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Abstract
This paper studies the problem of plenoptic sampling in image-
based rendering (IBR). From a spectral analysis of light field sig-
nals and using the sampling theorem, we mathematically derive the
analytical functions to determine the minimum sampling rate for
light field rendering. The spectral support of a light field signal
is bounded by the minimum and maximum depths only, no matter
how complicated the spectral support might be because of depth
variations in the scene. The minimum sampling rate for light field
rendering is obtained by compacting the replicas of the spectral sup-
port of the sampled light field within the smallest interval. Given
the minimum and maximum depths, a reconstruction filter with an
optimal and constant depth can be designed to achieve anti-aliased
light field rendering.

Plenoptic sampling goes beyond the minimum number of im-
ages needed for anti-aliased light field rendering. More signifi-
cantly, it utilizes the scene depth information to determine the min-
imum sampling curve in the joint image and geometry space. The
minimum sampling curve quantitatively describes the relationship
among three key elements in IBR systems: scene complexity (ge-
ometrical and textural information), the number of image samples,
and the output resolution. Therefore, plenoptic sampling bridges
the gap between image-based rendering and traditional geometry-
based rendering. Experimental results demonstrate the effective-
ness of our approach.

Keywords: sampling, plenoptic sampling, spectral analysis,
plenoptic functions, image-based rendering.

1 Introduction
Image-based modeling and rendering techniques have recently
received much attention as a powerful alternative to traditional
geometry-based techniques for image synthesis. Instead of geo-
metrical primitives, a collection of sample images are used to ren-
der novel views. Previous work on image-based rendering (IBR)
reveals a continuum of image-based representations [15, 14] based
on the tradeoff between how many input images are needed and
how much is known about the scene geometry.

At one end, traditional texture mapping relies on very accurate
geometrical models but only a few images. In an image-based ren-
dering system with depth maps, such as 3D warping [18], view
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interpolation [7], view morphing [21] and layered-depth images
(LDI) [22], LDI tree [6], etc., the model consists of a set of im-
ages of a scene and their associated depth maps. When depth is
available for every point in an image, the image can be rendered
from any nearby point of view by projecting the pixels of the im-
age to their proper 3D locations and re-projecting them onto a new
picture.

At the other end, light field rendering uses many images but does
not require any geometrical information. Light field rendering [16]
generates a new image of a scene by appropriately filtering and in-
terpolating a pre-acquired set of samples. Lumigraph [10] is simi-
lar to light field rendering but it applies approximated geometry to
compensate for non-uniform sampling in order to improve render-
ing performance. Unlike light field and Lumigraph where cameras
are placed on a two-dimensional manifold, Concentric Mosaics sys-
tem [23] reduces the amount of data by only capturing a sequence
of images along a circular path. Light field rendering, however, typ-
ically relies on oversampling to counter undesirable aliasing effects
in output display. Oversampling means more intensive data acqui-
sition, more storage, and more redundancy. To date, little research
has been done on determining the lower bound or the minimum
number of samples needed for light field rendering.

Sampling analysis in IBR is a difficult problem because it in-
volves the complex relationship among three elements: the depth
and texture information of the scene, the number of sample images,
and the rendering resolution. The topic of prefiltering a light field
has been explored in [16]. Similar filtering process has been previ-
ously discussed by Halle [11] in the context of Holographic stere-
ograms. A parameterization for more uniform sampling [4] has
also been proposed. From an initially undersampled Lumigraph,
new views can be adaptively acquired if the rendering quality can
be improved [20]. An opposite approach is to start with an over-
sampled light field, and to cull an input view if it can be predicted
by its neighboring frames [12, 24]. Using a geometrical approach
and without considering textural information of the scene, Lin and
Shum [17] recently studied the number of samples needed in light
field rendering with constant depth assumption and bilinear inter-
polation. However, a mathematical framework has not been fully
developed for studying the sampling problems in IBR.

In this paper, we study plenoptic sampling, or how many samples
are needed for plenoptic modeling [19, 1]. Plenoptic sampling can
be stated as:

How many samples of the plenoptic function (e.g., from
a 4D light field) and how much geometrical and textural
information are needed to generate a continuous repre-
sentation of the plenoptic function?

Specifically, our objective in this paper is to tackle the following
two problems under plenoptic sampling, with and without geomet-
rical information:

� Minimum sampling rate for light field rendering;

� Minimum sampling curve in joint image and geometry space.

We formulate the sampling analysis as a high dimensional signal
processing problem. In our analysis, we assume Lambertian sur-
faces and uniform sampling geometry or lattice for the light field.
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Figure 1: An illustration of 2D light field or EPI: (a) a point is observed by two cameras 0 and t; (b) two lines are formed by stacking pixels
captured along the camera path. Each line has a uniform color because of Lambertian assumption on object surfaces.

