the ratio of real 
versus manipulated images. We also told the participants 
that we were timing their responses for each image but that 
they should try to be accurate rather than fast. Overall the 
participants classified 80% of the images correctly. No effort 
was made to normalize for the differences in individual apti-
tude (which were small).

With unlimited viewing the participants classified our 
algorithm’s outputs as real 37% of the time compared with 
10% for Criminisi et al.4 Note that participants identified 
real images as such only 87% of the time. Participants scruti-
nized the images so carefully that they frequently convinced 
themselves real images were fake.

It is interesting to examine the responses of participants 
over time. In Figure 8 we measure the proportion of images 
from each algorithm that have been marked as fake with an 
increasing limit on the amount of time allowed. We claim 
that if a participant who has been specifically tasked with 
finding fake images cannot be sure that an image is fake 
within 10 s, it is unlikely that an unsuspecting, casual ob-
server would notice anything wrong with the image. After 
10 s of examination, participants have marked our algo-
rithm’s results as fake only 34% of the time (the other 66% 
are either undecided or have marked the image as real al-
ready). For Criminisi et al. participants have marked 69% 
of the images as fake by 10 s. For real photographs, only 3% 
have been marked as fake. All pairwise differences are statis-
tically significant (p < 0.001).

6. DISCUSSION
This paper approaches image completion from an entirely 
new direction—orthogonal and complementary to the exist-
ing work. While previous algorithms4,6,8,25 suggest clever ways 
to reuse visual data within the source image, we demonstrate 
the benefits of utilizing semantically valid data from a large 
collection of unlabeled images. Our approach successfully 
fills in missing regions where prior methods, or even expert 
users with the Clone brush, would have no chance of succeed-
ing because there is simply no appropriate image data in the 
source image to fill the hole. Likewise, expert users would 
have trouble leveraging such a large image collection—it 
would take 10 days just to view it with one second spent on 
each image. Additionally, this is the first paper in the field of 
image completion to undertake a full perceptual user study 
and report success rates on a large test set. While the results 
suggest substantial improvement over previous work, image 
completion is extremely difficult and is far from solved. Given 
the complementary strengths of our method and single-image 
techniques, a hybrid approach is likely to be rewarding.

It takes a large amount of data for our method to succeed. 
We saw dramatic improvement when moving from ten thou-
sand to one million images. But one million images is still 
a tiny fraction of the high-quality photographs available on 
sites like Picasa or Flickr (which has approximately 2 billion 
images). The number of photos on the entire Internet is sure-
ly orders of magnitude larger still. Therefore, our approach 
would be an attractive Web-based application. A user would 
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Figure 5: Results. The input and the matching scenes are composited together to create the outputs. The matching scene used in each output 
is highlighted in red. Note that the algorithm can handle a large range of scenes and missing regions. On rare occasions, the algorithm is 
lucky enough to find another image from the same physical location as seen in the bottom example.
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submit an incomplete photo and a remote service would 
search a massive database, in parallel, and return results.

7. TOWARD BRUTE-FORCE IMAGE UNDERSTANDING
Beyond the particular graphics application, the deeper ques-
tion for all appearance-based data-driven methods is this: 
would it be possible to ever have enough data to represent 
the entire visual world? Clearly, attempting to gather all pos-
sible images of our dynamic world is a futile task, but what 
about collecting the set of all semantically differentiable 
scenes? That is, given any input image can we find a scene 
that is “similar enough” under some metric? The truly excit-
ing (and surprising!) result of our work is that not only does 
it seem possible, but the number of required images might 
not be astronomically large. This paper, along with work by 

Torralba et al.,21 suggest the feasibility of sampling from the 
entire space of scenes as a way of exhaustively modeling our 
visual world. This, in turn, might allow us to “brute force” 
many currently unsolvable vision and graphics problems!

Further supporting this possibility, we recently used 
scene matching methods similar to those presented here 
to estimate the GPS location of an arbitrary image. In a 
project called IM2GPS,10 we collect a database of 6 million 
geotagged photographs from Flickr and show that image 
matches for a query photo are often “similar enough” to be 
geographically informative even if we do not match to the ex-
act, real-world location. We represent the estimated image 
location as a probability distribution over the Earth’s sur-
face (see Figure 9). We quantitatively evaluate our approach 
in several geolocation tasks and demonstrate encouraging 
performance (up to 30 times better than chance). We show 
that geolocation estimates can provide the basis for numer-
ous other image understanding tasks such as population 
density estimation, land cover estimation or urban/rural 
classification (see10 for details).

Figure 6: Typical failure cases. Some results exhibit pronounced 
texture seams (top). Others are failures of scene matching (middle). 
The last failure mode (bottom), shared with traditional image comple-
tion algorithms, is a failure to adhere to high-level semantics (e.g., 
entire people).

Input Output Scene match

Figure 7: Situations where existing image completion algorithms 
perform better than our algorithm.

Input Criminisi et al. Our algorithm

Figure 8: The percentage of images marked as fake within any 
amount of viewing time by participants in our perceptual study.
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Figure 9: Geolocation estimates for photos of the Grand Canyon and 
a generic European alley. From left to right are the query photo-
graphs, the first 16 nearest scene matches, and the distribution of 
the top 120 nearest-neighbors across the Earth. Geographic clusters 
are marked by X’s with size proportional to cluster cardinality. The 
ground truth locations of the queries are surrounded by concentric 
green circles.
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