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Figure 1: Users wearing a few retro-reflective markers control the full-body motion of avatars by acting out the motion in front of two
synchronized cameras. From left to right: walking, running, hopping, jumping, boxing, and Kendo (Japanese sword art).

Abstract

This paper introduces an approach to performance animation that
employs video cameras and a small set of retro-reflective markers to
create a low-cost, easy-to-use system that might someday be prac-
tical for home use. The low-dimensional control signals from the
user’s performance are supplemented by a database of pre-recorded
human motion. At run time, the system automatically learns a se-
ries of local models from a set of motion capture examples that
are a close match to the marker locations captured by the cameras.
These local models are then used to reconstruct the motion of the
user as a full-body animation. We demonstrate the power of this ap-
proach with real-time control of six different behaviors using two
video cameras and a small set of retro-reflective markers. We com-
pare the resulting animation to animation from commercial motion
capture equipment with a full set of markers.
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1 Introduction

The ability to accurately reconstruct a user’s motion in real time
would allow the intuitive control of characters in computer games,
the control of avatars for virtual reality or electronically mediated
communication, and the rapid prototyping of character animations.
This problem has been solved by commercially available motion
capture equipment, but this solution is far too expensive for com-
mon use. It is also cumbersome, requiring the user to wear 40–50
carefully positioned retro-reflective markers and skin-tight cloth-
ing, 15 magnetic motion sensors, or a full exoskeleton. In this pa-
per, we present a different approach to solving this problem: recon-
structing the user’s motion from the positions of a small set of mark-
ers captured with two video cameras. This necessarily incomplete
information about the user’s motion is supplemented by a database
of pre-recorded human motion. The results are visually comparable
in quality to those obtained from a commercial motion capture sys-
tem with a full set of markers provided that similar behaviors are
found in the pre-recorded database. The cost is low because only
two synchronized video cameras are required. The system is easy
to set up and relatively non-intrusive because the user is required to
wear only a small set of markers (6–9 for the experiments reported
here) and can wear street clothes (figure 1).

Providing accurate control of full-body motion based on a small
set of markers is difficult because the information about the user’s
motion is incomplete. The control signals, or input, are the loca-
tions of the markers. This information is quite low-dimensional
(less than twenty degrees of freedom) compared to a typical hu-
man model (approximately sixty degrees of freedom). The control
signals cannot be used directly to create a full-body animation be-
cause they will be consistent with many disparate solutions for the
character’s pose. We eliminate this ambiguity by building a local,
low-dimensional model of the user’s motion on the fly from a mo-
tion database of pre-recorded, high-quality motion. The key insight



behind this approach is that natural human motion is highly coor-
dinated and the movement of the degrees of freedom are not inde-
pendent. As a result, the local models can be quite low-dimensional
while accurately representing the motion.

We demonstrate the power and flexibility of this approach by having
users control six behaviors in real time without significant latency:
walking, running, hopping, jumping, boxing, and Kendo (Japanese
sword art) (figure 1). The reconstructed motion is based on a single
large human motion database. Our experiments indicate that this
approach scales well with the size and heterogeneity of the database
and is robust to variations in kinematics between users. The result-
ing animation also captures the individual style of the user’s motion
through spatial-temporal interpolation of the data. The database,
however, must contain the basic actions required for the application
domain.

We assess the quality of the reconstructed motion by compar-
ing against ground truth data simultaneously captured with a full
marker set in a commercial motion capture system. We also com-
pare alternative techniques for the constituent elements of the sys-
tem: dimensionality reduction for the human motions and the local
models used for synthesis.

2 Background

In the next two sections, we discuss related work in control inter-
faces for human motion. Because we use a motion capture database
in our system, we also briefly review research utilizing motion cap-
ture data for animation.

2.1 Control Interfaces for Human Motion

Computer and video games offer a variety of interfaces for con-
trolling human motion such as mice, joysticks, and button or key
presses. These interfaces can provide direct control over only a
limited number of degrees of freedom and the details of the motion
must be computed automatically.