Rather than attempting to obtain a closed-form general solution to
the 4D light field spectral analysis, we only analyze the bounds of
the spectral support of the light field signals. A key analysis to be
presented in this paper is that the spectral support of a light field
signal is bounded by only the minimum and maximum depths, irre-
spective of how complicated the spectral support might be because
of depth variations in the scene. Given the minimum and maximum
depths, a reconstruction filter with an optimal and constant depth
can be designed to achieve anti-aliased light field rendering.

The minimum sampling rate of light field rendering is obtained
by compacting the replicas of the spectral support of the sampled
light field within the smallest interval without any overlap. Using
more depth information, plenoptic sampling in the joint image and
geometry space allows us to greatly reduce the number of images
needed. In fact, the relationship between the number of images
and the geometrical information under a given rendering resolu-
tion can be quantitatively described by a minimum sampling curve.
This minimal sampling curve serves as the design principles for
IBR systems. Furthermore, it bridges the gap between image-based
rendering and traditional geometry-based rendering.

Our approach is inspired by the work on motion compensation
filter in the area of digital video processing, in which depth infor-
mation has been incorporated into the design of the optimal motion
compensation filter [25, 9]. In digital video processing, global con-
stant depth and arbitrary motion are considered for both static and
dynamic scenes, whereas in our work, we analyze static scenes with
an arbitrary geometry and with uniformly sampled camera setups.

The remainder of this paper is organized as follows. In Section
2, a spectral analysis of 4D light field is introduced and the bounds
of its spectral support are determined. From these bounds, the min-
imum sampling rate for light field rendering can be derived analyt-
ically. Plenoptic sampling in the joint image and geometry space is
studied in Section 3. The minimum sampling curves are deduced
with accurate and approximated depths. Experimental results are
presented in Section 4. Finally we conclude our paper in Section 5.

2 Spectral analysis of light field

2.1 Light field representation
We begin by briefly reviewing the properties of light field represen-
tation. We will follow the notations in the Lumigraph paper [10].
In the standard two-plane ray database parameterization, there is a
camera plane, with parameter (s; t), and a focal plane, with param-
eter (u; v). Each ray in the parameterization is uniquely determined
by the quadruple (u; v; s; t). We refer the reader to Figure 2(a) of
[10] for more details.

A two dimensional subspace given by fixed values of s and t

resembles an image, whereas fixed values of u and v give a hypo-

thetical radiance function. Fixing t and v gives rise to an epipolar
image, or EPI [3]. An example of a 2D light field or EPI is shown
in Figure 1. Note that in our analysis we define (u; v) in the lo-
cal coordinates of (s; t), unlike in conventional light field where
(u; v; s; t) are defined in a global coordinate system.

Assume the sample intervals along s and t directions be �s and
�t, respectively, the horizontal and vertical disparities between two
grid cameras in the (s; t) plane are determined by k1�sf=z and
k2�tf=z, respectively, where f denotes the focal length of the
camera, z is the depth value and (k1�s; k2�t) is the sample in-
terval between two grid points (s; t).

Similarly, we assume that the sample intervals along u and v di-
rections be �u and �v, respectively. A pinhole camera model is
adopted to capture the light field. What a camera sees is a blurred
version of the plenoptic function because of finite camera resolu-
tion. A pixel value is a weighted integral of the illumination of the
light arriving at the camera plane, or the convolution of the plenop-
tic function with a low-pass filter.

2.2 A framework for light field reconstruction
Let l(u; v; s; t) represent the continuous light field, p(u; v; s; t) the
sampling pattern in light field, r(u; v; s; t) the combined filtering
and interpolating low-pass filter, and i(u; v; s; t) the output image
after reconstruction. Let L; P; R and I represent their correspond-
ing spectra, respectively. In the spatial domain, the light field re-
construction can be computed as

i(u; v; s; t) = r(u; v; s; t) � [l(u; v; s; t)p(u; v; s; t)] (1)

where � represents the convolution operation.
In the frequency domain, we have

I(
u;
v ;
s;
t) = R(
u;
v ;
s;
t)(L(
u;
v;
s;
t)

�P (
u;
v;
s;
t)) (2)

The problem of light field reconstruction is to find a reconstruc-
tion filter r(u; v; s; t) for anti-aliased light field rendering, given the
sampled light field signals.

2.3 Spectral support of light fields
In this section, we will introduce the spectral supports of con-
tinuous light field L(
u;
v ;
s;
t) and sampled light field
L(
u;
v ;
s;
t) � P (
u;
v;
s;
t).

2.3.1 Spectral support of continuous light field
We assume that the depth function of the scene is equal to
z(u; v; s; t). As shown in Figure 1(a), the same 3D point is ob-
served at v0 and v in the local coordinate systems of cameras 0 and



t, respectively. The disparity between the two image coordinates
can be computed easily as v � v0 = ft=z. Figure 1(b) shows an
EPI image where each line represents the radiance observed from
different cameras. For simplicity of analysis, the BRDF model of
a real scene is assumed to be Lambertian. Therefore, each line in
Figure 1(b) has a uniform color.

