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Abstract. This paper presents an optimization framework for estimating the mo-
tion and underlying physical parameters of a rigid body in free flight from video.
The algorithm takes a video clip of a tumbling rigid body of known shape and
generates a physical simulation of the object observed in the video clip. This
solution is found by optimizing the simulation parameters to best match the mo-
tion observed in the video sequence. These simulation parameters include initial
positions and velocities, environment parameters like gravity direction and pa-
rameters of the camera. A global objective function computes the sum squared
difference between the silhouette of the object in simulation and the silhouette
obtained from video at each frame. Applications include creating interesting rigid
body animations, tracking complex rigid body motions in video and estimating
camera parameters from video.
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Fig. 1. Four frames of a tumbling object superimposed (left) and a physical simulation generated
from the estimated motion parameters. The object is thrown from right to left. Our optimization
framework computes the object, camera and environment parameters to match the simulated
wireframe object with the video at every frame.



1 Introduction

The motion of real objects is governed by their underlying physical properties and their
interactions with the environment. For example, a coin tossed in the air undergoes a
complex motion that depends on its initial position, orientation, and velocity at the time
at which it is thrown. Replacing the coin with a bowling pin produces a distinctly dif-
ferent motion, indicating that motion is also influenced by shape, mass distribution, and
other intrinsic properties of the object. Finally, the environment also affects the motion
of an object, through the effects of gravity, air drag, and collisions.

In this paper we present a framework for recovering physical parameters of objects
and environments from video data. We focus specifically on the case of computing the
parameters underlying the motion of a tumbling rigid object in free flight assuming the
object shape and mass distribution are known. Our algorithm models tumbling dynam-
ics using ordinary differential equations, whose parameters include gravity, inertia and
initial velocities. We present an optimization framework to identify these physical pa-
rameters from video.

Our dynamic model captures the true rotational physics of a tumbling rigid body. This
aspect distinguishes our work from prior work in motion tracking and analysis [4, 7,
11, 5], where the focus is on identifying object kinematics, i.e., motion trajectories.
Moreover, our algorithm uses information from all frames in the video sequence simul-
taneously, unlike feedforward filter based methods. Figure 2 compares the results of our
offline batch algorithm with an online Kalman filter applied to a synthetic example of
2D ballistic motion with gaussian noise. Our algorithm tries to find the best fit parabola
to the data, whereas a Kalman filter fits a higher order curve to the data. Although the
Kalman filter approach tracks the data better, our algorithm finds the true parameters
describing the physics of the ballistic motion. These parameters can now be used to
animate a particle in simulation, that moves like the given data. However, most tracking
tasks require only kinematic properties and therefore, our approach of accurately mod-
eling the underlying physics might seem to be unnecessary or prohibitively difficult.

We argue that estimating physical parameters has important benefits for the analysis of
rigid-body motion. First, the use of an accurate physical model actually simplifies the
task of recovering kinematics, since the complete motion is determined by the initial
state and a small number of other parameters. Second, the recovered model enables the
behavior of the object to be predicted in new or unseen conditions. For instance, from a
short video clip of a object at any point in its trajectory, we can reason from where it was
launched and where and in what attitude it will land. This same ability allows the path
to be followed through occlusions. In addition, we can predict how the object would
behave in different conditions, i.e., with more angular velocity. In the same manner, by
recovering parameters of the environment, we can predict how different objects would
move in that environment. As one application of measuring the environment, we show
how estimating the direction of gravity in an image sequence can be used to rectify a
video to correct for camera roll.