Control at a more detailed level can be provided if the user acts out
the desired motion using his or her body in a performance anima-
tion system. Such systems have proved quite successful for tele-
vision characters who respond in real time to the actions of hu-
man actors [Shin et al. 2001]. Active optical, passive optical, mag-
netic, and exoskeleton-based motion capture systems all now have
the ability to perform real-time capture of a typical human model.
While very effective for television, trade shows, and other perfor-
mance venues, the time required to suit up the user (commonly re-
ferred to as the time to don and doff) prevents their use in location-
based entertainment and other applications where the system will
be used by many people. These systems are also not appropriate
for home use because of cost.

Systems that can extract meaningful information about the user’s
motion from only a few sensors are appealing because they dramat-
ically reduce don and doff time. The infrared sensor-based games
(Mocap Boxing and Police 911 by Konami [2001], for example) are
a successful commercial example of this class of interface. These
systems track the motion of the hands and render the hands, a first
person view of part of the upper body, and the effect of the box-
ing gloves or gun on the environment. Sony’s EyeToy [2003] is a
vision-based system that requires no markers but is capable of ex-
tracting the 2D locations of simple gestures such as a punch or a
wave. An earlier system that implemented a number of different

interfaces for computer games was presented in the research com-
munity [Freeman et al. 1998]. None of these systems attempted to
fully capture or animate the user’s motion but instead focused on
recognizing or locating a limited set of simple actions and showing
their effect on the scene.

Researchers have also explored techniques for using a few sen-
sors to reconstruct full-body motion. Badler and colleagues [1993]
used four magnetic sensors and real-time inverse kinematics algo-
rithms to control a standing figure in a virtual environment. Their
system adopted a heuristic approach to handling the kinematic re-
dundancy while we use a data-driven approach. Semwal and col-
leagues [1998] provided an analytic solution to the inverse kinemat-
ics algorithm based on eight magnetic sensors. Yin and Pai [2003]
used a foot pressure sensor to develop an interface that extracts full-
body motion from a database. Their system was successful at re-
producing full body motion for a limited range of behaviors with
a latency of one second. However, foot pressure patterns may be
insufficient to accurately reconstruct a motion with detailed upper
body motions.

The interface problem becomes more tractable if the motion is per-
formed in several layers so that not all degrees of freedom need
to be animated simultaneously. Oore and colleagues [2002] used
a pair of six degree-of-freedom tracking devices to provide inter-
active control over the stepping and walking motions of a charac-
ter. Dontcheva and colleagues [2003] also used layering in their
puppeteering system. Recently, Grochow and colleagues [2004] ap-
plied a global nonlinear dimensionality reduction technique, Gaus-
sian Process Latent Variable Model (GPLVM) [Lawrence 2004], to
human motion data. They combined the learned probabilistic model
with kinematic constraints to create a character that could be inter-
actively posed with a mouse. Their global, nonlinear dimensional-
ity reduction technique works well with a small homogenous data
set, but might not be suitable for a large heterogeneous motion data
set.

Lee and colleagues [2002] built a vision-based interface to trans-
form noisy silhouette data obtained from a single video camera to
full-body movements with a latency of about two seconds. Their
approach searched a motion graph using Hu moments computed
from the input silhouettes. Ren and colleagues [2004] used silhou-
ettes from a three-camera system and a motion capture database to
select among a large set of simple features for those most suited
to identifying the yaw orientation and pose of the user from three
silhouettes. Their application was domain specific in that the fea-
tures were selected using training data of a specific behavior, swing
dancing. Their approach produced high-quality motion that approx-
imated that of the user with 0.8 second latency. Neither of these
systems gives the user precise control over the character’s motion
because a motion graph-based approach cannot modify the existing
motions in the database. In addition to eliminating the synthesis
latency in these systems, our approach uses a series of local models
to interpolate the motions in the database for more accurate control.