Therefore, the radiance received at the camera position (s; t) is
given by

l(u; v; s; t) = l(u�
fs

z(u; v; s; t)
; v �

ft

z(u; v; s; t)
; 0; 0)

and its Fourier transform is

L(
u;
v;
s;
t) =

Z
1

�1

Z
1

�1

Z
1

�1

l(u; v; s; t)e
�j
T x

dx

e
�j(
ss+
tt)dsdt (3)

where xT = [u; v] and 
T = [
u;
v ].
However, computing the Fourier transform (3) is very compli-

cated, and we will not go into the details of its derivation in this
paper. Instead, we will analyze the bounds of the spectral support
of light fields. Also for simplicity, it is assumed that samples of the
light field are taken over the commonly used rectangular sampling
lattice.

2.3.2 Spectral support of sampled light field
Using the rectangular sampling lattice, the sampled light field
ls(u; v; s; t) is represented by

ls(u; v; s; t) = l(u; v; s; t)
X

n1;n2;k1;k22Z

�(u� n1�u)�(v � n2�v)�(s� k1�s)�(t� k2�t) (4)

and its Fourier transform is

Ls(
u;
v ;
s;
t) =
X

m1;m2;l1;l22Z

L(
u �
2�m1

�u
;
v �

2�m2

�v
;
s �

2�l1

�s
;
t �

2�l2

�t
) (5)

The above equation indicates that Ls(
u;
v;
s;
t) consists
of replicas of L(
u;
v ;
s;
t), shifted to the 4D grid points

(2�m1=�u; 2�m2=�v; 2�l1=�s; 2�l2=�t);

where m1; m2; l1; l2 2 Z, and Z is the set of integers.
These shifted spectra, or replicas, except the original one at

m1 = m2 = l1 = l2 = 0, are called the alias components. When
L is not bandlimited outside the Nyquist frequencies, some replicas
will overlap with the others, creating aliasing artifacts.

In general, there are two ways to combat aliasing effects in out-
put display when we render a novel image. First, we can increase
the sampling rate. The higher the sampling rate, the less the aliasing
effects. Indeed, uniform oversampling has been consistently em-
ployed in many IBR systems to avoid undesirable aliasing effects.
However, oversampling means more effort in data acquisition and
requires more storage. Though redundancy in the oversampled im-
age database can be partially eliminated by compression, excessive
samples are always wasteful.

Second, light field signals can also be made bandlimited by fil-
tering with an appropriate filter kernel. Similar filtering has to be
performed to remove the overlapping of alias components during
reconstruction or rendering. The design of such a kernel is, how-
ever, related to the depth of the scene. Previous work on Lumigraph
shows that approximate depth correction can significantly improve

the interpolation results. The questions are: is there an optimal fil-
ter? Given the number of samples captured, how accurately should
the depth be recovered? Similarly, given the depth information one
can recover, how many samples can be removed from the original
input?

2.4 Analysis of bounds in spectral support
2.4.1 A model of global constant depth
Let us first consider the simplest scene model in which every point
is at a constant depth (z0). The first frame is chosen as the reference
frame, and l(u; v; 0; 0) denotes the 2D intensity distribution within
the reference frame. The 4D Fourier transform of the light field
signal l(u; v; s; t) with constant depth is

L(
u;
v ;
s;
t) =

Z
1

�1

Z
1

�1

l(u; v; 0; 0)e
�j(
uu+
vv)dudv

Z
1

�1

e
�j(

f

z0

u+
s)s

ds

Z
1

�1

e
�j(

f

z0

v+
t)t

dt

= 4�
2
L
0
(
u;
v)�(

f

z0

u +
s)�(

f

z0

v +
t)

where L0(
u;
v) is the 2D Fourier transform of continuous sig-
nal l(u; v; 0; 0) and �(�) is the 1D Dirac delta function. To
keep notation, representations and illustration simple, the follow-
ing discussion will focus on the projection of the support of
L(
u;
v ;
s;
t) onto the (
v;
t) plane, which is denoted by
L(
v;
t).

Under the constant depth model, the spectral support of the con-
tinuous light field signal L(
v ;
t) is defined by a line 
vf=z0 +

t = 0, as shown in Figure 2(b). The spectral support of the corre-
sponding sampled light field signals is shown in Figure 2(c). Note
that, due to sampling, replicas of L(
v ;
t) appear at intervals
2�m2=�v and 2�l2=�t in the 
v and 
t directions, respectively.

Figure 6(a) shows a constant depth scene (a1), its EPI image (a2),
and the Fourier transform of the EPI (a3). As expected, the spectral
support is a straight line.1

2.4.2 Spatially varying depth model
Now it is straightforward to observe that any scene with a depth
between the minimum zmin and the maximum zmax will have its
continuous spectral support bounded in the frequency domain, by
two lines 
vf=zmin + 
t = 0 and 
vf=zmax + 
t = 0. Fig-
ure 6(b3) shows the spectral support when two planes with constant
depths are in the scene. Adding another tilted plane in between
(Figure 6(c1)) results in no variations in the bounds of the spectral
support, even though the resulting spectral support (Figure 6(c3))
differs significantly from that in Figure 6(c2). This is further il-
lustrated when a curved surface is inserted in between two original
planes, as shown in Figure 6(d1). Even though the spectral supports
differ significantly, Figures 6(b3), (c3) and (d3) all have the same
bounds.

Another important observation is that geometrical information
can help to reduce the bounds of the spectral support in the fre-
quency domain. As will be illustrated in the following section, the
optimal reconstruction filter is determined precisely by the bounds
of the spectral support. And these bounds are functions of the min-
imum and maximum depths of the scene. If some information on
the scene geometry is known, we can decompose the scene geome-
try into a collection of constant depth models on a block-by-block
basis. Each model will have a much tighter bound than the orig-
inal model. How tight the bound is will depend on the accuracy

1The ringing effect in the vicinity of the horizontal and vertical axes is
caused by convolving with sin(
v)=
v because of the rectangular image
boundary.
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Figure 2: Spectral support of light field signals with constant depth: (a) a model of constant depth; (b) the spectral support of continuous light
field signals; (c) the spectral support of sampled light field signals.
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Figure 3: Spectral support for light field signal with spatially varying depths: (a) a local constant depth model bounded by zmin and zmax is
augmented with another depth value z0; (b)spectral support is now bounded by two smaller regions, with the introduction of the new line of
z0.
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tΩΩΩΩ

vΩΩΩΩ

4
l l

tΩΩΩΩ

vΩΩΩΩ
v

KΩΩΩΩ

v
KΩΩΩΩ−−−−

maxP minP

(a) (b)

Figure 5: (a) The smallest interval that replicas can be packed without any overlap is PmaxPmin, determined by the highest frequency K
v .
(b) A spectral support decomposed into multiple layers.



 

 
 

 

(a1) Scene image (a2) EPI (a3) Fourier transform of EPI 

 
  

(b1)Scene image (b2) EPI (b3) Fourier transform of EPI 

 
 

 

(c1) Scene image (c2) EPI (c3) Fourier transform of EPI 

 
  

(d1)Scene image (d2) EPI (d3) Fourier transform of EPI 

 

Figure 6: Spectral support of a 2D light field: (a) a single plane; (b) two planes; (c) a third and tilted plane in between; (d) a curved surface
in between.



of the geometry. Figure 3 illustrates the reduction in bounds, from
[zmin; zmax] to max([zmin; z0]; [z0; zmax]), with the introduction
of another layer.

2.4.3 A model with truncating windows
Because of the linearity of the Fourier transform, the spectral sup-
port of the EPI image for a scene with two constant planes will be
two straight lines. However, this statement is true only if these two
planes do not occlude each other. For synthetic environments, we
can construct such EPI images on different layers by simply ignor-
ing the occlusion.

In practice, we can represent a complicated environment using a
model with truncating windows. For example, we can approximate
an environment using truncated and piece-wise constant depth seg-
ments. Specifically, suppose the depth can be partitioned as

z(v) = zi; for vi � v < vi+1; i = 1; � � � ; Nd

where v1 and vNd+1 are the smallest and largest v of interest re-
spectively. Then

l(v; t) = li(v � ft=zi; 0); if vi � v < vi+1

and

L(
v;
t) =

NdX
i=1

exp(�j
vi + vi+1

2
(
v +
tzi=f))

2 sin(
vi+1�vi

2
(
v +
tzi=f))

f
v=zi +
t

Li(�
tzi=f)

�

NdX
i=1

Qi(
v;
t) (6)

where Li is the 1D Fourier transform of li.
In (6), because the function sinx

x
decays fast, and Li(�
tzi=f)

also decreases fast when j
tj grows, the spectral support of
Qi(
v;
t) will look like a narrow ellipse. Nevertheless, because
of high frequency leak, cut-off frequency should be used in the sam-
pling analysis.

An example of two constant planes in an environment is shown
in Figures 6(b1) (original image), 6(b2) (EPI) and 6(b3) (spectral
support). Note that the shape of each of the two spectral supports,
i.e., two approximated lines, is not significantly affected by occlu-
sion because the width of each spectral support is not too large.

2.5 A reconstruction filter using a constant depth
Given a constant depth, a reconstruction filter can be designed. Fig-
ure 4 illustrates four different designs of reconstruction filters ori-
ented to different constant depths. Aliasing occurs when replicas
overlap with the reconstruction filters in the frequency domain (
t
and 
v), as shown in Figure 4(a)(b)(d). Anti-aliased light field ren-
dering can be achieved by applying the optimal filter as shown in
Figure 4(c), where the optimal constant depth is defined as the in-
verse of average disparity dc, i.e.,

dc =
1

zc
= (

1

zmin

+
1

zmax

)=2:

Figure 7 shows the effect of applying reconstruction filters with
different constant depths. As we sweep through the object with a
constant depth plane, the aliasing effect is the worst at the minimum
and maximum depths. The best rendering quality is obtained at
the optimal depth (Figure 7(b)), not at the focal plane as has been
commonly assumed in light field [16] or Lumigraph [10] rendering.
In fact, the optimal depth can be used as a guidance for selecting

the focal plane. For comparison, we also show the rendering result
using average depth in Figure 7(c).

Similar sweeping effects have also been discussed in the dynam-
ically reparameterized light field [13]. However, an analytical solu-
tion using the minimum and maximum depths has never been pre-
sented before.

2.6 Minimum sampling rate for light field rendering
With the above theoretical analysis, we are now ready to solve the
problem of the minimum sampling rate for light field rendering.
Since we are dealing with rectangular sampling lattice, the Nyquist
sampling theorem for 1D signal applies to both directions v and t.
According to the Nyquist sampling theorem, in order for a signal
to be reconstructed without aliasing, the sampling frequency needs
to be greater than the Nyquist rate, or two times that of the Nyquist
frequency. Without loss of generality, we only study the Nyquist
frequency along the 
t direction in the frequency domain. How-
ever, the Nyquist frequency along the 
v direction can be analyzed
in a similar way.

The minimum interval, by which the replicas of spectral support
can be packed without any overlapping, can be computed as shown
in Figure 5(a)

jPmaxPminj = K
vfhd = 2�Kfvfhd (7)

where

hd =
1

zmin

�
1

zmax

;

and
Kfvfhd = min(B

s

v; 1=(2�v); 1=(2�v))

is the highest frequency for the light field signal, which is deter-
mined by the scene texture distribution (represented by the highest
frequency Bs

v), the resolution of the sampling camera (�v), and the
resolution of the rendering camera (�v). The frequency Bs

v can be
computed from the spectral support of the light field. Our formula-
tion takes the rendering resolution into account because rendering
at a resolution higher than the output resolution is wasteful. For
simplicity, we assume �v = �v from now on.

The minimum sampling rate is equivalent to the maximum cam-
era spacing �tmax, which can be computed as

�tmax =
1

Kfvfhd
: (8)

The minimum sampling rate can also be interpreted in terms of
the maximum disparity defined as the projection error using the op-
timal reconstruction filter for rendering. From Equation 8, we have
the maximum disparity

�tmaxfhd=2 =
1

2Kfv

= max(�v; 1=(2B
s

v)): (9)

Therefore, the disparity is less than 1 pixel (i.e., the camera res-
olution) or half cycle of the highest frequency (1=Bs

v is defined as a
cycle) presented in the EPI image because of the textural complex-
ity of the observed scene.

If the textural complexity of the scene is not considered, the min-
imum sampling rate for light field rendering can also be derived in
the spatial domain. For example, by considering the light field ren-
dering as a synthetic aperture optical system, we present an optical
analysis of light field rendering in Appendix A.

The maximum camera spacing will be larger if the scene texture
variation gets more uniform, or if the rendering camera resolution
becomes lower. By setting the higher frequency part of the spec-
trum to zero so that Bs

v < 1=(2�v), we can reduce the minimum
sampling rate. One way to reduce Bs

v is to apply a low-pass filter to
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Figure 7: Sweeping a constant depth plane through an object: (a) at the minimum depth; (b) at the optimal plane; (c) at the average distance
between minimum and maximum depths; (d) at the maximum depth. The best rendering quality is achieved in (b).

the input v-t image. This approach is similar to prefiltering a light
field (see Figure 7 in [16]).

In particular, the minimum sampling rate is also determined by
the relative depth variation f(z�1

min
� z�1max). The closer the object

gets to the camera, the smaller the zmin is, and the higher the min-
imum sampling rate will be. As f gets larger, the sampling camera
will cover a more detailed scene, but the minimum sampling rate
needs to be increased. Therefore, the plenoptic sampling problem
should not be considered in the image space alone, but in the joint
image and geometry space.

3 Minimum sampling in the joint image and
geometry space

In this section, we will study the minimum sampling problem in
the joint geometry and image space. Since the CPU speed, mem-
ory, storage space, graphics capability and network bandwidth used
vary from users to users, it is very important for users to be able
to seek the most economical balance between image samples and
depth layers for a given rendering quality.

It is interesting to note that the minimum sampling rate for light
field rendering represents essentially one point in the joint image
and geometry space, in which little amount of depth information has
been utilized. As more geometrical information becomes available,
fewer images are necessary at any given rendering resolution. Fig-
ure 8 illustrates the minimum sampling rate in the image space, the
minimum sampling curve in the joint image and geometry space,
and minimum sampling curves at different rendering resolutions.
Any sampling point above the minimum sampling curve (e.g., Fig-
ure 8b) is redundant.

3.1 Minimum sampling with accurate depth
From an initial set of accurate geometrical data, we can decompose
a scene into multiple layers of sub-regions. Accordingly, the whole
spectral support can be decomposed into multiple layers (see Fig-
ure 5b) due to the correspondence between a constant depth and
its spectral support. For each decomposed spectral support, an op-
timal constant depth filter can be designed. Specifically, for each
depth layer i = 1; : : : ; Nd, the depth of optimal filter is described
as follows

1

zi
= �i

1

zmin

+ (1� �i)
1

zmax

(10)

where

�i =
i� 0:5

Nd

Therefore a depth value can be assigned to one of the depth lay-
ers z = zi if

�hd

2Nd

�
1

z
�

1

zi
�

hd

2Nd

: (11)

The layers are quantized uniformly in the disparity space. This
is because perspective images have been used in the light fields. If
we use parallel projection images instead, the quantization should
be uniform in the depth space [5].

Similar to Equation 8, the minimum sampling in the joint image
and accurate depth space is obtained when

�t

Nd

=
1

Kfvfhd
; Nd � 1 (12)

where Nd and �t are the number of depth layers and the sampling
interval along the t direction, respectively. The interval between
replicas is uniformly divided into Nd segments.

The number of depth layers needed for scene representation is
a function of the sampling and rendering camera resolution, the
scene’s texture complexity, the spacing of the sampling cameras
and the depth variation relative to the focal length.

3.1.1 Applications
Based on the above quantitative analysis in the joint image and
depth space for sufficient rendering, a number of important appli-
cations can be explored.

� Image-based geometry simplification. Given the appropri-
ate number of image samples an average user can afford, the
minimum sampling curve in the joint space determines how
much depth information is needed. Thus, it simplifies the
original complex geometrical model to the minimum while
still guaranteeing the same rendering quality.

� Geometry-based image database reduction. In contrast,
given the number of depth layers available, the number of im-
age samples needed can also be reduced to the minimum for
a given rendering resolution. The reduction of image samples
is particularly useful for light field rendering.

� Level of details (LOD) in joint image and depth space. The
idea of LOD in geometry space can be adopted in our joint
image and geometry space. When an object becomes farther
away, its relative size on screen space diminishes so that the
number of required image samples or the number of required
depth layers can be reduced accordingly. Zooming-in onto
and zooming-out of objects also demand a dynamic change in
the number of image samples or depth layers.

� Light field with layered depth. A general data structure for
the minimum sampling curve in the joint image and geome-
try space can be light field with layered depth. With different
numbers of images and depth layers used, the trade-off be-
tween rendering speed and data storage has to be studied.
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Figure 8: Plenoptic sampling: (a) the minimum sampling rate in image space; (b) the minimum sampling curve in the joint image and
geometry space (any sampling point above the curve is redundant); (c) minimum sampling curves at different rendering resolutions.

3.2 Minimum sampling with depth uncertainty
Another aspect of minimum sampling in the joint image and geom-
etry space is related to depth uncertainty. Specifically, minimum
sampling with depth uncertainty describes the quantitative relation-
ship between the number of image samples, noisy depth and depth
uncertainty. It is important to study this relationship because in
general the recovered geometry is noisy as modeling a real envi-
ronment is difficult. Given an estimated depth ze and its depth un-
certainty ��, the depth value should be located within the range
(ze ���; ze + ��). The maximum camera spacing can be com-
puted as

�tmax = min
ze

(ze +��)(ze ���)

2fKfv��
=

minze z
2
e ���2

2fKfv��
: (13)

In addition, geometrical uncertainty also exists when an accurate
model is simplified. Given the correct depth z0 and an estimated
depth ze, the maximum camera spacing can be computed as

�tmax = min
ze

zez0

2fKfv jze � z0j
: (14)

3.2.1 Applications
Knowledge about the minimum number of images under noisy
depth has many practical applications.

� Minimum sampling rate. For a specific light field rendering
with no depth maps or with noisy depth maps, we can de-
termine the minimum number of images for antialiased light
field rendering. Redundant image samples can then be left out
from the sampled database for light field rendering.

� Rendering-driven vision reconstruction. This is a very
interesting application, considering that general vision al-
gorithms would not recover accurate scene depth. Given
the number of image samples, how accurately should the
depth be recovered to guarantee the rendering quality?
Rendering-driven vision reconstruction is different from clas-
sical geometry-driven vision reconstruction in that the former
is guided by the depth accuracy that the rendering process can
have.

