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Abstract

Even such simple tasks as placing a box on a shelf are difficult to
animate, because the animator must carefully position the character
to satisfy geometric and balance constraints while creating motion
to perform the task with a natural-looking style. In this paper, we
explore an approach for animating characters manipulating objects
that combines the power of path planning with the domain knowl-
edge inherent in data-driven, constraint-based inverse kinematics.
A path planner is used to find a motion for the object such that
the corresponding poses of the character satisfy geometric, kine-
matic, and posture constraints. The inverse kinematics computation
of the character’s pose resolves redundancy by biasing the solution
toward natural-looking poses extracted from a database of captured
motions. Having this database greatly helps to increase the quality
of the output motion. The computed path is converted to a motion
trajectory using a model of the velocity profile. We demonstrate
the effectiveness of the algorithm by generating animations across
a wide range of scenarios that cover variations in the geometric,
kinematic, and dynamic models of the character, the manipulated
object, and obstacles in the scene.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: human figure animation, motion capture, path plan-
ning, two-hand manipulation

1 Introduction

Human figures are difficult to animate because of the need for
choreographing many degrees of freedom so that they will move
in a coordinated and a humanlike fashion. Two classes of semi-
automatic techniques have been developed for creating human an-
imations: model-based and data-driven. Model-based approaches
use simulation, search, and optimization to generate character mo-
tion by restricting the space of possible motions via kinematic, dy-
namic, or biomechanical models. This approach provides a flex-
ible and compact representation of motion, but can sometimes be
difficult to construct and control, or may fail to generate natural-
looking motions if the models do not sufficiently constrain the mo-
tion. Data-driven approaches utilize captured motion to create an-
imations that contain the subtle movement details recorded from a
human actor. These do not provide a perfect solution either, how-
ever, because adapting existing captured motions to new situations
is not easy, particularly when the motion is highly dynamic or in-
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Figure 1: Synthesized animations of manipulation tasks.

volves constrained interactions with the environment or other char-
acters. We focus on such constrained interactions in this paper.

We present a technique for synthesizing motion for manipulation
tasks that attempts to combine the good features of model-based
and data-driven approaches. Given user-specified start and goal po-
sitions for an object, our algorithm relies on a randomized plan-
ning algorithm to find a feasible path for the manipulated object.
The planning process is informed by a database of natural human
postures for similar tasks and model-based balance and collision
constraints. For each position and orientation of the object, an iter-
ative inverse kinematics method calculates a pose for the character
that satisfies posture and environment constraints. In order to bias
the search toward natural-looking poses, we use a database of cap-
tured motion to derive additional soft constraints that influence the
character’s pose. After a path is found, it is locally optimized for
smoothness and parameterized in time based on a velocity profile
model derived from human motion data. Because gaze direction is
not part of our motion capture database, we use a model of gaze
direction to automatically coordinate the character’s head and eye
movements with the motion of the rest of the body.

Our algorithm synthesizes natural-looking, whole-body motion
for a wide range of manipulation tasks while respecting environ-
ment and posture constraints. We demonstrate the power of this
approach with examples such as those shown in Figure 1. The
algorithm is robust to variations in the geometric, kinematic, and
dynamic models of the character, the manipulated object, and ob-
stacles in the scene. We do not address the problem of selecting or
planning a grasp and assume that the character is able to manipulate
the object with simple pre-defined grasp locations.

2 Background

Methods for generating and modeling human motion have been de-
veloped and studied widely in biomechanics, robotics, and com-
puter graphics. Most human motions are severely underconstrained



because there are many ways to accomplish a task. Model-based
algorithms address this problem by relying on a model of human
motion to constrain the search space sufficiently that manual or au-
tomatic techniques can be used to find a natural-looking solution.
Many different kinds of models have been used over the past fifteen
years including dynamics, kinematics, and more task-specific mod-
els such as minimum torque change for reaching motions [Kawato
1999] or pelvis swing during walking [Bruderlin and Calvert 1989].
While each of these models captures some of the salient aspects of
human motion, none of them captures a wide range of activities at a
sufficient level of detail to match the quality of a specially captured
sequence.

Playing back captured human motion data on an animated figure
is an excellent way to reproduce the naturalness, style, and subtle
details of human movement; however, adapting data to new charac-
ters or situations is often difficult. Inverse kinematics, dynamic con-
straints, and optimization have been used to blend motion capture
sequences [Rose et al. 1996] or to edit motion [Gleicher 1998; Gle-
icher 1997]. Like the approach described in this paper, these tech-
niques bridge between data-driven and model-based algorithms.
More recently researchers have explored algorithms that rely on
having significant amounts of data and using it to build databases
from which new motions can be assembled [Lee et al. 2002a; Ko-
var et al. 2002; Arikan and Forsyth 2002; Arikan et al. 2003]. For
generating human arm reaching motion, Park and Chaffin interpo-
late from among multiple sets of motion capture data [Wiley and
Hahn 1997; Park et al. 2002]. The idea of including certain poses
as a seed for inverse kinematics was also explored by Rose, Sloan,
and Cohen [Rose et al. 2001] in a system that built on their previous
work [Rose et al. 1998]. Their approach differs from the one that
we have taken in that the artist selected relatively few frames while
the model was provided by a radial basis interpolation of the mo-
tion capture data. In our approach, the entire database is used in the
inverse kinematics computation while the model is provided by the
task constraints of manipulation, balance, and collision avoidance.

Motion planning techniques calculate collision-free trajectories
in the presence of arbitrarily placed obstacles by searching the sys-
tem configuration space for a collision-free path connecting a start
configuration to a goal configuration [Latombe 1991]. Although
reasonable performance can be achieved for low degree of freedom
problems (low dimensional spaces), optimal motion planning al-
gorithms based on exhaustive search are impractical for searching
spaces with a large number of degrees of freedom. Heuristic mo-
tion planning algorithms were designed to solve problems in higher
dimensions (e.g., [Barraquand and Latombe 1990; Kavraki et al.
1996; Liu and Badler 2003]). These planning algorithms have been
successfully applied to the automatic animation of grasping and ma-
nipulating an object with a rooted torso [Koga et al. 1994; Bandi
1998; Kuffner 1999], locomotion with arm reaching [Kalisiak and
van de Panne 2000; Pettre et al. 2003], and body posture interpola-
tion [Ching and Badler 1992; Bindiganavale et al. 1994; Jung et al.
1994; Boulic et al. 1997].

As with other model-based techniques, planning can sometimes
fail to generate natural-looking motion if the model is not suffi-
ciently restrictive. For this reason, our approach is to plan in the
six dimensional space of the object motion but then to use the fea-
sibility of the resulting whole-body motion in the evaluation of the
plan. Simeon and colleagues [2002] also combine inverse kinemat-
ics and planning to build a probabilistic roadmap for a six degree-
of-freedom arm manipulating with regrasping. They address a far
more complicated planning problem than that addressed here; how-
ever, our system computes whole body motion for a human char-
acter with the goal of making the motion appear natural rather than
merely accomplishing the task.

Figure 2: Overview of the planning phase.

3 Generating Motion for Manipulation

The motion synthesis strategy presented here attempts to combine
the flexibility and generality of motion planning with the natural-
ness of captured data. We focus on automatically generating ma-
nipulation motions that allow human-like characters to reach an
object and move it to a goal location and orientation. We present
an overview of the algorithm and then explain each of the system
components in detail.

The computation is divided into two phases: planning and post-
processing. The planning phase generates a collision-free path for
the object while taking into account the naturalness of the poses the
character must use to position the object in a given location and the
task constraints (balance and collision avoidance) (Figure 2). The
post-processing phase then smooths the resulting path and applies
a velocity profile based on human motion data. The user specifies
the following information as input: 1) The start and goal locations
of the object to be manipulated and the hand grasp constraints (the
position and orientation of the hands relative to the object); 2) Ex-
ternal constraints (constraining the feet to the floor, for example);
3) A character model, including skeleton kinematics and joint lim-
its (used for inverse kinematics), geometry data (used for collision
checking), and dynamic properties (used for balance constraints).
The motion is planned in segments, with a new segment created
each time that the contact specification changes. For example, a
motion that involves contacting an object, moving it to a new lo-
cation, and releasing it is planned as three separate motions with
coincident start and end configurations. We treat the motion as sep-
arate segments because the constraints of the system and hence the
planning problem differ when the character is contacting an object
and when it is not. The captured posture database is similarly di-
vided into segments based on contact conditions using a threshold
on the velocity of the manipulated object.