We estimate parameters of a rigid-body motion with an optimization that seeks to match
the resulting motion with the frames of the video sequence. Rather than operating in a
feed-forward manner, as is typical of object tracking techniques [16, 17,7, 4], we cast
the problem in a global optimization framework that optimizes over all frames at once.
Using this framework, we show how it is possible to simultaneously compute the ob-
ject, camera, and environment parameters from video data. Unlike previous analytical
methods [15, 14], our method does not require any velocity, acceleration, or torque mea-
surements to compute the body state as a function of time. Furthermore, an important
element of our estimation approach is that it relies only on easily computable metrics
such as image silhouettes and 2D bounding boxes, avoiding the need to compute optical
flow or track features on the object over time. Our optimizer employs general-purpose
rigid-body simulators [1] that model a wide range of behaviors, such as collisions and
articulated structures.
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Fig. 2. Illustrating the differences between parameter estimation using optimization (left) and a
Kalman filter (right) on a simplistic 2D example. The input data is the trajectory of a point mass
in free flight, corrupted with gaussian noise. Our optimization algorithm uses all the data points
simultaneously to fit a path that globally satisfies physical laws; in this simple case, a parabolic
path. The Kalman filter processes the data sequentially and fits a higher order curve to the data.

2 Redated Work

Several researchers in the computer vision community have focussed on the problem
of extracting body shape and camera motion from video [23,12, 8]. There is very little
work on extracting the underlying physical properties of the object or the environment.
Several groups [20, 3] have modeled the dynamics of point masses (free flight and col-
lisions) from video to design controllers for robots performing juggling or playing air
hockey. Ghosh et al. [9] use estimation theory to recover the riccati dynamics and shape



of planar objects using optical flow. Masutani et al. [15] describes an algorithm to ex-
tract the inertial parameters of a tumbling rigid body from video. Their system tracks
feature points in the images to get instantaneous velocity measurements and uses the
Poinsot’s solution [22] to compute the inertial parameters. The problem of simultane-
ously recovering the physical parameters of the object, camera, and environment from
a single camera has not been previously addressed.

Our work is closely related to prior work on model based tracking in computer vi-
sion [11,5,21,4,7,24,17,16]. However, the notion of a dynamic model in the tracking
literature is different from the one presented here. We use ordinary differential equa-
tions to model the non-linear rotational dynamics of tumbling rigid bodies, and extract
its parameters from video. These parameters include initial velocities, gravity and iner-
tias. In contrast, most of the prior tracking algorithms use a Kalman filter to update the
state variables of the moving object. In many instances, the dynamic model that relates
the current and previous states is extremely simple [11,5]. However, they are suffi-
cient for tracking rigid-body motions [11] or for navigation [5, 21]. Kalman filters have
also been successfully applied to track articulated [24] and non-rigid motion [16,17] in
video. The filter based techniques are feed-forward in nature and are ideally suited for
tracking applications. Our technique works offline using information from all frames
simultaneously to estimate the physical parameters.

Several techniques have been developed [19, 6] to estimate the parameters of a sim-
ulation to design computer animations of rigid bodies. Although these methods have
been used for synthesis, to date, they have not been used to analyze motion from video.
Our technique is similar to recent parameter estimation techniques for designing rigid
body animations in computer graphics [19, 18].

3 Problem Statement

Our goal is to infer the physical parameters underlying the motion of a rigid body in
free flight from a pre-recorded video sequence of its motion. Free flight motion of the
rigid body in video is determined by a relatively small set of parameters. They can be
categorized into three groups:

— Object Parameters: We distinguish two types of object parameters: intrinsic pa-
rameters (object shape, mass distribution and location of center of mass), extrinsic
parameters (initial position, orientation, velocity, angular velocity).

— Environment Parameters: Parameters such as gravity direction and air drag.

— Camera: We distinguish two types of camera parameters: intrinsic (focal length,
principle point, etc.), extrinsic parameters (position and orientation).

In this paper, we extract the extrinsic parameters of the object and the direction of the
gravity vector. We assume that the shape and inertial properties of the object are known
and the effect of air drag is negligible. Without loss of generality, we place the origin of
the world coordinate system at the camera center, with the principle axes aligned with
the camera coordinate system. Due to the choice of this coordinate system, the direction



of gravity depends on the orientation of the camera, and is not necessarily vertical.

We employ the standard mathematical model from classical mechanics to represent
the motion of a rigid body in free flight. A set of nonlinear ordinary differential equa-
tions (ODE) model the motion of a rigid body by computing the evolution of its state,
which includes the body’s position and velocities, over time. As a result, the motion of a
rigid body is succinctly described by the parameters that affect the solution of the ODE.
We use the term simulation to refer to the process of computing the body’s motion by
integrating the ODE.

4 Estimation from Video

In this section, we describe the equations of motion of a rigid body in free flight, and
identify the parameters that affect the motion. We present an optimization framework
to identify these parameters from a video sequence.

4.1 Equations of Motion

The tumbling motion of a rigid body in free flight is characterised by its position, orien-
tation, linear and angular velocity. Let us define the state g(¢)= [X (¢),0(t),V (t),w(t)]
to be the values of these parameters at time ¢t. X (t) € R® and 8(t) € SO(3) specify
the position and orientation in a world coordinate system. We use a quaternion repre-
sentation to represent the orientation with four parameters. V'(¢) € R? and w(t) € R3
specify the linear and angular velocity coordinates. The time derivative of the state g(t),
called the simulation function F'(¢,q(t)), is governed by the ODE
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Here, I(¢) is the inertia matrix in world coordinates, and g =~ (0,—9.81,0) is the
acceleration due to gravity. The product * refers to the quaternion multiplication. The
state g(t) at any time instant ¢ = ¢ is determined by integrating Eq (4.1):

ty

q(ts) = q(to) + ) F(t,q(t))dt (4.2)

The state at any time g(¢) depends on the initial state g(¢o) and inertial matrix. In this
paper, we assume that the inertia matrix is known. Consequently, it is sufficient to solve
for the initial state, which we denote by pob;j.

4.2 Estimating Parameters from 3D data

The state of the body q(t) describes the configuration of the body at any time. From the
state g(t;) at any time ¢;, we can compute the state g(¢;) at any other time ¢; by running



the simulation forwards or backwards. However, obtaining the full state information
from the real world requires linear and angular velocity measurements, which are hard
to measure accurately.

4.3 Estimating Parameters from Video

This section describes techniques to extract the simulation parameters p = (Pobj, Penv)
from video. In this paper, we recover the object parameters pop; and gravity direction
Penv- The gravity direction in our framework is encoded by two angles (tilt and roll).
Video provides strong cues about the instantaneous pose and velocities of an object.
However, the complex motion of a tumbling rigid body limits the information that can
be reliably extracted from video. In particular, it is difficult to track a point on a tum-
bling object over many frames because of self occlusion. The high speeds of typical
tumbling motions induces significant motion blur making measurements like optical
flow very noisy. In contrast, it is easier to measure the bounding box or silhouettes of a
tumbling body.

We solve for simulation parameters p by minimizing the least square error between the
silhouettes from video and silhouettes from the simulation at each frame. The details of
this optimization are given in Section 5. The object parameters in our formulation in-
clude both initial position and velocities. Alternatively, we can reduce the search space
by first recovering the 3D pose (position and orientation) from the sequence using prior
vision techniques, and then optimizing for the velocities that generate the set of 3D
poses. Several researchers in the recognition community describe algorithms to recover
the 3D pose of an object from silhouettes [13, 10]. Let (X (o), 8 (t0)), ---, (X (t&), 8 (t1))
be the sequence of poses computed from a sequence of k& frames. The optimization algo-
rithm finds a feasible solution for the initial linear and angular velocity by minimizing
the following objective function:

uJ(tIOT)l,iqr;l(tO) ) Z (X (i) - Xs(i))2 +(0(i) — 05(2'))2 (4.3)
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where X *(t;) is the position and 8°(t;) is the orientation of the object (in simulation)
at time ¢ = t; for the current estimate of inital velocities v(to) and w(to). Section 5
provides details on computing the analytical derivatives required for this minimization.

Although this method reduces the number of variables to be optimized, its perfor-
mance depends on the accuracy of the pose estimates obtained from silhouettes. Since
recognition-based methods do not enforce dynamics (they operate on a per frame ba-
sis), they might introduce discontinuities in pose measurements, leading to incorrect
solutions for initial velocities. Hence, we decided to optimize for the pose and velocity
and gravity parameters simultaneously in our framework. However, the error space with
our formulation has several local minima, and hence our technique is sensitive to ini-
tialization. Moreover, fast tumbling motion could result in aliasing problems, especially
with slow cameras. Hence, the solution obtained from optimization is not unique. The
details of this optimization are given in Section 5.



5 Optimization

This section describes the details of the unconstrained optimization employed to esti-
mate physical parameters from video. The algorithm solves for the object, camera, and
environment parameters simultaneously which generate a simulation that best matches
the video clip. We use shape-based metrics to compare the real and simulated motions.
The resulting objective function computes the sum squared differences of the metric
over all the frames in the sequence. Our algorithm works offline and analyzes all frames
in the video sequence to compute the parameters. We first preprocess the video to obtain
a background model of the scene. Then, we segment the moving object and compute its
bounding box and silhouette at each frame. The bounding box B is stored a vector of
four numbers, which are the positions of its extreme corners. The silhouette S is repre-
sented by a binary image enclosed within the bounding box.

Recall that the motion of a rigid body is fully determined by the parameters p. For
a given set of parameters, the optimizer simulates the motion to compute the bound-
ing boxe and silhouette at each frame. It also computes the gradients of the metrics,
which is used to update the parameters in the next optimization step. The goal of the
optimization algorithm is to minimize the deviation between the silhouettes of the sim-
ulated motion and the silhouettes detected in the video sequence. We provide an initial
estimate for the parameters p and use a gradient descent to update it at each step of
the optimization. Gradient based methods are fast, and with reasonable initialization,
converge quickly to the correct local minima.

5.1 Objective Function

The objective function measures the difference between the motion observed in video
and the motion computed in the simulation. For example, at every frame, our implemen-
tation performs a pixel by pixel comparison between the silhouette from simulation and
silhouette from video and computes a sum squared difference. This amounts to counting
the non-overlapping pixels between the two silhouettes at each frame. This difference
is accumulated over all the frames in the sequence. Alternatively, we could compare the
second moments of the silhouette at each frame, and compute a SSD of the moments
over all frames. The objective function for the silhouette metric has the form:

E=min 33 (8'()-S°(,p))’ (5.1)
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where S (%) and S*(4) is the silhouette obtained at time ¢ from the video and simulation
respectively. Gradient descent is used to minimize this error function. The update rule
for parameters is:

OF
P=pP+ )\% (5.2)

where X is the magnitude of the step in the gradient direction. The following subsections
describe the gradient computation in detail.



5.2 Gradient Computation

The optimization algorithm requires computing the gradients of the objective function.
This in turn, requires computing the gradients of the silhouette at each frame. Although
the state q(¢) is a continuous function of the parameters p (Eq. 4.1), quantities like
bounding boxes and silhouettes are not continuously differentiable functions of pa-
rameters p. One straightforward approach is to compute the gradients of the metrics
(e.g. 8S(q)/0p) numerically, using finite differences. This, however, has two major
drawbacks. First, computing the gradients of the metric with respect to pop; (initial
conditions) using finite differences is extremely slow, since the simulation function has
to be evaluated several times during the gradient computation. Secondly, determining
robust step sizes that yield an accurate finite difference approximation is difficult. We
resort to a hybrid approach for computing the gradients. First, we analytically compute
the gradients of the state with respect to parameters dq(t)/dp. We then compute the
derivative of the metric with respect to the state using finite differences, e.g. 9S(q)/9q.
We use the chain rule to combine the two gradients:

0S 39S d0q

op  9q0p
Since the metric (e.g. silhouette S) depends only on the position and orientation terms
of the state q, the gradient 9S(q)/dq can be computed quickly and accurately using
finite differences. Finally, we note that the camera parameters do not depend on the 3D
state of the object. Therefore, we use finite differences to compute the gradients with
respect to gravity vector penv-.