4 Experiments
Table 1 summarizes the parameters of each light field data set used
in our experiments. We assume that the output display has the same
resolution as the input image. Furthermore, without taking into con-
sideration the actual texture distribution, we assume that the highest
frequency in images is bounded by the resolution of the capturing
camera.

We have used different settings of focal length for the Head, the
Statue and the Table. We put the focal plane slightly in front of the
Head. A smaller focal length will reduce the minimum sampling
rate. For the Statue, the focal plane is set approximately at its fore-
head. In fact, we have set the focal length (3000) very close to the
optimal (3323). Because the Table scene has significant depth vari-
ations, a small camera focal length was used so that each image can
cover a large part of the scene.

First, we compare the rendering quality along the minimal sam-
pling curve in the joint image and geometry space, with the best
rendering quality we can obtain with all images and accurate depth.
According to our theory (Eq (12)), the number of images is in-
versely proportional to the number of depth layers in use. The
rendering results corresponding to five different image and depth
combinations along the minimum sampling curve are shown in Fig-
ures 11(A)-(E). For example, C(7,8) represents the rendering result
using 7 layers of depth and 8� 8 images. In contrast, Figure 11(F)
shows the best rendering output one can achieve from this set of
data: accurate depth and all 32 � 32 images2. The quality of the
rendered images along the minimal sampling curve is almost indis-
tinguishable3 from that of using all images and accurate depth.

Figure 12(a) compares the rendering quality using different lay-
ers of depth and a given number of image samples. With 2 � 2
image samples of the Head, images (A)-(E) in Figure 12(a) show
the rendered images with different layers of depth at 4, 8, 10, 12,
and 24. According to Eq (12), the minimum sampling point with
2�2 images of the Head is at approximately 12 layers of depth. No-
ticeable visual artifacts can be observed when the number of depth
is below the minimal sampling point, as shown in images (A)-(C)
of Figure 12(a). On the other hand, oversampling layers of depth
does not improve the rendering quality, as shown in the images (D)
and (E).

With the minimal sampling curve, we can now deduce the mini-
mum number of image samples at any given number of depth layers
available. For the Table scene, we find that 3 bits (or 8 layers) of
depth information is sufficient for light field rendering when com-
bined with 16 � 16 image samples (shown in image (D) of Fig-
ure 12(b)). When the number of depth layers is below the minimal
sampling point, light field rendering produces noticeable artifacts,
as shown in images (A)-(C) of Figure 12(b).

Given a single depth layer, our analysis (Eq 12) shows that the
number of images for antialiased rendering of the table scene re-
quires 124 � 124 images. Note that conventional light field may
require even a larger number of images without using the optimal
depth. This very large set of light field data is due to the signifi-

2We were not able to use all 64�64 images with accurate depth because
of memory limitations.

3There exists little discrepancy because of the fact that we can not apply
the optimal reconstruction filter in rendering.



(a) (b)
Figure 9: Comparison between conventional light field with 48 � 48 images and rendering with 16 � 16 images and 3 bits of depth: (a)
artifacts are visible on the left with conventional rendering, (b) but not present with additional geometrical information because minimum
sampling requirement is satisfied.

cant depth variations in the Table scene. This perhaps explains why
inside-looking-out light field rendering has not been used often in
practice. Also according to our analysis, using 3 bits (8 layers) of
depth helps to reduce the number of images needed by a factor of
60, to 16 � 16 images. For comparison, Figure 9(a) shows con-
ventional light field rendering with 48� 48 images and Figure 9(b)
shows the rendering result with 16�16 images plus 3 bits of depth.
Visual artifacts such as double images at the edge of the wall are
clearly visible in Figure 9(a). They are not present in Figure 9(b).

Experiments using depth with uncertainty also demonstrate the
effectiveness of our analysis. Due to space limitation, we will not
present any results of minimum sampling curve using depth with
uncertainty.

5 Conclusion and future work
In this paper we have studied the problem of plenoptic sampling.
Specifically, by analyzing the bounds of spectral support of light
field signals, we can analytically compute the minimum sampling
rate of light field rendering. Our analysis is based on the fact that the
spectral support of a light field signal is bounded by only the min-
imum and maximum depths, irrespective of how complicated the
spectral support might be because of depth variations in the scene.
Given the minimum and maximum depths, a reconstruction filter
with an optimal constant depth can be designed for anti-aliased light
field rendering. The minimum sampling rate for light field render-
ing is obtained by compacting the replicas of the spectral support of
the sampled light field within the smallest interval. Our work pro-
vides a solution to overcoming the oversampling problem in light
field capturing and rendering.

