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Abstract
Intuitive and efficient retrieval of motion capture data is essential for effective use of motion capture databases. In
this paper, we describe a system that allows the user to retrieve a particular sequence by performing an approx-
imation of the motion with an instrumented puppet. This interface is intuitive because both adults and children
have experience playacting with puppets and toys to express particular behaviors or to tell stories with style and
emotion. The puppet has 17 degrees of freedom and can therefore represent a variety of motions. We develop a
novel similarity metric between puppet and human motion by computing the reconstruction errors of the puppet
motion in the latent space of the human motion and those of the human motion in the latent space of the puppet
motion. This metric works even for relatively large databases. We conducted a user study of the system and sub-
jects could find the desired motion with reasonable accuracy from a database consisting of everyday, exercise, and
acrobatic behaviors.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Input devices I.3.6 [Computer Graphics]: Methodology and Techniques—Interaction techniques I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Animation

1. Introduction

Publicly available libraries of motion capture data [CMU]
and free or inexpensive software for editing [Ani, Smi] al-
low even novices to create animations and share their cre-
ations on the internet. To find an appropriate sequence from
these databases, users must inspect each motion clip in the
database based on associated tags or thumbnail videos. The
same is true for professional animators or game developers.
The ability to easily re-use data for a sports video game, for
example, could result in significant savings in both capture
and cleanup of the data. However, these queries are difficult
to properly specify, particularly for large databases.

In this paper, we present an instrumented puppet that func-
tions as an intuitive interface for retrieving motion capture
data from a database. The human-like puppet is instrumented
with one orientation sensor and 14 potentiometers to mea-
sure the orientation of the body and joint angles. The puppet
has 17 degrees of freedom (DOFs). The query to the motion
retrieval system is sensor readings as the user manipulates
the puppet. The sensor data are retargeted to a human skele-
ton and matched to each behavior primitive in the database.
Finally, a few behaviors with the highest matching scores are
shown so that the user can select the best match.

This interface is intuitive even for novices, because most
people grew up playacting with puppets, dolls and stuffed
animals. Children often bounce a stuffed animal around to
indicate running or crash them into each other to portray
fighting. The motions can be quite expressive showing both
style of the behavior and the character’s current emotion.
Complicated motions are a bit more difficult because the
user has only two hands with which to manipulate the pup-
pet. We address this problem by allowing the user to change
the tightness (friction) of each joint and by giving them two
ways to hold the puppet, either grasping it in their hands or
fixing it to a stage. The user’s performance of the behavior
does not need to be perfect, and it is sufficient if it merely
distinguishes the desired class of motions from other simi-
lar motions in the database. For example, a punch must look
different from a baseball pitch.

Another benefit of the puppet interface is the ability to
easily represent acrobatic or superhero motion. Motion cap-
ture systems require the users to actually perform an acro-
batic motion in the real world. That is, the input query mo-
tion is limited by the skills of the user. In contrast, the puppet
interface enables the users to easily represent humanly im-
possible motion, and could be used to search a database of
keyframed motion.
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The major challenge in developing a retrieval system with
the puppet interface is matching a given motion of the puppet
to the appropriate sequence in the motion capture database.
The significant differences between the motion dynamics of
the puppet and a human actor make this problem intractable
for any kind of direct matching algorithm based on joint po-
sitions, angles or other sensor values. Matching is further
complicated by the variability in performance between users.
We describe a new retrieval algorithm called the dual sub-
space projection method. This algorithm calculates the dis-
tance between the human and input puppet motion by com-
bining the reconstruction errors of the puppet motion in the
human motion latent space and the human motion in the
puppet motion latent space. This technique is robust to in-
dividual styles of puppet manipulation, and fast enough for
interactive motion design.

This paper is organized as follows. We first cover prior
work in Section 2. Then Section 3 describes the design of the
puppet hardware, and Section 4 describes motion retrieval
algorithms. The experimental results are shown in Section 5.
We conclude this paper by discussing the limitations and
possible future directions in Section 6.

2. Prior Work

Retrieval from motion databases has been explored using
many different interfaces including a mouse or tablet, the
user’s body, and instrumented puppets. Various similarity
metrics have also been used to retrieve the motion. We now
briefly describe these two bodies of related work.

2.1. Interface Devices

One of the most common interface devices is the mouse
or pen tablet, which allow the user to draw 2D trajecto-
ries and poses. Thorne and colleagues [TBvdP04] devel-
oped such an interactive system. Given a pre-determined
mapping between pen strokes and motion patterns, combi-
nations of strokes allowed for character navigation. Li and
colleagues [LGY∗06] built a pen-based retrieval system in
which viewing directions for 2D drawings were estimated to
calculate errors of pose and trajectories between 3D motion
capture data and the 2D drawings.