(5.3)

Jacobian for Free Flight The motion of a rigid body in free flight (in 3D) is fully
determined by the control vector pop;. Rewriting Eq. (4.1) to show this dependence
explicitly yields:

da(t)
dt
We evaluate the jacobian dq(ts)/dpobj at time t; by numerically integrating the
equation

= F(t, Pobj) (5.4)
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= 5.5
dt 8pobj 8:pobj ( )

until time ¢; with the initial condition dq(to)/dpobj. We use a fourth order Runge-
Kutta method with fixed step size to perform this numerical integration.

Derivatives of Silhouettes We use finite differences to compute the derivative of sil-
houette with respect to the current state q(t). We compute the silhouette at the given
state by rendering the simulated object. The derivative of the silhouette with respect to
a scalar component ¢; of the state q has the form:

08 _ .. (S(q+qu-)—S(q))

6_qi a Ag; —0 Aqi (56)



The jacobian of the silhouette is obtained by applying chain rule

9S 98 0q
OPobj  0q OPob;

(5.7)

Derivatives with Respect to Gravity direction We compute the jacobian of the sil-
houette with respect to a scalar component p,, of the gravity direction peny Using
finite differences, as shown:

oS lim (S(penv + Apen'u) — S(pe“v)) (5.8)
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The overall jacobian matrix is given by:

s [ =
= (3‘5%‘” ) (5.9)
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6 Results

Our system has three main modules: Preprocessor, Rigid body simulator and Optimizer.
We first preprocess the video sequence to compute the silhouettes and bounding boxes
of the rigid object. We build a background model for the scene and use autoregres-
sive filters [2] to segment the moving object from the background. We then compute
the bounding box and silhouette metrics from the segmented image at each frame. Our
tumbling video sequences are typically 35-40 frames long when captured with a digital
camera operating at 30 Hz. The optimizer typically takes a couple of minutes to com-
pute the parameters from the sequence on a SGI R12000 processor.

Experiment 1: The goal of this example is to match the motion of a simulation with a
complex tumbling motion of a T shaped object (Figure 3). Our user interface lets the
user specify an approximate value for the initial positions and velocities of the body.
The algorithm robustly estimates the initial position and linear velocity, even with a
poor initial guess. However, it is very sensitive to the initial estimate of the orientation
and angular velocities. From numerous experiments, we have found the error space of
the silhouette metric to be very noisy, containing many local minima. However, with
a reasonable initialization for the orientation and angular velocity parameters, we find
that our algorithm converges to a reasonable local minima. This convergence is seen in
Figure 3(a), where the overall motion of the simulation closely matches the motion in
video. We superimpose the bounding boxes obtained from simulation onto the frames
from video (the white boxes in the first row) to show the match. We also show the match
between the trajectory of a corner point in video with the corresponding trajectory in
simulation. The small square boxes show the trajectory of a corner point, identified by
hand, from the video sequence. These trajectories are shown for visualization purposes
only and are not used in the optimization. As the algorithm proceeds, the trajectory of
the 3D corner point in simulation (black line) overlaps with these boxes. This sequence



also highlights some limitations with our optimization framework and metrics. Row (c)
shows an example where the simulated and the real object have totally different orien-
tations but have silhouettes that look very similar. Finally, we note that our algorithm
generates a 3D reconstruction of the object’s trajectory that matches the given video
sequence.

Experiment 2: The objective of this experiment is to predict the motion of a rigidbody
in a long video sequence of free flight from a subset of frames of the same sequence.
Figures 4 and 5 show two different video clips of a rigid body in free flight, with differ-
ent motion trajectories. We match the motion of the shorter clip to a simulation and use
the simulation parameters to predict the motion of the longer clip.