Another alternative is to employ vision-based tracking to capture
the movement of the user. However, that technique has not yet been
successfully used to accurately reconstruct complex full-body hu-
man motion in real time [Howe et al. 1999; Brand 1999; Sidenbladh
et al. 2002; Cheung et al. 2003]. The work of Howe [1999] and
Sidenbladh [2002] and their colleagues is perhaps most closely re-
lated to that presented in here in that they also use motion capture
data. Howe and colleagues [1999] published one of the earliest pa-
pers on using global PCA to reduce the dimensionality of human
motion. They incorporated the reduced model into a probabilis-
tic Bayesian framework to constrain the search of human motion.
Sidenbladh and colleagues [2002] reduced the dimensionality of the
database using global PCA and then constrained the set of allow-



able trajectories within a high-dimensional state space. Our goals
are different, however, because we focus on high-quality animation
and real-time control.

2.2 Animation with Motion Capture Data

A number of researchers have developed techniques for synthesiz-
ing animated sequences from motion capture data. Three distinct
approaches have been used: constructing models of human mo-
tion [Li et al. 2002; Brand and Hertzmann 2000], reordering motion
clips employing a motion graph [Arikan and Forsyth 2002; Kovar
et al. 2002; Lee et al. 2002; Pullen and Bregler 2002; Arikan et al.
2003] and interpolating motion to create new sequences [Guo and
Roberge 1996; Wiley and Hahn 1997; Rose et al. 1998; Kovar and
Gleicher 2004]. In our work, we construct a graph of nearest neigh-
bors for fast search of the motion examples that are close to the
current control signals and use it to build a local linear model of the
motion for interpolation. We therefore discuss motion graphs and
motion interpolation in more detail.

Motion graphs create an animation by cutting pieces from a motion
database and reassembling them to form a new motion. Because the
motion that is selected is not modified, it retains the subtle details of
the original motion data but the synthesized motions are restricted
to those in the motion capture database. For example, a motion
graph cannot be used to synthesize a walking motion for a slope of
a particular angle unless the database included data for that slope.

Interpolation addresses this problem by allowing synthesis of
motion variations that are not in the database. Both Guo and
Roberge [1996] and Wiley and Hahn [1997] produced modified mo-
tions using linear interpolation. Rose and colleagues [1998] used
radial basis functions to interpolate motions located irregularly in
the parameter space. Generally, this approach requires segment-
ing the motion data into structurally similar sequences, building a
temporal correspondence among them, and annotating each with a
small set of meaningful, high-level control knobs. Given new val-
ues of the control parameters, the sequences can be interpolated to
compute a motion that matches the specified parameters. Recently,
Kovar and Gleicher [2004] introduced a method for automatically
locating logically similar motion segments in a data set and using
them to construct parameterized motions. These algorithms pro-
duce high-quality motion for new parameter values that are within
the space of the interpolated examples.

Like interpolation, our approach can generate spatial/temporal vari-
ations that are not in the database. Because interpolation occurs
only in the local region of the current control signals with our ap-
proach, it does not require that the motions be structurally similar
at a high level.

3 Overview

Our system transforms low-dimensional control signals obtained
from only a few markers into full-body animation by constructing a
series of local models from a database of human motion at run time
and using those models to fill in probable values for the information
about the user’s motion not captured by the markers.

We first perform a series of off-line captures to create a large and
heterogeneous human motion database (about 1 hour) using a Vi-
con optical motion capture system with twelve 120 Hz Mx-40 cam-
eras [Vicon Systems 2004]. The database contains ten full-body
behaviors: boxing (71597 frames), walking (105963 frames), run-
ning (18523 frames), jumping (40303 frames), hopping (18952
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Figure 2: System overview.

frames), locomotion transitions (36251 frames), dancing (18002
frames), basketball (12484 frames), climbing on playground equip-
ment playground (51947 frames), and Kendo (59600 frames). We
used a marker set with 41 markers, an adaptation of the Helen
Hayes marker set. We added four extra markers on the bamboo
sword for Kendo. For Kendo, boxing, and locomotion, the subjects
were instructed to repeat each action at least five times in order to
capture variations in performance and to ensure that the local model
was constructed from sufficiently similar data.

Each motion in the database has a skeleton that includes the sub-
ject’s limb lengths and joint range of motion computed automat-
ically from calibration captures. