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Abstract. In this paper, we present a novel image-based rendering technique, which we call manifold hopping.
Our technique provides users with perceptually continuous navigation by using only a small number of strategically
sampled manifold mosaics or multiperspective panoramas. Manifold hopping has two modes of navigation: moving
continuously along any manifold, and discretely between manifolds. An important feature of manifold hopping is
that significant data reduction can be achieved without sacrificing output visual fidelity, by carefully adjusting the
hopping intervals. A novel view along the manifold is rendered by locally warping a single manifold mosaic using
a constant depth assumption, without the need for accurate depth or feature correspondence. The rendering errors
caused by manifold hopping can be analyzed in the signed Hough ray space. Experiments with real data demonstrate
that we can navigate smoothly in a virtual environment with as little as 88k data compressed from 11 concentric

mosaics.
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1. Introduction

Image-based rendering (IBR) in general simulates a
continuous range of camera viewpoints from a discrete
setof inputimages (McMillan and Bishop, 1995; Kang,
1999). Much of the work on image-based rendering
has depended on view interpolation (e.g., Chen and
Williams, 1993; McMillan and Bishop, 1995; Seitz and
Dyer, 1996; Avidan and Shashua, 1997). View interpo-
lation is, however, a difficult task because feature cor-
respondence needs to be accurately established. Cor-
respondence is particularly difficult if it involves two
images which are taken from distant viewpoints.
When accurate depth information of an image is
available, the image can be rendered from a nearby
view by directly warping the input image according
to its depth (Mark et al., 1997; McMillan, 1999). To
deal with the occlusion problems, Layered depth im-
ages (LDI) (Shade et al., 1998) maintain multiple depth
values for each pixel in a single image so that warping

may be computed with a single image. The sampling
issues in LDI are considered in an LDI tree (Chang
et al., 1999) by adaptively selecting an LDI for each
pixel. However, recovering precise depth information
is still very difficult.

Many IBR techniques avoid the difficult correspon-
dence problem or the need for accurate depth infor-
mation by employing a substantial number of images.
Techniques such as Light Field (Levoy and Hanrahan,
1996), Lumigraph (Gortler et al., 1996), and Concen-
tric Mosaics (Shum and He, 1999) densely sample rays
in the space based on the plenoptic function (Adelson
and Bergen, 1991). To render an image at any novel
viewpoint using these techniques, nearby rays are cho-
sen and interpolated from the sampled plenoptic func-
tions. For example, concentric mosaics are constructed
from a dense sequence of video images, and con-
stant depth assumptions need to be made about the
scene depth in order to locate the best “nearby” rays
for optimal rendering quality. Applications of light
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Figure 1. Manifold hopping using concentric mosaics: A plan view. Manifold hopping has two modes of navigation: (a) and (c) move
continuously along any manifold, and (b) and (d) discretely across manifolds. The arrows in (b) and (d) indicate that the user can only hop to the
viewpoints on the circle, but not stop anywhere in between. Two classes of manifold hopping are shown here: Lateral hopping whose discrete
mode of navigation is perpendicular to the viewing direction, and looming hopping whose discrete mode of navigation is along the viewing
direction. Lateral hopping uses tangent concentric mosaics (Fig. 2(a)), while looming hopping employs normal concentric mosaics (Fig. 2(b)).
Note that the rendering views are restricted on the circles. Rendering images have limited field of views.

fields are limited because of the large amount of data
needed.

An effective way to reduce the amount of data needed
for IBR is to constrain the motion or the viewpoints of
the rendering camera. For example, the movie-map sys-
tem (Lippman, 1980) and the QuickTime VR system
(Chen, 1995) allow a user to explore a large environ-
ment only at pre-specified locations. Even though a
continuous change in viewing directions at each node
is allowed, these systems can only jump between two
nodes that are far apart, thus causing visual disconti-
nuity and discomfort to the user. However, perceived
continuous camera movement is very important for a
user to smoothly navigate in a virtual environment.
Recently, several panoramic video systems have been
built to provide a dynamic and immersive “video” ex-
perience by employing a large number of panoramic
images.

In this paper, we propose a novel image-based ren-
dering technique, which we call manifold hopping.
In our work, scene appearance is represented by a
collection of manifold mosaics. A manifold mosaic
(Peleg and Herman, 1997), similar to a multiper-
spective panorama (Wood et al., 1997), is assembled
from rays that are captured from multiple viewpoints
(Rademacher, 1998; Wood et al., 1997; Gupta and
Hartley, 1997; Zheng and Tsuji, 1990). Furthermore,
we assume in this paper that a manifold mosaic has a
one-to-one mapping between each pixel and its corre-
sponding scene point. The term manifold hopping is
used to indicate that while motion is continuous within

a manifold, motion between manifolds is discrete, as
shown in Fig. 1.

Manifold hopping significantly reduces the amount
of input data without sacrificing output visual qual-
ity, by employing only a small number of strategically
sampled manifold mosaics. Our technique is based on
the observation that, for human visual systems to per-
ceive continuous motion, it is not essential to render
novel views at infinitesimal steps. Moreover, manifold
hopping does not require accurate depth information
or correspondence between images. At any point on a
given manifold, a novel view is generated by locally
warping the manifold mosaic with a constant depth as-
sumption, rather than interpolating from two or more
mosaics. Although warping errors are inevitable be-
cause the true geometry is unknown, local warping
does not introduce structural features such as double
images which can be visually disturbing.

The remainder of this paper is organized as follows.
After reviewing the concepts of manifold mosaics and
concentric mosaics, we present an overview of mani-
fold hopping in Section 2. Detailed analysis of mani-
fold hopping (with lateral movements) is presented in
Section 3. In particular, using the signed Hough ray
space, the hopping interval and field of view are ana-
lyzed for radial hopping using concentric mosaics. In
Section 4, manifold hopping with looming movements
is discussed in terms of the extended signed Hough ray
space. In Section 5, we use parallel mosaics for hopping
from outside. Continuous close-up views of objects can
be seen using parallel mosaics, while hopping around



the objects. Experiments using real and synthetic im-
ages are shown in Section 6. Other hopping choices
are discussed in Section 7. Finally, we conclude and
propose future research directions in Section 8.

2. Overview of Manifold Hopping

In this section, we introduce manifold mosaics, view
interpolation using manifold mosaics, warping mani-
fold mosaics, and manifold hopping. Throughout this
section, concentric mosaics are used as examples of
manifold mosaics to illustrate these concepts.

2.1. Manifold Mosaics

A multiperspective image is assembled from rays are
captured from multiple viewpoints (e.g., Zheng and
Tsuji, 1990). Multiperspective images have also been
called MCOP images (Rademacher, 1998), multiper-
spective panoramas (Wood et al., 1997), pushbroom
images (Gupta and Hartley, 1997), and manifold mo-
saics (Peleg and Herman, 1997), among other names.
In this paper, we define a manifold mosaic as a multi-
perspective image where each pixel has a one-to-one
mapping with a scene point.! Therefore, a conventional
perspective image, or a single perspective panorama,
can be regarded as a degenerate manifold mosaic in
which all rays are captured at the same viewpoint.

We adopt the term manifold mosaic from Peleg and
Herman (1997) because the viewpoints are generally
taken along a continuous path or a manifold (surface or
curve). For example, concentric mosaics are manifold
mosaics constructed from rays taken along concentric
circles (Shum and He, 1999). Specifically, at each point
on a circle, a slit image of single pixel width is taken.
By assembling all slit images captured along a circle, a
concentric mosaic is formed. Two kinds of concentric
mosaics are shown in Fig. 2 where rays are taken in
the tangential direction (Fig. 2(a)), and in the normal
direction (Fig. 2(b)), respectively. Concentric mosaics
constitute a 3D plenoptic function because they are
sampled naturally by three parameters: rotation angle,
radius, and vertical elevation. Clearly there is a one-
to-one mapping between pixels in a concentric mosaic
and their corresponding scene points.

Although many previous image-based rendering
techniques (e.g., view interpolation, 3D warping, etc.)
are developed for perspective images, they can be ap-
plied to manifold mosaics as well. For example, 3D
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Figure 2. Capturing two kinds of concentric mosaics: A plan view.
A concentric mosaic is assembled by unit width slit images (a) tan-
gent to the circle; and (b) normal to the circle. We call (a) tangent
concentric mosaics and (b) normal concentric mosaics. Tangent con-
centric mosaics are called concentric mosaics in Shum and He (1999).

warping has been used to reproject a multiple-center-
of-projection (MCOP) image in Rademacher (1998)
and Oliveira and Bishop (1999) where each pixel of
an MCOP image has an associated depth. Stereo re-
construction from multiperspective panoramas has also
been studied (Shum and Szeliski, 1999).

It has been shown (Shum and He, 1999) that a novel
view inside the capturing circle can be rendered from
the concentric mosaics without any knowledge about
the depth of the scene. From densely sampled concen-
tric mosaics, a novel view image can be rendered by lin-
early interpolating nearby rays from two neighboring
concentric mosaics. In addition, a constant depth is as-
sumed to find the best “nearby” rays for optimal render-
ing quality (Chai et al., 2000b). Figure 3(a) illustrates a

Figure 3. Rendering concentric mosaics with (a) view interpolation
and (b) local warping. (a) A ray from viewpoint A is projected to the
constant depth surface (represented as a dotted circle) at B, and inter-
polated by two rays BC and BD that are retrieved from neighboring
concentric mosaics. (b) A ray from viewpoint A is projected to the
constant depth surface at B, and reprojected to the nearest concentric
mosaic by the ray BC.
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rendering ray that is interpolated by two rays captured
in nearby concentric mosaics. Despite the inevitable
vertical distortion, concentric mosaics are very useful
for wandering around (on a plane) in a virtual envi-
ronment. In particular, concentric mosaics are easy to
capture by using an off-centered video camera rotating
along a circle.

2.2.  Warping Manifold Mosaics

View interpolation can create high quality rendering
results when the sampling rate is higher than Nyquist
frequency for plenoptic function reconstruction (Chai
et al.,, 2000b). However, if the sampling interval be-
tween successive camera locations is too large, view
interpolation will cause aliasing artifacts, creating dou-
ble images in the rendered image. Such artifacts can
be reduced by the use of geometric information (e.g.,
Gortler et al., 1996; Chai et al., 2000b), or by pre-
filtering the light fields (Levoy and Hanrahan, 1996;
Chai et al., 2000b) (thus reducing output resolution).
A different approach is to locally warp manifold mo-
saics, which is similar to 3D warping of a perspective
image. An example of locally warping concentric mo-
saics using an assumed constant depth is illustrated in
Fig. 3(b). Any rendering ray that is not directly avail-
able from a concentric mosaic (i.e., not tangent to a
concentric circle) can be retrieved by first projecting it
to the constant depth surface, and then re-projecting it

to the concentric mosaic. Therefore, a novel view im-
age can be warped using the local rays captured on a
single concentric mosaic, rather than interpolated by
collecting rays from two or more concentric mosaics.

For humans to perceive a picture correctly, it is es-
sential that the image of an object should not contain
any structural features that are not present in the object
itself (Zorin and Barr, 1995). Double images, which
are common artifacts from view interpolation with poor
correspondence, unfortunately resultin mistakenly per-
ceived structural features in the observed objects, e.g.,
more noticeable edges. On the other hand, locally warp-
ing a multiperspective image preserves structural fea-
tures. An example of locally warping a concentric mo-
saic is shown in Fig. 4, with images of different FOV’s.
The projection error in the rendered image caused by
warping the concentric mosaic with (incorrect) con-
stant depth assumption increases as the field of view
becomes larger. Note the distortion toward the right
edge in Fig. 4(b). The geometric distortions introduced
by local warping methods because of imprecise geo-
metric information are, however, tolerated by human
visual perception when the field of view (FOV) of the
rendering image is small (e.g., Fig. 4(a)).

2.3.  Hopping Classification and Issues

We now introduce the idea of manifold hopping us-
ing a small number of concentric mosaics to observe

Figure 4. Local warping with an assumed constant depth: (a) part of a concentric mosaic; (b) a rendered view with FOV = 45; and (c) another
rendered view with FOV = 90. The distortion error towards the right edge of (c) can be clearly seen as straight lines become curved. The image
is rendered column by column with local warping. Note that in (c), the vertical field of view is significantly reduced as some of the ceiling lights

become invisible.



an environment from the inside looking out. Manifold
hopping has two modes of navigation: moving contin-
uously along any of the concentric circles as shown
in Fig. 1(a) and (c), but discretely along the radial
direction as in Fig. 1(b) and (d).

Manifold hopping works because moving continu-
ously along any concentric circle uses local warping,
which preserves structural features. In addition, mov-
ing discretely along the radial direction can be made
perceptually smooth if the interval can be made rea-
sonably small. A key observation is that there exists a
critical hopping interval for users to perceive a smooth
navigation. In other words, manifold hopping is able to
provide users with perceived continuous camera move-
ment, without continuously rendering viewpoints at in-
finitesimal steps. As a result, manifold hopping sig-
nificantly reduces the input data size without accurate
depth information or correspondence.

Figure 1(a) also shows that, at any point on a cir-
cle, the rendering view is constrained to be on the cir-
cle and the viewing direction along the tangent line to
minimize the rendering errors caused by local warp-
ing. Note that no parallax is observed from these views
generated on the same circle using the same concen-
tric mosaic. Parallax and lighting changes are captured
in manifold hopping because of the viewpoint varia-
tions across different concentric circles, as shown in
Fig. 1(b).

In this paper, we describe two types of manifold hop-
ping with concentric mosaics: lateral hopping, whose
discrete mode of navigation (Fig. 1(b)) is perpendic-
ular to the viewing direction; and looming hopping,
whose discrete mode of navigation (Fig. 1(d)) is along
the viewing direction. Note that for each type of hop-
ping, there are two modes of navigation, namely the
continuous mode along the manifold and discrete mode
between manifolds. The type of hopping is named after
the direction of discrete navigation.

Detailed analysis of manifold hopping is needed to
address the following important questions.

e What is the largest field of view that still produces
acceptable local warping error?

e How large can the hopping interval be so that con-
tinuous motion can be perceived?

These questions are answered in detail for lateral
hopping in the next section after we introduce the
signed Hough ray space. In Section 4, we introduce the
extended signed Hough ray space to analyze looming

hopping.
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3. Analysis of Lateral Hopping Using
the Signed Hough Ray Space

The Hough transform is known to be a good repre-
sentation for lines. However, it is not suitable for rep-
resenting rays that are directional. The conventional
Hough space can be augmented to a signed Hough ray
space (Chai et al., 2000a), or an oriented line repre-
sentation (Levoy and Hanrahan, 1996), by using the
following right-hand rule: a ray that is directed in a
counter-clockwise fashion about the coordinate cen-
ter is labeled positive, otherwise is labeled negative.
A “positive” ray is represented by (r, 6), whereas its
“negative” counterpart is (—r, 8) where r is always a
positive number. Figure 5 shows four different rays in
a 2D space and their corresponding points in the signed
Hough space.

Figure 6 shows three typical viewing setups and
their representations in the signed Hough space. For
example, a panoramic image (i.e., rays collected at a
fixed viewpoint in Cartesian space) is represented as
a sampled sinusoidal curve in the parameter space, lo-
cated at (rg, 6p) as shown in Fig. 6(a). A concentric
mosaic shown in Fig. 6(b) is mapped to a horizontal
line, whereas parallel projection rays (Fig. 6(c)) are
mapped to a vertical line in the signed Hough space.
Thus, captured perspective images can be easily trans-
formed into samples in the parameter space. Rendering
a novel view in the scene is equivalent to extracting a
partial or complete sinusoidal curve from the signed
Hough space.