In Figure 4, the object tumbles about its major axis, and the essence of this motion is
captured in the shorter sequence. Hence the simulation parameters computed by match-
ing this small sequence correctly predicts the motion in the overall clip. However, the
motion of the object in Figure 5 is about the body’s intermediate axis, and is much
more complicated. Small errors in the estimated values of simulation parameters results
in large orientation error in the predicted frames, as time increases. We see this effect
in the results obtained in Figure 5.

Experiment 3: Our algorithm optimizes the direction of the gravity vector along with
the motion parameters from a video sequence. Figure 6 shows results of roll correction
performed using the parameters obtained from our optimization algorithm. The first
row shows four frames of a video sequence captured from a camera with significant
roll distortion. We compute the camera pitch and roll parameters which minimize the
silhouette error. These parameters are used to warp the original sequence such that the
camera vertical axis aligns with the gravity vector. The last row shows the result of this
rectification. Notice that the people in the first row are in a slanted pose, whereas they
are upright in the last row.

7 Conclusion

This paper describes an optimization framework to extract the motion and underly-
ing physical parameters of a rigid body from video. The algorithm minimizes the least
square error between the silhouettes obtained in simulation and silhouettes from video
at each frame. The paper presents a gradient based approach to perform this minimiza-
tion.

The error space of the silhouettes is very noisy with many local minima. From our
experiments, we have noticed several different combinations of initial orientations and
angular velocities which result in silhouette sequences that look similar. This is espe-
cially true for shorter sequences, where there is not enough information (from video) to
uniquely identify the true control parameters. Moreover, the performance of our simple
gradient descent algorithm is sensitive to the initial guess for the control parameters.
We are working on implementing better gradient based optimization algorithms and us-



(a)

(b)

After 200 Iterations

Fig. 3. Computing the parameters of a T-shaped object thrown in the air. The first row (a) shows
a few frames from the video (right to left) and the corresponding physical simulation generated
by our algorithm. The bounding boxes from simulation are superimposed over the video to show
the match. The small square boxes indicate the trajectory of a corner point in video. The thin
line indicates the motion of the corresponding corner in simulation. Row (b) shows the results of
the algorithm at different stages of optimization. Notice that the match improves as the number
of iterations increases. Row (c) highlights a limitation of the silhouette based metric. Note that
although the orientation of the simulated object is flipped relative to the real object, they both
have similar silhouettes



Predicted Frames

Fig. 4. Predicting the motion of tumbling bodies in video. The first row shows a long sequence
of a tumbling object thrown from right to left. We select a portion of this sequence and match its
motion in simulation. The second row shows a portion of the original clip contained inside the
yellow box, and the corresponding frames of a simulation. We use these parameters to predict the
motion of the tumbling object across the whole sequence.



Fig. 5. Predicting the motion of a complicated tumbling object. The second row shows the match
between a small portion of the video clip and a simulation. The simulation matches the video
quite well for the frames on which it optimized, but the small errors propogates to larger error in

the predicted frames.
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Fig. 6. Using rigid-body motion estimation to correct for camera roll. An object is thrown in the
air from left to right (top row) and captured from a video camera with significant roll. The video is
difficult to watch on account of the image rotation. The motion of the object is estimated (middle
row), as well as the camera roll (defined by the orientation with respect to the gravity direction).
The video frames are automatically rectified to correct for the camera roll.



ing a mixture of discrete-continuous techniques for multiple initializations. Silhouette
metric has difficulties handling motions of symmetric objects, especially when multiple
poses of the object project to similar silhouettes. We are investigating the use of simple
color based techniques to alleviate this problem. We are interested in optimizing for the
object intrinsic parameters like the location of the center of mass and the inertia matrix
using our framework. We are also looking at applying our framework to other domains
like cloth and articulated bodies.
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