Because of the ambiguity between 2D and 3D, such sys-
tems often require domain knowledge. One solution is to use
a motion graph [KGP02, LCR∗02, AF02], where pairs of
frames of motion data are connected when a smooth and nat-
ural transition between them is available. Retrieval of appro-
priate paths in the motion graph allows the synthesis of nat-
ural animation of characters. Lee and colleagues [LCR∗02]
demonstrated that the users could control characters by
sketching a path with the mouse or selecting among a set
of proposed paths. Later, the retrieval algorithms were im-
proved with annotations [AFO03] or user models [MP07].

These approaches have been used primarily for realtime in-
teractive systems such as video games, while our goal is to
allow the user to design animations.

Capturing the whole-body motion of the user also allows
the specification of a search query for a motion database.
Chai and Hodgins [CH05] used a small marker set and a
stereo-vision system to obtain approximate human poses and
synthesized a matching motion by combining similar poses
from a database. They introduced a fast nearest neighbor
search method for realtime retrieval. Ren and colleagues
[RSH∗05] built a three camera system that extracted sil-
houettes of the user to find a matching sequence of mo-
tion in a motion graph. They utilized AdaBoost to build a
metric for composing silhouettes. Multiple accelerometers
on a shirt were used to select motion capture data from a
database [SH08]. Yin and colleagues [YP03] used a motion
capture database and a measure of foot pressure to estimate
the user’s pose.

A few researchers have used an instrumented puppet to re-
trieve motion as we do. Johnson and colleagues [JWB∗99]
developed an instrumented puppet to control a bird-like
character. The user’s manipulation of the puppet was recog-
nized with HMMs to select among a set of pre-determined
motion patterns. However, HMMs require a large amount of
data in the learning step. Esposito and colleagues [EPO95]
created an instrumented puppet called the Monkey that al-
lowed the users to specify human or character poses intu-
itively. A similar instrumented puppet was also developed
by Knep and colleagues [KHSW95] to specify poses of
dinosaurs for movie production. Yoshizaki and colleagues
[YSC∗11] developed an active puppet interface that has an
actuator for each joint. Actuating joints allows gravity com-
pensation and biomechanical constraints, which improves
the usability. Feng and colleagues [FGDJ08] used an instru-
mented puppet to retrieve human motion from a database.
They attached color markers to puppet joints and estimated
the positions with a stereo rig. Unlike these systems, our
interface enables the users to specify poses while the they
dynamically manipulate the puppet. Therefore, the specified
poses can be more natural.

2.2. Similarity Metrics

A good similarity metric is essential for motion retrieval.
Bruderlin and Williams [BW95] demonstrated that dynamic
time warping (DTW) can be used to evaluate the similar-
ity between two motion capture sequences. Later, Kovar and
Gleicher [KG04] extended DTW to retrieve similar motions
for interpolation. Müller and colleagues [MRC05, MR06]
developed a content-based method for motion retrieval,
where human motion is abstracted with geometrical relation-
ships of body part pairs. Ishigaki and colleagues [IWZL09]
built a performance interface that translated the user’s in-
tentions to human motion by applying a subspace method
with principal component analysis (PCA) to a motion cap-
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Figure 1: Hardware setup of our retrieval system. Left: Structure of the puppet interface. The puppet has 17 DOFs consisting of
14 rotary potentiometers and one orientation sensor. The potentiometers are attached to each joint and their resistance values
are read by Arduino microcontroller. The orientation sensor (InertiaCube3 by InterSense Inc.) is installed in the head (fixed
with the torso) and is directly read by a PC. The sensor readings are updated at 60 Hz. Right-top: Joint structure of left shoulder
and elbow. Each arrow indicates a potentiometer. Right-bottom: A standard manipulation style of our interface.

ture database. Deng and colleagues [DGL09] used proba-
bilistic PCA to segment and learn motion capture data for
retrieval. Ho and Komura [HK09] retrieved interactions be-
tween characters based on topological information derived
from knot theory. In addition to the subspace methods, Ya-
mamoto and colleagues [YFM98] developed a mutual sub-
space method (MSM) to compare time series of images.
They used the canonical angles of subspaces as a similarity
metric. Though this method has not been applied to human
motion, the results for face identification showed the effec-
tiveness of the algorithm.

3. Puppet Hardware

Figure 1 shows the hardware configuration of our puppet in-
terface. We designed the puppet so that the user can easily
use his or her hands to manipulate the limbs of the puppet.
The size is 33 cm tall, 44 cm wide with arms outstretched,
and the weight is 400 g.

Sensors: The puppet has 17 DOFs; 14 rotary potentiometers
(three for each shoulder, one for each elbow, two for each
hip and one for each knee) and an orientation sensor at the
torso/head. The potentiometers measure joint angles, and the
sensor readings are converted into digital signals by an Ar-
duino microcontroller and sent to a PC at 60 Hz. The orienta-
tion sensor we used is InertiaCube3 by InterSense Inc., and
consists of an accelerometer, gyroscope and magnetometer
to measure orientation with respect to the Earth’s magnetic
field.

Joints: The right top of Figure 1 shows the structure of
the joints. The potentiometer is surrounded by neighboring
bones and fixed by a bolt. The user can tighten or loosen the
joints with the bolt so that the stiffness can be adjusted to
achieve complicated poses. For example, the user may want

Figure 2: Three control styles. Top: Hold in the hand, mid-
dle: attach to a stage, and bottom: attach to the user’s body
with a strap.

to hold a pose with the legs while freely manipulating the
arms.

Calibration: The calibration process of the puppet inter-
face is simple. First, the users specify the “T-pose,” where
the arms are outstretched sideways, and the legs are verti-
cal. The sensor readings from the T-pose correspond to 0◦.
Then, each joint is rotated by 90◦. Scaling parameters ob-
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tained from these two sensor readings provide the required
calibration data.

Control styles: The design of the puppet allows a few dif-
ferent kinds of manipulation:

1. Use one hand to hold the puppet (Figure 2 top): The user
holds the puppet with one hand and controls a limb with
the other hand. With this approach, the orientation of the
puppet and one body limb can be controlled.

2. Attach to a stage (Figure 2 middle): The user can control
limbs with each hand. Though rotational motion cannot
be expressed, multiple limbs can be controlled.

3. Attach to user’s body with a strap (Figure 2 bottom):
Some users prefer to tie the puppet to their body with
a strap and control the limbs with their hands and the ori-
entation by rotating their body. This approach keeps the
orientation of the puppet aligned with that of the user and
perhaps makes the limb control more intuitive as a result.
This manipulation is similar to the system developed by
Mazalek and colleagues [MCN∗11].

4. Motion Retrieval Algorithm

To understand how people manipulate the puppet, we con-
ducted an informal subject test. First, we showed a video
created from motion capture data to the subjects, and then
asked the subjects to express the motion with the puppet. The
subjects commented that manipulating the puppet was an in-
tuitive way to express the motion. We obtained the follow-
ing key findings: 1) the subjects represented the motion with
positions of the end-effectors and/or joints rather than joint
angles, 2) joint trajectories differed significantly between
the puppet and human motion because of differences in the
range of motion, and 3) puppet motion did not obey physi-
cal laws because the puppet was supported by the user or a
stage. These findings suggest that conventional approaches
to compute a similarity metric between human motion with
similar skeletons may not work.

Based on these findings, we designed the algorithm to ro-
bustly compute a similarity between motion with different
skeletons and range of motion:

1. To handle differences between the puppet and human
skeletons, puppet motion is retargeted to the dimensions
of a human skeleton calculated from motion capture data.

2. The algorithm uses joint positions in a body centered co-
ordinate system.

3. To compensate for the different range of motion between
the puppet and human, we introduced the dual subspace
projection method (DSPM). The method evaluates simi-
larities based on the pose distribution in their subspaces.
We also consider an anomaly detection framework for ro-
bustness.

Because our method is based on a subspace method, we
can choose any latent space representation for DSPM. We
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Figure 3: Coordinate systems and joint positions used to ob-
tain feature vectors. (a) Joint angles of the puppet are read
from the potentiometers. (b) A reconstructed posture using
the puppet skeleton. (c) A reconstructed posture using the
human skeleton. The arrows indicate axes of a body cen-
tered coordinate system. (d) Black dots indicate joint posi-
tions considered for a feature vector.

tested PCA and Gaussian process latent variable models
(GP-LVM). In the following section, we explain a conven-
tional subspace method which is the basis of our algorithm,
provide details of each component mentioned above and de-
scribe how to incorporate PCA and GP-LVM into DSPM.

4.1. Data Preprocessing

Feature vectors: Given joint angles and body orientation
from the sensors of the puppet, the system directly maps the
angles to a human skeleton calculated from motion capture
data. Positional or acceleration data is not used, and the root
remains at the origin of the world coordinate system. Then,
a pose of the human skeleton is calculated from the joint
angles of the puppet using forward kinematics. The joint po-
sitions considered are neck, shoulders, elbows, hands, hips,
knees and feet (14 in total). These positions are converted
into a body centered coordinate system, where the Y axis
points upward in the world coordinate system, and the X axis
points sideways, and the Z axis points the facing direction of
the root (Figure 3). Fourteen joint positions for each frame
are stored in a single feature vector.

Behaviors in a database: Because our system is designed
to retrieve short human behaviors, we segment long motion
capture sequences and store them in a database. We use a
probabilistic PCA-based algorithm that can segment motion
capture data into distinct behaviors [BSP∗04].

4.2. Subspace Method

A subspace method (SM) computes a reconstruction er-
ror of the input data in a latent space of target data. This
method is a fundamental algorithm for pattern recognition
and has been used for motion retrieval. For example, Ishi-
gaki and colleagues applied SM for recognizing human be-
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haviors by matching the user motion data and a motion
database [IWZL09]. Here, we briefly explain SM using PCA
and how to incorporate anomaly detection.

Let Q be puppet motion consisting of N feature vec-
tors x1,x2, · · · ,xN , and H be human motion, respectively.
Applying PCA to the human motion provides eigenvec-
tors h1,h2, · · · ,hM , where M is the number of dimensions.
Defining a latent space matrix H = [ h1 h2 · · ·hM′ ] with di-
mension M′, the reconstruction error Err for an input feature
vector xn is calculated as

Err(H,xn) =
∣∣∣∣∣∣xn−

(
HHT

(
xn−xH

)
+xH

)∣∣∣∣∣∣ , (1)

where xH is the mean feature vector of the human motionH.

To robustly evaluate a distance DSM betweenQ andH, we
employ a subspace anomaly detection approach [FYM05].
In this framework, sample datasets are projected onto the
subspace of other datasets, and then are reconstructed in the
original space. The maximum reconstruction error is used as
the distance of the two datasets, namely,

DSM(Q,H) = max(Err(H,x1), · · · ,Err(H,xN)) . (2)

DSM(Q,H) indicates larger error, The human motion that
produces the minimum distance to the query puppet motion
is selected as the best retrieval result.

4.3. Dual Subspace Projection Method

SM computes reconstruction errors by projecting the feature
vectors of the query puppet motion onto the latent space of
human motion, i.e. forward reconstruction errors. Therefore,
the reconstruction errors become small in the case where the
entire query puppet motion is similar to only part of the hu-
man motion but different from the rest. In our informal sub-
ject test, this phenomenon occurred frequently due to the dif-
ference in range of motion between puppet and human.

The dual subspace projection method evaluates backward
reconstruction errors as well as forward reconstruction er-
rors. Backward reconstruction errors are computed by pro-
jecting human motion onto the latent space of query pup-
pet motion (Figure 4). In the case of the issue with SM, the
backward reconstruction errors will be high, when only part
of the puppet motion is similar to the human motion.

Given query puppet motionQ and human motionH, PCA
provides the latent spaces Q and H for those motions, re-
spectively. DSPM computes the distance, DDSPM , as

DDSPM(Q,H) = max(Err(H,x1), · · · ,Err(H,xN),

Err(Q,xH1 ), · · · ,Err(Q,xHNH)), (3)

where xH is a feature vector of H, and NH is the number
of frames of the human motion. To reduce the computa-
tional cost for interactive retrieval, we randomly choose K

Puppet motion 

Puppet latent space 

Human latent space 

Human motion 

Projection 

Projection 

Figure 4: The dual subspace projection method considers
both forward reconstruction error by projecting the query
puppet motion onto a latent space of each human motion and
backward reconstruction error by projecting human motion
onto a latent space of the query puppet motion.

frames from both the query puppet motion and human mo-
tions. Human motion that has a minimum distance with the
query puppet motion is retrieved as the best matching result.

4.4. Gaussian Process Latent Variable Models

We can also use Gaussian process latent variable models
[Law04] as a latent space representation for SM and DSPM.
GP-LVM is a non-linear latent space that maps input feature
vectors to a latent space by combining probabilistic PCA and
a kernel method. Because of the performance of high dimen-
sional data modeling, it is widely used for learning human
motions and has been applied to many applications such as
stylized inverse kinematics [GMHP04], and transferring hu-
man motion to non-humanoid characters [YAH10].

In the learning step, a model parameter set Φ and latent
coordinates L for a given kernel matrix K which defines
the GP-LVM latent space are estimated from feature vec-
tors. Given an observation matrix X consisting of NX feature
vectors x1, · · · ,xNX , the parameters are optimized by maxi-
mizing the probability of generating X as

p(X|L,Φ) =
D

∏
d=1
N (Xd ;0,K), (4)

where Xd is d-th dimension of X and N is a Gaussian dis-
tribution.

In the retrieval step, when the feature vector of query mo-
tion xq is given, the probability in the learned latent space
can be used as an error metric. With respect to each latent
coordinate l ∈ L of the learned motionM, the probability is
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Figure 5: Experiments with the puppet interface.

formulated as

P(xq|l,Φ) =N (ml,σ
2
l ), (5)

where

ml = XK−1k(l), σl = k(l, l)−k(l)TK−1k(l),

and k(li, l j) is the (i, j)-th element of the kernel matrix, and
k(l) is a vector whose i-th element is k(l, li). Finally, the error
function between the query feature vector xq andM that is
modeled with Φ and L is defined as

Err([Φ,L] ,xq)

= min(− log(P(xq|l1,Φ), · · · ,− log(P(xq|lNd ,Φ)). (6)

By using Equation (6) in Equations (2) and (3), the distance
between the input puppet and the target human motion can
be computed for SM and DSPM, respectively.

4.5. Joint Velocity Histogram

The subspace methods evaluate the similarities of human
postures. To take into account the temporal joint motion,
we can optionally include an M-dimensional joint velocity
histogram, Jvh, that describes the magnitude of every joint
motion.

Jvh =
N−1

∑
n=1

(
|x1

n+1− x1
n|, |x2

n+1− x2
n|, ..., |xM

n+1− xM
n |
)
, (7)

where xk
n is the k-th dimensional component of the input fea-

ture vector x at time n. The similarity of JvhA and JvhB
of motion A and B is given by the Bhattacharyya distance
[Kai67].

Sim(JvhA,JvhB) =
M

∑
i=1

√√√√ Jvhi
A

∑
M
j=1 Jvh j

A
·

Jvhi
B

∑
M
j=1 Jvh j

B
, (8)

where Jvhi is the i-th component of the histogram.

Figure 6: Target human motion for “Hand on chin” (top)
and the puppet manipulation (middle). The input puppet mo-
tion is retargeted to the human skeleton (bottom).

5. Experiments

The system consists of the puppet interface and a PC (Win-
dows XP, Intel Core2 Duo 2.66 GHz, 4GB RAM). Data cap-
turing and rendering were implemented with C++ and the
motion retrieval algorithms were run on Matlab R2008b. We
did not use any parallel computing techniques.

5.1. Evaluation of DSPM

We compare the performance of DSPM with conventional
pose-based retrieval techniques. We prepared 37 motion
clips (932 seconds in total) containing 29 everyday behav-
iors from Subject #14 of CMU Motion Capture Database
[CMU], and applied the segmentation method [BSP∗04] to
the database. We obtained 269 distinct behaviors.

We recruited five subjects for this experiment (Figure 5).
They did not have any experience with animation design or
techniques. We conducted the experiments with the follow-
ing two protocols:

Protocol 1: Target behaviors were chosen from the
database and shown to the subjects through a 3D viewer.
Then the subjects performed the behaviors using the
puppet interface without looking at the motion.

Protocol 2: Verbal descriptions of the target behaviors were
provided to the subjects. Then the subjects performed the
behaviors with the puppet interface without looking at the
descriptions.

Figure 6 shows an example of target human motion and the
puppet manipulation by the subject.

We compared DSPM (PCA) and DSPM (GP-LVM) with
the subspace methods, namely, SM (PCA) and SM (GP-
LVM), MSM, and DTW. MSM evaluates the largest canoni-
cal angle of two subspaces as the similarity of two datasets.
Given the PCA latent spaces of puppet motion Q and hu-
man motionH as Q = [q1 q2 · · ·qM ] and H = [h1 h2 · · ·hM ]
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Table 1: Results with Protocol 1 (P1) and Protocol 2 (P2). The numbers with and without brackets indicate how many subjects
thought the target motion was ranked within the top 10 and 5 retrieval results, respectively.

DTW SM SM MSM DSPM DSPM
(PCA) (GP-LVM) (PCA) (GP-LVM)

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2
right punch 5 (4) 4 (4) 5 (5) 4 (3) 5 (5) 5 (5) 4 (3) 3 (3) 5 (3) 1 (1) 3 (3) 3 (2)
squats 0 (0) 0 (0) 4 (3) 3 (2) 0 (0) 0 (0) 2 (2) 4 (2) 4 (4) 3 (1) 0 (0) 2 (0)
wash window 1 4 (3) 3 (3) 5 (3) 5 (5) 2 (0) 3 (2) 5 (5) 5 (5) 5 (5) 5 (5) 3 (2) 3 (3)
wash window 2 3 (1) 4 (4) 5 (5) 5 (5) 4 (1) 5 (1) 5 (5) 5 (5) 5 (5) 5 (5) 5 (4) 3 (3)
side twists 4 (3) 3 (3) 4 (4) 5 (5) 0 (0) 0 (0) 4 (4) 5 (5) 5 (5) 5 (4) 1 (1) 1 (1)
climb 2 steps 3 (3) 3 (2) 4 (3) 5 (3) 0 (0) 0 (0) 5 (4) 5 (5) 5 (5) 4 (3) 4 (3) 1 (1)
point by right hand 3 (1) 2 (0) 5 (4) 5 (3) 2 (0) 3 (2) 5 (5) 5 (5) 5 (5) 5 (5) 4 (2) 3 (1)
sit on high stool 3 (1) 3 (3) 5 (5) 5 (5) 0 (0) 0 (0) 5 (4) 4 (3) 4 (3) 5 (4) 4 (4) 3 (1)
sit and swing legs 5 (5) 5 (5) 4 (4) 5 (5) 0 (0) 0 (0) 5 (5) 5 (5) 5 (5) 5 (5) 2 (2) 3 (2)
hand on chin 5 (2) 2 (2) 3 (3) 2 (2) 0 (0) 0 (0) 1 (1) 3 (1) 5 (4) 5 (4) 4 (4) 4 (4)
drink soda 3 (3) 2 (2) 4 (2) 3 (2) 0 (0) 0 (0) 5 (5) 5 (4) 5 (4) 5 (5) 1 (0) 0 (0)
Average 3.5 2.8 4.4 4.3 1.2 1.5 4.2 4.5 4.8 4.4 3.4 2.4

(2.4) (2.5) (3.7) (3.6) (0.5) (0.9) (3.9) (3.9) (4.4) (3.8) (2.3) (1.6)

Table 2: Objective evaluation with Protocol 1. The numbers show the average ranks of the ground-truth behaviors in the
retrieval results.

DTW SM (PCA) SM (GP-LVM) MSM DSPM (PCA) DSPM (GP-LVM)
right punch 15.8 8.6 75.8 84.8 5.6 25.2
squats 186.8 8.4 66.8 27 7.6 45.8
wash window 1 37.4 61.2 134.4 17.6 8.8 117.0
wash window 2 43.2 30.6 126.4 50.4 10.2 48.2
side twists 31.2 22.0 83.0 10.0 1.8 62.4
climb 2 steps 47.8 32.6 80.2 9.0 9.0 13.6
point by right hand 16.2 6.6 135.8 2.4 4.8 47.0
sit on high stool 67.4 12.4 143.8 19.0 23.6 70.4
sit and swing legs 1.8 1.2 106.6 1.2 1.0 33.4
hand on chin 5.6 12.8 86.2 33.8 4.2 6.0
drink soda 15.6 12.8 179.4 1.0 5.2 106.4
Average 42.6 19.0 110.8 23.3 7.4 52.3

respectively, the squared cosine value of the first canonical
angle of the two subspaces can be computed as the largest
eigenvalue of a matrix HTQQTH. This largest eigenvalue
is considered as a distance metric of MSM. We used five
dimensional subspaces for the PCA-based methods, and a
radial basis function kernel and a two dimensional latent
space for the GP-LVM-based methods. We used K = 50 for
random sampling of DSPM. We tested other parameters for
these experiments, namely, five dimensional latent space for
the GP-LVM and K = 100 and 150 sample frames in DSPM,
however, they did not change the retrieval results signifi-
cantly.

We asked the subjects if the desired behaviors were in-
cluded within top 5 and 10 retrieval results. The results of
Protocols 1 and 2 are summarized in Table 1. SM (PCA),
DSPM (PCA) and MSM achieved better results than DTW,
SM (GP-LVM) and DSPM (GP-LVM).

We also performed an objective evaluation with Protocol 1
by checking where the ground-truth behavior was ranked
in the retrieval results (Table 2). Similarly to the results of
the subjective evaluation, DSPM (PCA) outperforms other
methods, followed by SM (PCA).

Table 3 shows the average processing time for retrieval.
MSM was the fastest (0.2 sec), but DSPM (PCA) also ran at
a reasonable speed (2.9 sec). DSPM (PCA) was faster than
SM (PCA), because DSPM (PCA) randomly samples data
and SM (PCA) does not. The other methods were too slow
for interactive motion retrieval.

5.2. Experiments with Larger Database

Because MSM and DSPM (PCA) outperformed other meth-
ods in terms of accuracy and computational time, we con-
ducted another experiment with Protocol 2 using a larger
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Table 3: Computational time (sec).

DTW 57.1
SM (PCA) 8.6
SM (GP-LVM) 189.7
MSM 0.2
DSPM (PCA) 2.9
DSPM (GP-LVM) 157.7

Table 4: Computational time for larger database (sec).

Matlab R2008b C++ (Visual Studio 2008)

MSM 1.7 0.0023
MSM + Jvh 7.1 0.0093
DSPM (PCA) 37.1 0.54
DSPM (PCA) + Jvh 43.0 0.76

database for these two methods. The database consisted of
479 motion clips (approximately 2.3 hours in total) collected
from CMU Motion Capture Database (Subject #13, 14, 15,
79, 80, 81, 85, 87, 88, 89, 90, 125, 126, 139, 141, 143), and
3065 distinct behaviors were obtained after segmentation.
We recruited five new subjects, and they performed 25 be-
haviors categorized as everyday, exercise and acrobatic be-
haviors. The subjects did not have any experience with ani-
mation design or techniques. The parameters of each method
were the same as in the previous experiment.

In this experiment, we tested the joint velocity histogram
combined with SM (PCA) and DSPM (PCA), as well as only
SM (PCA) and DSPM (PCA). To combine these results, we
assumed a Gaussian probability distribution for DSPM and
the joint velocity histogram, pDSPM and pJvh, and used their
joint probability p(Q,H) as a similarity between puppet and
human motionQ andH. The probabilities for DSPM and the
joint velocity histogram are represented as

pDSPM(Q,H) = exp(−α ·DDSPM(Q,H)2), (9)

pJvh(Q,H) = exp(1−Sim(JvhQ,JvhH)
2), (10)

where α is a positive regularization factor. We empirically
set α = 0.01, because typically the range of DDSPM is [0,10].
Therefore, the joint probability is represented as

p(Q,D) = pDSPM(Q,D) · pJvh(Q,D). (11)

Tables 5 shows the experimental results. As in the pre-
vious experiment, we recorded how many subjects thought
that the target motion was ranked within the top 10 (with-
out brackets) and 5 (with brackets) retrieval results. Partic-
ularly for acrobatic and exercise behaviors, DSPM (PCA)
outperformed MSM. Adding the joint velocity histogram to
the similarity metric further improved the results.

Table 4 shows the average processing time for retrieval
with the large database. In this experiment, we used a C++

Table 5: Results for larger database with Protocol 2. The
numbers with and without brackets indicate how many sub-
jects thought the target motion was ranked within top 10 and
5 retrieval results, respectively.

MSM MSM DSPM DSPM
+Jvh (PCA) (PCA)+Jvh

right punch 0 (0) 1 (0) 2 (2) 3 (3)
squats 1 (1) 1 (0) 4 (2) 4 (3)
wash window 1 5 (5) 5 (5) 5 (5) 5 (5)
wash window 2 5 (5) 5 (5) 5 (5) 5 (5)
side twists 3 (2) 2 (2) 4 (4) 5 (4)
climb 2 steps 4 (4) 4 (3) 4 (2) 4 (2)
point by right hand 5 (2) 5 (3) 5 (4) 5 (4)
sit on high stool 3 (3) 3 (3) 2 (1) 3 (1)
sit and swing legs 5 (3) 4 (3) 5 (4) 5 (4)
hand on chin 0 (0) 1 (0) 4 (3) 5 (3)
drink soda 4 (1) 4 (1) 3 (3) 4 (3)
hand stand kicks 3 (3) 3 (2) 5 (5) 5 (5)
backflip 3 (2) 4 (1) 4 (4) 4 (4)
cartwheel 3 (2) 3 (1) 4 (4) 5 (4)
spins 0 (0) 0 (0) 0 (0) 1 (0)
handstands 4 (3) 3 (1) 3 (3) 4 (3)
somersault 4 (2) 4 (1) 3 (2) 3 (2)
jump kick 2 (1) 2 (0) 0 (0) 2 (2)
front hand flip 4 (4) 4 (2) 5 (5) 5 (5)
rug pull fall 5 (2) 4 (3) 5 (5) 5 (4)
Russian dance 1 (0) 1 (0) 5 (5) 5 (4)
breast stroke 0 (0) 0 (0) 5 (5) 5 (5)
free style 0 (0) 0 (0) 5 (5) 5 (5)
back stroke 1 (0) 1 (0) 5 (5) 5 (5)
fly style 1 (1) 1 (0) 5 (5) 5 (5)
Average 2.2 2.6 3.9 4.3

(1.4) (1.4) (3.5) (3.6)

implementation (MS-Visual Studio 2008, no parallel com-
putation) as well as the Matlab implementation. MSM was
faster than DSPM (PCA) and DSPM (PCA) + Jvh. The joint
velocity histogram requires additional computation time, but
the benefit in performance outweighs the cost for most ap-
plications.

6. Discussion and Conclusion

In this paper, we developed a puppet interface system for
retrieval of motion capture data. We designed the hardware
for an instrumented puppet that uses rotational sensors at the
joints and an orientation sensor to measure body orientation.
We introduced a novel motion retrieval algorithm called the
dual subspace projection method that outperforms conven-
tional pose-based retrieval methods. Our system is easy to
use and allows the users to find desired behaviors intuitively.
The computational efficiency of our method enables the user
to interactively retrieve desired motions from databases. We
validated the system through experiments with ten novice
subjects.
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Puppet interface: All users were satisfied with the puppet
interface for its intuitiveness and usability. They also felt that
it had enough DOFs to express the desired behaviors.