When the hopping direction is perpendicular to the
viewing direction, as shown in Fig. 1, we call it lateral
hopping. In the signed Hough space, such a hopping
is illustrated in Fig. 7 where a segment of a sinu-
soidal curve is approximated by a line segment. Equiv-
alently, at each rendering viewpoint, a perspective
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Figure 5. Definition of the signed Hough ray space: Each oriented
ray in Cartesian space at the left is represented by a sampled point
in the signed Hough space on the right.
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Figure 6. Three typical viewing setups and their respective sampled
curves in the signed Hough space: (a) a panorama at a fixed point;
(b) a concentric mosaic; (c) a parallel projection mosaic; and (d)
their respective sampled curves in the signed Hough space. Two
concentric mosaics (straight lines at ro and —rg) are shown in (d) to
represent rays captured at opposite directions along the circle. Note
that a perspective image is only part of a panorama, thus represented
by a segment of a sinusoidal curve in the signed Hough space.
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Figure 7. Hopping between concentric mosaics along a radial di-
rection in the signed Hough space. Continuous rotation is achieved
along any of the concentric circles, but hopping is necessary across
any radial direction. In radial hopping, the curve segment varies from
ry to ry41 because the corresponding sine curve is different, as shown
in Fig. 6.

image is approximated by part of a concentric
mosaic.

Obviously, the smaller the hopping interval, the
smaller the rendering error. On the other hand, the
larger the hopping interval, the less data needed for
wandering around an environment. We argue that a
fairly large hopping interval for manifold hopping can
be perceptually acceptable.

3.1. When is Local Warping Good Enough?

When moving on a concentric mosaic, the horizontal
field of view should be constrained within a certain
range so that the distortion error introduced in local
warping from a multiperspective image to a perspective
image will not cause much visual discomfort to the
user.

The distortion threshold 75, is defined as the max-
imum allowable distance between point A and point
B in Fig. 8. These two points are projections of the
rightmost pixel that are locally warped with distance
R, (assumed distance) and R, (corrected distance), re-
spectively. A radial hopping camera must satisfy the
following:

A0 =0p — 04 < Na, (1)
where 6 = sin™' 2= — sin™! 2227 is the angular dif-

ference when the object at R, distance viewed along
circles of r, and r,, — Ar. 8, is defined similarly for
object located at R;. Thus,

.1 "n =1 }"n—AV .1t
sin” — — sin —sin” —
2 R, R;
L T — AF
+ sin”! e <y 2)

If parallel interpolation is applied to local warping
by assuming the depth R; at infinity, we can simplify
the above constraint to
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Figure 8. Analysis of maximum FOV: Warping error due to the
incorrect depth value.



From the above two equations, we can derive the
maximum FOV under parallel interpolation as

FoV R\* .
cos — > cos Ny — — ) —1sinn; (5)

The above equation shows that, under parallel inter-
polation, the maximum FOV for a hopping camera de-
pends on the radius of the concentric mosaic, the scene
depth, and the distortion error threshold. The field of
view can be significantly increased when the object
moves farther away. A smaller radius enables a larger
FOV. For example, a panorama with a very large FOV
can be rendered as the radius goes to zero. In addition,
warping with constant depth (rather than infinite depth)
can further increase the maximum FOV.

Consider a scene that is located along a circle whose
radius is four times that of the outermost concentric
mosaic. If we assume that the distortion threshold is
1° (that is a flow of 5 pixels for a mosaic with width
1800), the maximum allowable FOV is 42.42°.

Fortunately human visual perception does not re-
quire a very large field of view for a hopping camera
when wandering in a virtual environment. It has also
been shown that 36° is close to perceptually optimal for
most people (Zorin and Barr, 1995). It is well known
that small FOV perspective images are generated from
a large multiperspective panorama for the purpose of
animation (Wood et al., 1997).

3.2.  How Large Can the Hopping Interval Be?

The efficiency and effectiveness of hopping depend on
the size of sample intervals along both the radial and
angular directions. The angular direction is sampled
uniformly and densely to ensure a continuous rotation.
The maximum hopping interval Ar allowed for smooth
visual perception is determined by the threshold of the
horizontal pixel flow Dy (in angular measurement) be-
tween two neighboring frames. The analysis of vertical
parallax is ignored in our analysis due to the nearly hor-
izontal epipolar geometry between neighboring con-
centric mosaics (Shum and Szeliski, 1999).

Suppose that a point at a distance Ry is seen in two
concentric mosaics r, and r,,1, respectively. As shown
in Fig. 9, the horizontal parallax A6 between two ob-
served pixels A and B at the two concentric mosaics
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Figure 9. Analysis of hopping size: Horizontal parallax change due
to viewpoint change.

satisfies

w+ A . n
A — sin~! <r + r) — sin™! <V—> <Dy (6
Ro Ro

which leads to the maximum hopping size

Ar = /R5 —r2sinDy+r,cos Do —r, (7)

=Ry sin(Do + sin~! ;—") — Iy (8)
0

The above equation reveals that the sample interval
along the radial direction depends on the depth (Ry),
the smooth perception threshold (Dy), and the radius
(rn) of the concentric mosaic. Specifically, we observe:

e Sampling along the radial direction is nonlinear. The
smaller the radius, the larger the hopping intervals
should be.

e The hopping interval can be increased with object
distance. When objects are located at infinity, all con-
centric mosaics degenerate to the same panorama.

e A larger threshold Dy allows for a larger hopping in-
terval along the radial direction. As Ar — 0, the hop-
ping interval Dy — 0. This is equivalent to rendering
with concentric mosaics (Shum and He, 1999). On
the other hand, if it is not required to observe paral-
lax, a single manifold mosaic is enough for a user to
look at any viewing direction.

The choice of threshold Dy is closely related to the
human visual system. It is well known that, for a human
to observe smoothly moving pictures, the frame rate is
24 frames/second. Suppose that the average speed of
rotation for a person to observe an environment is below
48°/second, then Dy should be 2°. In other words, a per-
son can tolerate 2° of average pixel flow for two neigh-
boring frames and still observe smooth and continuous
motion.
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Consider a particular scene in which the radius of the
outermost concentric mosaic is 1 unit and the objects
are located at a distance of 4 units. If Dy is 1.5°, we
have Ar = 0.1. Therefore, we need only 21 concentric
mosaics (two for each concentric circle and one for
the center). This is a significant reduction from 320
rebinned concentric mosaics needed in rendering with
concentric mosaics (Shum and He, 1999).

4. Analysis of Looming Hopping Using
the Extended Signed Hough Space

In the previous section, we have analyzed manifold
hopping where the hopping direction is perpendicu-
lar to the viewing direction. If the hopping direction
is along the viewing direction, i.e., if the user moves
forward and backward, we cannot use the conventional
concentric mosaics assembled by rays along the tangent
lines of the concentric circle. Instead, hopping with a
looming motion can be achieved if we construct nor-
mal concentric mosaics that are formed by slit images
with unit pixel width along the normal directions of
the concentric circle, as shown in Fig. 2(b). A novel
view at any point on a circle can be rendered by locally
warping rays from the normal concentric mosaic near
the viewpoint, as shown in Fig. 1(c).

The signed ray space is no longer adequate for an-
alyzing looming hopping. For a looming motion, we
need to represent points along the same ray differently.
Therefore, we introduce the extended signed Hough
space, defined by a 3-tuple (r, 6, d) where d is the dis-
tance from the origin to the location where the ray is
captured. Two points (P and P’) along the same ray
have identical (r, €) but different values of d, as shown
in Fig. 10. And d will take the same sign as r to differ-

entiate a “positive” ray from a “negative” one, similar
to the signed Hough space. Although rays captured at
P and P’ are the same in the plan view of Fig. 2(b), slit
images captured at these two points are different.

Figure 10 also shows three different mosaics repre-
sented in the extended Hough space.

e A panorama: r = d sin(f — ¢);
e A tangent concentric mosaic: r = d = ry;
e A normal concentric mosaic: »r =0 and d = r,.

Note that ¢ is the constant angle for the viewpoint,
and r, is the diameter of one of the concentric circles.
It becomes evident now why the location of the ray,
which was ignored in lateral hopping (in the signed
Hough space), should be considered in looming hop-
ping because r is always zero under looming. There-
fore, the (r, 6, d) representation is necessary and suf-
ficient to index rays in 2D (plan view in Fig. 2(b)) to
capture the looming effect as the user moves forward
and backward.

Figure 11 illustrates looming hopping in the ex-
tended signed Hough space. Similar to lateral hopping
in the signed Hough space (Fig. 7), rendering a novel
view in looming hopping is also equivalent to approx-
imating a partial sinusoidal curve by a line segment
of a normal concentric mosaic. Unlike lateral hopping,
however, each sinusoidal curve is constructed at a dif-
ferent d. For clarity, we skip the looming hopping inter-
val analysis in the extended signed Hough space, which
is similar to the analysis in the signed Hough space in
the previous section.

Lateral hopping is also illustrated in Fig. 11. In the
(r, 0, d) space, the plane for lateral hopping is r = d,
but r = 0 for looming hopping. The sinusoidal curve
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Figure 10. (a) The extended signed Hough ray space is defined by three parameters (r, 0, d). Different points on the same ray have different d
values. (b)—(d) A panorama, a tangent concentric mosaic, and a normal concentric mosaic are represented in the extended signed Hough space.
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;] Lateral hopping plane / Tangent concentric mosaic
" Looming hopping plane / Normal concentric mosaic
\/\ Panorama

Figure11. Loominghopping with normal concentric mosaics, and lateral hopping with tangent concentric mosaics in the extended signed Hough
space. Rendering a novel perspective view is equivalent to approximating a sinusoidal curve segment by a straight line segment representing
part of a concentric mosaic. In looming hopping, green segments are used to approximate the sine curve at different d values on the brown r = 0
plane. In lateral hopping, black segments are used to approximate the sine curve at different » (and d) values on the blue r = d plane.

(@ (b)

Figure 12. Hopping from outside: (a) translating continuously in
the radial direction (toward the object); and (b) hopping discretely
in the angular direction (around the object).

segment is approximated around the maximum r in
lateral hopping, and around r = 0 for looming hop-
ping. If we project the lateral hopping plane in (r, 6, d)
space onto the d = 0 plane, we obtain the (r, 6)
counterpart for lateral hopping. There is therefore a
duality between lateral hopping (r, #) and looming
hopping (d, 6).