3.1 Planning: Path Search

The planner searches the object space for a path that will move the
object from the start configuration, qinit , to the goal configuration,
qgoal , in the configuration space C of the manipulated object (a six-
dimensional space of translations and rotations). The algorithm,
a type of filtered RRT-Connect planning strategy [Kuffner et al.
2002], searches for a collision-free path connecting qinit and qgoal
and lying entirely in C f ree, the open subset of collision-free config-
urations in C . For a detailed description and analysis of Rapidly
Exploring Random Trees (RRT) planning algorithms in a robotics
context, the reader is referred to LaValle and Kuffner [2001]. RRT
planning algorithms require a metric for the distance between the
pair of configurations q1 = (x1,R1) and q2 = (x2,R2), where x and
R denote the position and orientation components respectively. We



use a heuristic scalar metric for general 3D affine transformations:

ρ(q1,q2) = wx||x1− x2||2 + wR||rotdist(R1,R2)||2 (1)

Unit quaternions are used to represent rotations, so the distance
metric for the rotation component rotdist(R1,R2) is a function that
returns a normalized scalar number proportional to the great-circle
arc distance between R1 and R2 on the 4D quaternion sphere. The
translation and rotation components are weighted by the coeffi-
cients wx and wR.

Algorithm 1: PLANMANIPPATH(qinit , qgoal)

T .init(qinit) // Initialize search tree;
while time< tmax do

qsample← SELECTTARGET(qgoal ,0.05);
result← GROWTREE(T , qsample);
if result = REACHED and qsample = qgoal then

p← EXTRACTPATH(T );
SMOOTHPATH(p);
return SUCCESS;

end
end
return FAILED;

Algorithm 1 shows pseudocode for the overall planning algorithm.
The core of the planning algorithm requires incrementally grow-
ing additional branches on a tree of connected free configurations.
We begin by initializing the tree T with the single node qinit . The
planning loop consists of repeatedly selecting a target sample con-
figuration qsample and attempting to grow the tree. SELECTTAR-
GET() chooses the goal configuration qgoal as the sample configu-
ration qsample with some fixed probability (e.g. P = 0.05), and oth-
erwise calculates a uniform random sample of the volume V ⊂ C ,
a bounded subset of C that approximates the maximum reachable
distance of the character (a 2m cube for a character 1.6m tall).

Algorithm 2: GROWTREE(T , q)

qnearest ← FINDNEAREST(T , q, ρ);
qroot ← qnearest ;
while true do

if ρ(qroot ,q)< ε then qtarget ← q;
else qtarget ← qroot + ε(q−qroot);
if SOLVEIKCONSTRAINTS(qtarget ) 6= SUCCESS then

return FAILED;
end
ADDBRANCH(T , qroot , qtarget );
qroot ← qtarget ;
if qtarget = q then return REACHED;

end

After selecting qsample, the function GROWTREE() attempts to
grow the tree towards qsample (Algorithm 2). The node qnearest in T
that is nearest to q according to the distance metric ρ is computed.
The node qnearest becomes the root of a potential new branch in
T . The configuration qtarget is defined as either the sampled node
q itself or as an intermediate node along the straight-line path be-
tween the current root node qroot and q, depending upon whether
the distance between them, ρ(qroot ,q), is greater than a maximum
distance threshold ε , referred to as the RRT step size. Figure 3 illus-
trates the process of growing the search tree. Candidate branches
are added to T if and only if the inverse kinematics algorithm in

Figure 3: Growing a branch towards a sample configuration q.

SOLVEIKCONSTRAINTS() is able to calculate a valid pose for the
character along all the configurations of that branch and no colli-
sions are detected. The planning algorithm terminates either when
it exceeds the maximum time allowed tmax or when the goal is
reached and a complete path between qinit and qgoal has been found.

3.2 Planning: Computing the Character’s Pose

For each object position and orientation tested by the planning algo-
rithm, the corresponding pose of the character is computed using a
constrained optimization algorithm for inverse kinematics [Yamane
and Nakamura 2003]. The external constraints on the positions of
the feet specified by the user and the position of the object specified
by the planner (and the resulting position of the hands) are hard
constraints. Poses from the motion capture database with similar
external constraints are included as soft constraints. The projec-
tion of the center of gravity onto the ground is included as a soft
constraint so that the character appears balanced. The resulting
pose is tested for collisions between the character and the object,
between the character and the environment, and between the char-
acter’s body parts using a public collision detection library ColDet
(available at http://photoneffect.com/coldet/).

A key component of this process is the posture database which
biases the inverse kinematics algorithm toward natural-looking
poses via soft constraints. The database contains a set of unique
poses, each stored as the 3D positions of 41 markers placed on the
subject during a motion capture session (Figure 4). We use marker
positions instead of joint angles so that we can use character skele-
tons with different kinematics and varying degrees of freedom. We
captured four box manipulations performed by one subject with dif-
ferent start and goal heights (high to high, high to low, low to high,
and low to low). Each motion was captured once and had a du-
ration of six seconds. In a preprocessing step, the database was
formed from these captured motions by adding a new pose only if
the Euclidean distance between that pose and all the poses currently
in the database was greater than a threshold. Before the distance
is computed, the marker positions in the two poses are translated
and rotated in the horizontal plane so that the squared sum of the
marker distances is minimized (effectively removing differences in
absolute position and facing direction from the state of the pose).

The planner generates candidate positions and orientations for
the object, which are used to find character poses in the database
with similar constraints. For example, the constraints might require
that the character’s hands be 0.5 m in front of the character and
vertical to hold the object at the location specified by the planner.
Given a database with ne entries, each with nm markers and posi-
tions of nc constraints from the planner, our goal is to obtain the
weight vector w ∈ Rne for the entries in the database. Once w is de-
termined, the position of marker k, pk, that satisfies the constraints
is computed by

pk =
ne

∑
i=1

wi p
i
k (2)

where wi is the i-th element of w and pi
k denotes the position of

marker k in the i-th entry. We assume that each constrained point is



Figure 4: Motion capture subject and marker data.

(a) (b)

Figure 5: (a) Successful and failed smoothing operations; (b) Path
representation.

a linear combination of markers, namely,

cm =
nm

∑
k=1

vm,k pk (m = 1 . . .nc) (3)

where cm is the position of the m-th constraint and vm,k is the weight
for marker k. Substituting Eq.(2) into Eq.(3) yields

cm =
nm

∑
k=1

vm,k

(
ne

∑
i=1

wi p
i
k

)
=

ne

∑
i=1

wi

(
nm

∑
k=1

vm,k pi
k

)

=
ne

∑
i=1

wic
i
m =

(
c1

m c2
m . . . cne

m
)

w

where ci
m is the position of constraint m computed from the markers

in the i-th entry. We then obtain the following linear equation in w:




c1
1 c2

1 . . . cne
1

c1
2 c2

2 . . . cne
2

...
...

...
c1

nc
c2

nc
. . . cne

nc

1 1 . . . 1




w =




c1
c2
...

cnc

1



. (4)

The last row is added to constrain the sum of the weights to 1. This
equation is solved by using a singularity-robust inverse to compute
the weights for the entries [Nakamura and Hanafusa 1986]. The
inverse can be precomputed to reduce the time required to compute
the desired marker positions during planning.

3.3 Postprocessing: Smoothing

The planner is able to operate in a high-dimensional space because
of the heuristic search strategy. However, the generated path is not
necessarily short or smooth. The system shortens and smooths the
path by iteratively selecting two nodes along the solution path and
attempting to connect them by interpolating in configuration space
(Figure 5(a)). Although more sophisticated techniques for smooth-
ing are possible, this simple scheme suffices. Given two selected
path points, we linearly interpolate the translation components and
use quaternion spherical linear interpolation (slerp) for the rota-
tion [Shoemake 1985]. The inverse kinematics algorithm is used to
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Figure 6: Recorded velocity profiles from human subjects: (a) a
simple pick and place task that has the expected bell-shaped veloc-
ity curve; (b) three pick and place tasks where the human subject
also had to avoid a pole in the middle of the workspace (which
causes a dip in the velocity profile); (c) a compound task where the
human subject had to avoid a table as well as a pole.

calculate the full body pose for each configuration along the new,
shorter path and the system checks for collisions among the charac-
ter, environment, and object. If a collision is detected, the planner
rejects the shorter path and the original path is restored. If no col-
lision is found, the shorter path replaces the original path. This
process is repeated until no further progress in shortening the path
can be made.