All users appeared to be accustomed to the interface
within five minutes. One user said that it was good to show
puppet motion in realtime during the performance. Some
users thought that our system was useful for searching mo-
tions that are difficult to describe with keywords. Some sub-
jects pointed out that manipulating the puppet was quite easy
for behaviors that required one or two limbs, but became dif-
ficult for complicated behaviors requiring three or four limbs
simultaneously. In our experiment, two subjects avoided this
issue by attaching the puppet to their body with a strap. An-
other possibility is to introduce a layered retrieval system,
in which the users would specify poses part-by-part while
the system gradually refines the retrieval results. An active
puppet interface [YSC∗11], where each joint can be actu-
ated by a motor, might be useful to play back motion the
users performed previously. As the users develop more ex-
perience with manipulating the puppet, this problem might
also be reduced. The system requires only a good enough
match to select the desired motion over similar motions in
the database, and it does not require a complete performance
with motion of all limbs. As the users gain familiarity with
the system, they may discover which elements of the perfor-
mance matter most to a good match.

We also found that most subjects were satisfied with the
puppet’s DOFs to express motions. Some subjects wanted a
neck joint, but later noticed that it was not necessary for most
behaviors. During the experiments, some users adjusted the
tightness of the bolts to fix joint angles. This capability
helped them perform complicated behaviors. For example,
to express “hand on chin” motion, some subjects first ad-
justed the pose of the leg joints and tightened the bolts, and
then started to perform an action of two arms (Figure 6).
The subjects also could retrieve acrobatic behaviors such as
“backflip” and “cartwheel,” which they could not perform
with their own bodies. These observations demonstrate the
usability of our puppet design.

System design and cost: As we discussed in Section 2,
there have been a few solutions that allow the specification
of articulated motion easily and cheaply. Our interface hard-
ware costs less than 100 USD without the orientation sen-
sor. This price is quite cheap compared to motion capture or
other special measurement systems. In our development, we
used an IMU-based orientation sensor (InertiaCube3 by In-
terSense Inc.). Recent orientation sensors are commercially
available at a reasonable price (around 100 USD) and have
very high accuracy. These sensors will be useful for future
development of puppet interfaces. We also want to develop
a wireless puppet hardware so that the users can specify ac-
robatic behaviors more easily.

Motion retrieval algorithm: In our experiments,
DSPM (PCA) outperformed other methods in terms of

accuracy, and the computational cost was acceptable for
interactive retrieval. The joint velocity histogram also
improved the accuracy further. MSM had the second highest
accuracy and achieved the quickest retrieval. This accuracy
is surprising to us, because MSM does not consider pose
similarity but only considers a similarity of joint move-
ments. The accuracy could perhaps be further improved
if we can effectively combine MSM and methods that
consider pose similarities. Interestingly, GP-LVM was not
so effective as SM and DSPM. We believe that this occurred
because GP-LVM generates a very tightly fitting latent space
and that it does not allow for large differences between
human and puppet motion. In contrast, PCA generates a
more approximate latent space. and worked well in our
retrieval task. We also confirmed that the DSPM approach
increased accuracy for both PCA and GP-LVM.

Limitations: Some subjects pointed out a few drawbacks
of our interface. One is that our interface was not good for
grasping actions because of the lack of wrist joints. It is pos-
sible to install additional sensors at wrists and ankles. How-
ever, we wonder whether or not the users can actually ma-
nipulate these joints, because motion of these joints are sub-
tle compared to other joints. We would need further subject
tests to investigate this issue.

Another concern from the subjects was that that they
could not control the translation of the puppet. Our system
has only an orientation sensor and cannot measure transla-
tion. In particular, our system cannot differentiate between
“lift up legs” and “sit on rear” because the difference is
mainly in the body translation. While designing this system,
we discussed introducing a camera (vision sensor) or a mag-
netic sensor to measure the absolute position of the puppet.
However, the former would have a problem with occlusion
by hands, and the latter is sensitive to metal in the environ-
ment. If we can use some position sensing system, it should
be possible to increase accuracy, particularly for differentiat-
ing actions such as walking and running in which translation
plays an important role. We plan to investigate this possi-
bility with state-of-the-art sensing technologies and further
subject tests. Our current system is designed to find behav-
iors from a database and therefore, the system cannot iden-
tify finer details of similar behaviors (e.g. various styles of
a single behavior). Further improvements for both the hard-
ware and the retrieval algorithm are necessary for such tasks.
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