Camera p_;ﬁ“\

Constant Depth

Figure 13. Hopping interval between two perspective images
(viewed from outside the object) is related to the field of view of
the object (A1 AA3). The object is assumed to be bounded within the
constant depth circle.

5. Hopping from Outside

Concentric mosaics are suitable for wandering around
in an environment when a user is looking outwards.
When the user is looking at an object, it is desirable
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to observe the object from outside at different viewing
angles. In addition, it is important to have close-up
views.

For simplicity of analysis and capturing, we consider
camera motion on a plane as an object rotates in front
of a camera. A sequence of perspective images are then
taken along the camera path (i.e., a circle). We also con-
strain the rendering camera to have continuous motion
along the radial direction (moving towards and away
from the object along a line) as shown in Fig. 12(a),
and discrete hopping motion in the angular direction
as shown in Fig. 12(b).

5.1. Hopping Between Perspective Images

This rendering camera motion can be achieved by sim-
ply using the perspective images captured in the orig-
inal sequence. Assuming a constant depth for the ob-
ject, we can reproject perspective images to any novel
views along the radial direction. However, only zoom-
ing effect, not the parallax effect, can be observed when
the camera moves along the radial direction. When the
camera moves away from the object, we can not observe
any additional part of the object around the boundary
other than what is in the original image.

5.1.1. Angular Hopping Interval. Many previous
systems have used multiple images to observe a single
object from outside. It is, however, important to study
how large the hopping interval should be to ensure a
perceived smooth transition between the images.

As shown in Fig. 13, two neighboring cameras A
and B are located along the circle (with radius R) of
camera path. The object is assumed to be at the circle
(with radius r) of constant depth. OA = OB = R,
and OA; = OB; = r. The camera spacing is o =
AOB = A|0B;. Let B = A1A0, 2B = A1AA,, and
sin 8 = r/R. The angular flow between two images
can be approximated as

Ao ~2p A8 ¢
AjA, T —2p

9

Therefore, given the pixel flow threshold Dy, we
obtain the camera spacing as

(X _1)p 10
«=(35-1)r 4o

For example, if Dy is 1°, and R = 3r, then « is com-
puted as 4°. In other words, we need to capture 90
images along the circle.

5.2.  Hopping Between Parallel Projection Mosaics

Another way to achieve continuous radial motion is
to use parallel projection mosaics. Parallel mosaics
are formed by collecting all parallel rays in the same
direction. We call this angular hopping with parallel
mosaics.

Because parallel projection cameras are not com-
monly available, we rebin parallel mosaics by taking
the parallel rays from a dense sequence of perspec-
tive images taken along a circle outside the object.
Figure 15 shows a projective image from the original
sequence and the rebinned parallel mosaic. Note that
the rebinned mosaic is called 1D parallel mosaic be-
cause the vertical direction is still perspective, only the
horizontal direction is under parallel projection.

Assuming a constant depth for the object, we can
reproject parallel mosaics to any novel view along the
radial direction, as shown in Fig. 14. Warping 1D par-
allel mosaic in Fig. 15(b) using constant depth is shown
in Fig. 15(c). Even though warping errors are created,
such as those around the boundary of the object, they
are small enough to cause little visual distortion.

5.2.1. Close-Up Views. Rendering a novel view with
angular hopping using parallel mosaics can again be
explained in the signed Hough space. Continuous
motion along the angular direction is obtained by

Constant Depth

-
.

»

Parallel Mosaic>_ "

~
L

Figure 14. Reprojecting a parallel mosaic (shown as parallel dotted
green lines) to different perspective images along the radial direction
using constant depth assumption. The image shown by blue arrows
is viewed at a normal distance away, while the image with red arrows
is a close-up view.
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Figure 15. Warping parallel projection images: (a) a perspective image; (b) a 1D parallel projection mosaic; and (c) 1D mosaic of (b) warped
with constant depth. (c) and (a) are mostly similar except around edges (e.g., on the left edge of the pear). An advantage of using parallel mosaics
is to have higher resolution especially for close-up views.

BELLXXXXXL
(@

Figure 16. Hopping between panoramas: (a) along a line of 11
panoramas; (b) ray distribution of (a) in signed Hough space; (c)
along a circle of 10 panoramas; and (d) ray distribution of (c).

approximating a cosine segment using a line segment.
When the viewpoint is far away, the parallel mosaic
approximates the perspective view very well. The re-
projection or warping error increases as the viewpoint
approaches the object. In addition, the image size of the
parallel mosaic determines how closely the rendering
camera can get to the object. Hopping using parallel
mosaics and hopping using perspective images have
similar warping errors, especially if constant depth is
assumed.

However, rebinned parallel mosaics can have a much
higher resolution than the original image if a very dense

sequence is captured. For example, we can obtain a
1D parallel mosaic of 640 x 240 from 640 original
images with size 320 x 240. Close-up views rendered
from rebinned parallel mosaics have better quality than
simply zooming-in the original images.