3.4 Postprocessing: Velocity Profile

The path computed by the planner is turned into a trajectory by us-
ing a model velocity profile of human motion. We use a velocity
profile model derived from a database of 25 pick-and-place manip-
ulation trajectories and apply it to the path. Velocity profiles for
human arm motion have very characteristic shapes. Numerous de-
tailed studies of arm movements in the psychophysical literature
found the motion to be extremely stereotypical. For example, for
point to point arm movements, Atkeson and Hollerbach [1985] tried
several different methods to disrupt subjects and they still used bell-
shaped velocity profiles for this simple task. Figure 6 shows a sim-
ilar pattern for the velocity profiles in our database. The system
selects a model path closest to the smoothed path from the trajec-
tory database and then uses its velocity profile as a template for the
synthesized trajectory.

To represent the path independently of the velocity profile, we
use two functions for the path in the horizontal plane and a third
for the path in the vertical direction. The intuition behind this de-
composition is that the dynamics of the motion in the vertical and
horizontal directions are different due to gravity. Each of the four
functions (three for the path and one for the velocity profile) is ap-
proximated by a set of radial basis functions (RBF). This represen-
tation is also used to compare the current path with paths in the
database to determine the most appropriate velocity profile.

Let s and g denote the start and goal positions respectively and g0
denote the projection of g onto the horizontal plane that includes s,
and consider a frame ΣS whose origin is at s, with the z axis vertical,
and the x axis pointing toward g0 (Figure 5(b)). First, we obtain
(N +1) points p0 . . . pN(p0 = s, pN = g) on the path by interpolating
the points of the nodes generated by the planner, all represented in
ΣS. Let the traveled distance uk of point k be defined as:

uk =
k

∑
i=1
|pi− pi−1| (5)

where u0 = 0 and uN equals the total traveled distance l. The nor-
malized traveled distance of point k is computed by ūk = uk/l. We



then compute the difference between the maximum and minimum
values in each direction r∗ = pmax∗ − pmin∗ (∗= x,y,z). The normal-
ized value p̄k∗ in each direction is defined as:

p̄k∗ =
1− e−cr∗

r∗
pk∗ (∗= x,y,z) (6)

where c is a positive constant. We can approximate the functions
p̄∗(ū) (∗= x,y,z) by a combination of weighted RBFs:

p̄∗(ū) =
m

∑
i=1

w∗iΦi(ū) (7)

Φi(ū) = exp

(
− (ū−ai)2

2σ2

)
(8)

where m is the number of RBFs and ai(1 ≤ i ≤ m) is the center of
the i-th RBF, and σ is the gaussian standard deviation. The nor-
malized velocity v̄ is represented as a function of the normalized
traveled distance ū. This function is also approximated by a set of
RBFs:

v̄(ū) =
m

∑
i=1

wuiΦi(ū) (9)

The smoothed path is interpolated, normalized, and approximated
in the same way and the weights for the RBFs are computed. The
weight vector is compared with the entries in the trajectory database
and the closest trajectory is selected. Let TDB and LDB denote the
duration and length of the closest trajectory respectively. We also
know the length of the smoothed path LP. The velocity profile of
the closest trajectory is applied to the smoothed path by integrating
v̄ to compute the velocity profile of the trajectory:

ū(t̄i) = ū(t̄i−1)+ v̄(ū(t̄i−1))∆t̄ , (i≥ 1) (10)

where ∆t̄ is a small time step, t̄i = i∆t̄, and ū(0) = 0. Eq.(10) is
repeated until ū(ti) is greater than 1. Let T̄DB denote the time at the
last step. The duration of the planned motion TP is computed by:

TP = TDBT̄DB
LP

LDB
(11)

This equation is based on the hypothesis that the average velocity of
the planned motion should be roughly the same as the closest match
in the trajectory database. Finally, the velocity profile is computed:

u(ti) = LPū(t̄i), ti = TDB
LP

LDB
t̄i (12)

The position at time t is obtained by finding the point on the
smoothed path where the traveled distance matches u(t).

3.5 Gaze Synthesis

Eye motion is very important for human animation because the
eyes are a key component of nonverbal communication [Lee et al.
2002b]. Unfortunately, most motion capture systems do not include
gaze tracking and it is not part of the motion capture database used
in this paper. Instead, we rely on an approximate model derived
from biomechanical observations. Given a visual target, the eyes
and head move simultaneously to form a stable, directed gaze. The
eye movements rotate the optic axis with respect to the head so that
the visual target is either acquired or maintained in the central area
of the retina [Morasso and Tagliasco 1986]. The movement of the
eye-neck chain facilitates the visual feedback necessary for accu-
racy in executing a given task (hand-eye coordination). This co-
ordination implies a geometric mapping between the “global” task
point trajectory and the “internal” joint variables of the eye-neck

chain. In general, such a mapping is nonlinear, but observations
of people have revealed an approximately linear mapping [Morasso
and Tagliasco 1986].

Based on these models, we have devised an approximate gaze
function to compute eye movements for manipulation tasks. A point
of interest (POI) defines the desired gaze direction. A different POI
is used for each segment of the computed motion. While the char-
acter is reaching for an object, the POI is the location of the object.
After the object has been acquired, the POI becomes the destination
location for the object. The motion of the head and eyes overlap
with the motion of the arms. Based on our experiments, the gaze
motion should be initiated at the same time or slightly before the
arm motion. All of the examples in the paper use this gaze model.
A flaw with this approach is that the gaze direction is sometimes
too precise; a human performing the same task would not need to
focus so closely on the object and goal. A biomechanically based
noise model might help to further increase the naturalness.

4 Results

This section presents animations synthesized for a variety of ma-
nipulation tasks. Figure 7 presents a collection of object start and
goal locations. Our planner can automatically synthesize manipu-
lation motions for any combination of these start and end positions.
Figure 8 illustrates a series of animations synthesized for two-hand
pick-and-place manipulation tasks. All animations used the same
pose database (257 total postures). The top row, (a), shows a syn-
thesized motion for a clown repositioning a box. The next six rows
demonstrate variation in character kinematics, object shapes, envi-
ronments, and tasks. The images in sequences (b) and (c) show
a clown character with very long legs and a gorilla character with
long arms moving a box. Sequences (d) and (e) illustrate synthe-
sized animations for a long, thin object in environments where the
object path is not obvious. The planner can still automatically gen-
erate a collision-free motion. Sequences (f) and (g) contain exam-
ples of planned output for entirely different tasks (opening a desk
drawer and a cabinet). Sequence (h) shows a motion of an adult
and a child cooperating to carry a large object. All of these exam-
ples used the same posture database, which was captured from a
human subject whose kinematics differed from each of these char-
acters. These examples illustrates the ability of the algorithm to
handle large variations in the character kinematics because scaled
marker locations are represented as soft constraints. Finally, we
demonstrate a complicated compound task: opening a desk drawer,
removing an object from a shelf, inserting it into the drawer, and
closing the drawer (Figure 9). This entire motion was automati-
cally synthesized by sequencing the output from seven invocations
of the planner, one for each different set of contacts.

Most of the computation time was spent performing the inverse
kinematics and constrained optimization calculations. Table 1 sum-
marizes the computation time required for creating one node with
four different sets of constraints, measured on a 2.0GHz Pentium
IV PC. The inverse kinematics computation is iterated an average
of 7–10 times at each node to meet the given error tolerance. The
planning for this setting typically generates 200-300 nodes in the
search tree. This results in totals of approximately 21 to 32 sec-
onds with both data and balance constraints. Although, the run-
ning time of the planner primarily depends on the difficulty of si-
multaneously satisfying all of the required constraints, it also de-
pends on the size of the database. For the database we are cur-
rently using (257 poses), the time to calculate the nearest matching
pose is relatively small even with a brute-force O(n) algorithm. A
larger database may require an O(logn) algorithm that uses efficient
nearest-neighbor techniques from computational geometry, for ex-
ample, multi-dimensional k-d trees [Arya et al. 1998].



Figure 7: A collection of nine initial and goal postures, any of
which can be used in the synthesis of new motion.

data yes no no yes
balance yes no yes no

total 107 64 68 103
marker 14 — — 13

IK 93 64 68 90

Table 1: Computation time per node for computing marker posi-
tions and inverse kinematics [ms].

5 Discussion

We have developed an algorithm for animating whole-body mo-
tions for human-like characters that relies on constrained inverse
kinematics, path planning, and a library of captured example pos-
tures. The algorithm synthesizes natural-looking motions for ma-
nipulation tasks while respecting both environment and posture
constraints. The work required to generate a sequence of motion,
in addition to running the planning program, is (1) set the start and
goal position/orientation of the object, and (2) set the initial config-
uration of the character. The time for this procedure would be in the
order of a few minutes with the interface of typical 3D CG software
packages. The total of man hours and CPU time is therefore under
10 minutes, while even an expert artist would likely take an hour to
keyframe similar motions.

One advantage of our approach is that the data need not be a
perfect match for the task. Because the system is model-based, the
knowledge about human motion inherent in those models allows the
search process of the planner and inverse kinematics algorithm to
fill in some gaps. For example, Figure 8 presents examples in which
the object being manipulated is substantially different than the one
used in the motion capture sessions. The shape of the object is taken
into account during collision detection and via the user’s specifica-
tion of the grasp points. The weight of the object affects the posture
of the character so that it continues to appear balanced. If however,
human strategies for lifting heavy objects are fundamentally differ-
ent than those for lifting light ones (“bend with your knees not with
your back,” for example), those strategies will appear only if the
database includes sequences in which the actor used that strategy.
A more detailed biomechanical model could also be used to create
this particular effect by taking into account the forces in the back
during a lifting task.

A major limitation of the method is that the system will fail if the

goal is unreachable or the character cannot remain balanced. Ex-
tending an arm for balance is also a solution that will not be found
unless such a pose is included in the database. Basically the “strat-
egy” used for the task should be represented in the database in some
way for the system to succeed. Additional data with different char-
acteristics can also increase the variety of motions if they are stored
in a different database and the planner has the ability to search
among multiple databases. For example, additional databases could
be used to synthesize collision-free motions in a complex environ-
ment by providing collision-avoidance behaviors (e.g., lower the
head) if character-environment collisions cause failure in the plan-
ning phase using a single database.

We do not yet have a way of measuring when the data is appro-
priate to the task or how much data is sufficient to produce natural-
looking motion for a given task. For example, we successfully
use the recorded motion of placing boxes on shelves to compute
the motion of a character performing quite dissimilar tasks such as
opening a desk drawer and a cabinet. We have also observed sit-
uations in which a very small and dissimilar data set degraded the
quality of the motion by providing inappropriate examples. In our
experiments, additional data always improved the quality of the mo-
tion provided that the motion in the database contained postures in
which the constraints on the limbs were a subset of the constraints
on the limbs for the motion being created. For example, synthe-
sizing a motion for a one-handed manipulation task using data col-
lected for a two-arm manipulation task might cause unnecessary
and unnatural motion of the free arm.

When computing the velocity profiles for synthesized motions,
we utilize the profiles for similar motions contained in the database.
Although all of the profiles in the database had characteristic bell-
shaped curves, subtle dips in the velocity due to obstacles in the
workspace were not directly associated with our synthesized exam-
ples. Using minimum distance information to relate obstacle clear-
ance with object velocity could potentially provide an automatic
way to synthesize obstacle-induced velocity dips.

The manipulation tasks that we explored were all large scale and
the grasps of the objects were simple. Our motion capture database
included only three markers on the hands. To include more com-
plex grasps in the planning phase, we would likely need data for
the detailed motion of the fingers during the grasp. One potential
advantage of our approach is that the data used to bias the planning
process can come from multiple sources. We may, therefore, be
able to avoid the problem faced by motion capture teams who must
capture motion at vastly different scales in one shoot (hands and
whole body, for example) by capturing similar motions at different
resolutions in two separate shoots and integrating the two sets of
data via the planning algorithm. Similarly, we might be able to in-
clude eye gaze information recorded with an eye tracker rather than
the model-based approach used here.

Although we have explored only manipulation tasks to date, this
algorithm should be easily extended to other highly constrained mo-
tions such as sitting down in a chair and getting into or out of a
vehicle or cockpit. Extensions to operations that involve regrasping
or intermittent contact will prove more difficult because of the need
for additional models of how humans select from among a collec-
tion of possible grasps.
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Figure 8: Synthesized motion for a variety of characters, objects, and tasks: (a) clown moving a box with two hands; (b) clown with very long
legs; (c) gorilla with long arms; (d) manipulating a long thin vertical object; (e) inserting a box into a car trunk; (f) opening a desk drawer;
(g) opening a cabinet; (h) cooperative manipulation of a single object by two characters with different geometry and kinematics.

Figure 9: Compound example: automatically synthesized motion to open a desk drawer, retrieve an object from a shelf, insert it into the
drawer, and close the drawer (a total of seven planned paths).
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