By studying plenoptic sampling in the joint image and geom-
etry space, we have also derived the minimum sampling curve
which quantitatively describes the relationship between the num-
ber of images and the information on scene geometry, given a spe-
cific rendering resolution. Indeed, minimum sampling curves with
accurate depth and with noisy depth serve as the design princi-
ples for a number of applications. Such interesting applications in-
clude image-based geometry simplification, geometry-assisted im-
age dataset reduction, rendering-driven vision reconstruction, in ad-
dition to depth-assisted light field compression, or the minimum
sampling rate for light field rendering.

While we have studied minimum sampling using light fields in
this paper, the very idea of plenoptic sampling is also applicable

to other IBR systems, e.g. concentric mosaics, layered-depth im-
age, view interpolation, and image warping, to name a few. With
plenoptic sampling, there are a number of exciting areas for future
work.

For example, we have used depth value in this paper to encode
the geometry information. Depth is also used in image-assisted ge-
ometry simplification. However, no surface normal has been con-
sidered. In the future, we would like to experiment with different
techniques to generate image-assisted geometry simplification us-
ing geometrical representations other than depth. We plan to incor-
porate the surface normal into image-based polygon simplification.
The efficiency of geometry simplification can be further enhanced
by considering the standard techniques in geometrical simplifica-
tion, e.g. visibility culling.

Another interesting line of future work is on how to design a new
rendering algorithm for the joint image and geometry representa-
tion. The complexity of the rendering algorithm should be propor-
tional to the number of depth in use. In addition, error-bounded
depth reconstruction should be considered as an alternative to tra-
ditional vision reconstruction, if the reconstruction result is to be
used for rendering. Given the error bounds that are tolerable by the
rendering algorithms, the difficulty of vision reconstruction can be
much alleviated.

Lastly, we plan to study view-dependent plenoptic sampling.
Current analysis of plenoptic sampling is based on the assumption
that the surface is diffuse and little view-dependent variance can
occur. It is conceivable that view dependent surface property will
increase the minimum sampling rate for light field.
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A An optical analysis of light field rendering
Similar to [16, 13], we consider the light field rendering system as
a discrete synthetic aperture optical system, as shown in Figure 10.
Analogous to the Gaussian optical system, we can define the fol-
lowing optical parameters:

� Focal length f ;

� Smallest resolvable feature (on the image plane) d;

� Aperture D. Distance between two adjacent cameras;

� Circle of confusion c = d=f ;

� Hyperfocal distance DH = D=c.

Let the plane of perfect focus be at the distance zopt, the mini-
mum and maximum distances at which the rendering is acceptable
be zmin and zmax, respectively. The following relations exist ([2],
vol. 1, p.1.92)

zmin =
DHzopt

DH + zopt
; and zmax =

DHzopt

DH � zopt
;

which lead to,

1

zopt
= (

1

zmin

+
1

zmax

)=2

1

DH

= (
1

zmin

�
1

zmax

)=2

Therefore, to have the best rendering quality, no matter which
optical system is used, the focus should be always at zopt. More-
over, to guarantee the rendering quality, DH has to be satisfied, i.e.,

D

d=f
= (

1

zmin

�
1

zmax

)=2 (15)

In other words, given the minimum and maximum distances,
the maximum camera spacing can be determined in order to meet
the specified rendering quality. The hyperfocal distance describes
the relationship among the rendering resolution (circle of confu-
sion), the scene geometry (depth of field) and the number of images
needed (synthetic aperture). Intuitively, the minimum sampling rate
is equivalent to having the maximum disparity less than the small-
est resolvable feature on the image plane, e.g, camera resolution or
one pixel, i.e., d = �v = 1. The same result was also obtained by
Lin and Shum [17] using a geometrical approach.

Equation 15, not surprisingly, is almost exactly the same as
Equation 8 because DH = 2=hd. However, our approach using
spectral analysis of light field signals incorporates the textural in-
formation in the sampling analysis. More detailed optical analysis
of light field rendering can be found in [8].



Focal Maximum Minimum (u; v) (s; t) Pixels Image Spacing
length depth depth interval interval per image per slab �tmax

Head 160.0 308.79 183.40 0.78125 1.5625 256�256 64�64 4.41
Statue 3000.0 5817.86 2326.39 15.625 31.25 256�256 64�64 40.38
Table 350.0 3235.47 362.67 2.4306 7.29 288�288 96�96 5.67

Table 1: A summary of parameters used in three data sets in our experiments.
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Figure 11: Minimum sampling curve for the object ”Statue” in the joint image and geometry space with accurate geometry. Sampling points
in the figure have been chosen to be slightly above the minimum sampling curve due to quantization.
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Figure 12: Minimum sampling points in the joint image and geometry space: (a) for the object ”Head”, when the number of images is 2� 2;
(b) for the ”Table” scene, when the number of depth layers is 8.