6. Experiments
6.1. Synthetic Environments

We represent a synthetic environment with 41 concen-
tric mosaics (with size 2400 x 288) on 11 concentric
circles. There are 21 tangent concentric mosaics, and
21 normal concentric mosaics. Note that the center mo-
saic degenerates to a single perspective panorama, as
shown in Fig. 17(a). At the outermost circle, the tan-
gent concentric mosaic is shown in Fig. 17(b), while
the normal concentric mosaic is shown in Fig. 17(c). By
hopping between these mosaics, we render five images
from the left, right, center, front and back viewpoints
shown in Fig. 17(d). Parallax effects (both lateral and
looming) are clearly visible from the rendered images.
And hopping between these mosaics provides a smooth
navigation experience. However, one can only switch
lateral motion and looming motion at the center. In
conventional rendering with concentric mosaics, we
would have used 720 such mosaics. Therefore, man-
ifold hopping requires much less data for a similar
viewing experience.

A much larger environment can be constructed by
combining more mosaics captured at different loca-
tions. By carefully adjusting constant depths used for
different sets, we can hop smoothly from one circle to
another, and inside a circle.
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(a)

(b)

(d

Figure 17. Lateral and looming hopping between concentric mosaics of a synthetic environment: (a) a tangent concentric mosaic; (b) the
middle panorama; (c) a normal concentric mosaic; each mosaic has the size of 2400 x 288; and (d) five rendered views from manifold hopping
at the left, center, right, forward and backward locations. Note that the horizontal parallax is clearly visible between the left and right views; the
looming effect can be seen from the forward and backward views.



6.2. Real Environments

We have used a Sony Mini DV digital video camera to
capture concentric mosaics of a real environment. The
camera rotates along a circle. The video is digitized at
the resolution of 720 x 576. A total of 5726 frames are
captured for a full circle. The raw data for the video
sequence amounts to a total of 7 Gigabytes. Instead of
using 720 rebinned concentric mosaics of size 5726 x
576, we select only a small subset (typically 21) of
resampled concentric mosaics.

Three rebinned concentric mosaics are shown in
Fig. 18(a). Two high resolution images (with display
size 500 x 400) rendered from 21 concentric mosaics
are shown in Fig. 18(b) and (c). Horizontal parallax
around the tree and lighting change reflected from the
window can be clearly observed. Constant depth cor-
rection is used in all our experiments.

To reduce the amount of data used in manifold hop-
ping, we can resize the original concentric mosaics. As
shown in Fig. 18(d) and (e), two images with low reso-
lution 180 x 144 are rendered from 11 resized smaller
concentric mosaics. It is important to note that sim-
ply resizing the original 11 concentric mosaics does
not generate the expected concentric mosaics. Instead,
mosaics of such small size should be resampled from
the original dense sequence.

We have also developed a predictive coding com-
pression algorithm for compressing concentric mosaics
with fast selective decoding and random access. As a
result, the above 11 concentric mosaics can be com-
pressed to 88k with a compression ratio of 78. Two
corresponding rendered images using the compressed
data are shown in Fig. 18(f) and (g).

6.3. Hopping Around Objects

We have also captured a sequence of images for an ob-
ject that rotates in front of a camera. From the input
sequence of 5277 images of size 360 x 288, we rebin
90 parallel mosaics with size 645 x 288. These parallel
mosaics have an angular hopping interval of 4 degrees.
A perspective image from the input sequence is shown
in Fig. 19(a). Using the Lagrange interpolation, the re-
binned 1D parallel mosaics are rather smooth, as shown
in Fig. 19(b).

Figure 19(c) and (d) show two warped images from
the 1D parallel mosaics. The parallax and lighting
change can be seen very clearly in the accompany-
ing videotape. In our experiments, we have found that
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hopping angularly at an interval of 4 degrees provides a
very smooth perceived camera movement. Two close-
up views along the same viewing direction of Fig. 19(c)
are also shown in Fig. 19(e) and (f). Because paral-
lel mosaics have a higher resolution than the origi-
nal images, close-up views provide details that would
not be possible by simply zooming-in on the original
images.

With angular hopping interval of 4 degrees in
both longitudinal and latitudinal directions, we have
also rendered synthetically a sequence of 2D paral-
lel mosaics. Hopping between this collection of paral-
lel mosaics again provides perceived smooth camera
movements in two dimensions.

7. Discussion

While reducing data significantly, manifold hopping
limits the freedom of user movement. In hopping with
concentric mosaics, for instance, a user can only ro-
tate along one of the concentric circles. The user is not
allowed to rotate at any given viewpoint except in the
center. As shown in the synthetic experiments, the user
can only change from lateral hopping to looming hop-
ping at the center. If the number of concentric mosaics
is sufficiently large, it is also possible to hop around any
fixed point in the angular direction by warping differ-
ent concentric mosaics. In the signed Hough space, it
is equivalent to finding segments from different r lines
that approximate a sinusoidal curve.

Manifold hopping is not restricted to hopping with
concentric mosaics or with lateral or looming move-
ments. There are many other choices for manifolds
and hopping directions. For example, hopping between
panoramas has been used in QuickTime VR (Chen,
1995) using “hotspots”. When panoramas are closely
spaced, hopping between them can also achieve a
smooth transition. Figure 16 shows two examples of
hopping between panoramas. Figure 16(b) shows the
signed Hough representation of a line of panoramas as
in Fig. 16(a), and Fig. 16(d) shows the signed Hough
representation of a circle of panoramas as in Fig. 16(c).

There are two major differences between manifold
hopping with concentric mosaics and hopping with
panoramas. The first difference is in capturing. Panora-
mas can capture similar rays to concentric mosaics as
the number of panoramas increases. However, the same
result will require capturing panoramas many times at
different locations, as opposed to rotating the camera
only once for capturing concentric mosaics.
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(d)

(2)

Figure 18. Hopping between concentric mosaics: (a) three concentric mosaics projected onto cylinders; (b) and (c) two rendered images at a
high resolution 500 x 400; (d) and (e) rendered images with a low resolution 180 x 144; and (f) and (g) low resolution rendered images using

88k compressed data.

The second and perhaps more important difference
is in sampling. Each manifold mosaic is multiperspec-
tive, while each panorama has only a single center of
projection. Since different viewpoints can be selected

as the desired path for the user, a multiperspective
panorama could be more representative of a large en-
vironment than a single perspective panorama. If the
multiperspective image is formed by rays taken along
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(e)

(H

Figure 19. Hopping between parallel mosaics: (a) a perspective image from the original sequence; (b) a rebinned 1D parallel mosaic with
higher resolution; (c) and (d) two rendered images from different viewing directions; and (e) and (f) close-up views along the viewing direction

of (¢).

the desired path of the user, the warping error from a
multiperspective image is, on average, smaller than that
from a perspective image (e.g., a panorama).
Concentric mosaics are suitable for the inside look-
ing out. To observe objects from the outside looking in,

parallel mosaics can be used for manifold hopping. For
concentric mosaics, the manifold is a cylindrical sur-
face. For parallel mosaics, the manifold is a plane origi-
nating from the object center. In this paper, we have dis-
cussed manifold hopping in two dimensional space by
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constraining the rendering camera on a plane. The con-
cept of manifold hopping can be generalized to higher
dimensions. The analysis in higher dimensions is very
similar to the two-dimensional cases. However, it is
difficult to capture such manifold mosaics in practice.

8. Conclusion and Future Work

We have described a new image-based rendering tech-
nique which we call manifold hopping. In summary,
our technique has the following properties:

e It does not require a large amount of image data,
and yet the user can perceive continuous camera
movement.

e It requires neither accurate depth nor correspon-
dence, yet generates perceptually acceptable ren-
dered images.

Specifically, manifold hopping renders a novel view
by locally warping a single manifold mosaic, without
the need for interpolating from several images. We have
shown that warping a single multiperspective image
to a perspective image with a regular field of view
causes insignificant distortion to human beings, even
with warping errors resulting from incorrect depth in-
formation. Furthermore, local warping does not intro-
duce structural errors such as double images which are
perceptually disturbing.

Most importantly, manifold hopping requires rel-
atively little input data. Capturing manifold mosaics
such as concentric mosaics is also easy. By sparsely
sampling the concentric mosaics, we can reduce the
amount of data from the original concentric mosaics
by more than 10-fold. While manifold hopping pro-
vides only discrete camera motion in some directions,
it provides reasonably smooth navigation by allowing
the user to move in a circular region and to observe sig-
nificant horizontal parallax (both lateral and looming)
and lighting changes. The ease of capture and the very
little data requirement make manifold hopping very at-
tractive and useful for many virtual reality applications,
in particular those on the Internet.

Table 1 compares how manifold hopping differs
from previous IBR systems, in terms of their geometric
requirements, number of images, rendering viewpoints
and perceived camera movement. Manifold hopping
stands out in that it ensures a perceived continuous cam-
era movement even though rendering viewpoints are
discrete. It builds on the observation that a fairly large
amount of viewpoint change is allowed, while main-
taining perceptually continuous camera movement to
humans. This observation of “just-enough hopping” for
reducing image samples is, in spirit, similar to the “just-
necessary effort” adopted by perceptually based tech-
niques (Ramasubramanian et al., 1999) on realistic im-
age synthesis to reduce computational cost. While we
have experimentally demonstrated the feasibility of our

Table 1. A table of comparison for different IBR techniques: Geometry requirements, number of images, rendering viewpoints

and perceived camera movement.

Geometry

Images Rendering viewpoints

Perceived motion

Light fields (Levoy and
Hanrahan, 1996;
Gortler et al., 1996;
Shum and He, 1999)

3D Warping (Mark et al., 1997,
McMillan, 1999;
Shade et al., 1998;
Chang et al., 1999)

View interpolation (Chen and
Williams, 1993;
McMillan and Bishop, 1995;
Seitz and Dyer, 1996;
Avidan and Shashua, 1997)

Hopping (Lippman, 1980; No
Chen, 1995)

Manifold hopping

No/approximate

Accurate

Accurate

No/approximate

Very large (100 ~ 10000+)

Small (1 ~ 104)

Small (2 ~ 10+)

Moderate (10 ~ 100+)

Moderate (10 ~ 100+)

Continuous Continuous

Continuous Continuous

Continuous Continuous

Discrete Discrete

Discrete Continuous

The citations are for reference only, not meant to be complete.



choices (e.g., 21 concentric mosaics used in most of our
experiments), we plan to conduct a more comprehen-
sive study on the psychophysics of visualization for our
technique.

Note

1. By this definition, MCOP images are not manifold mosaics.
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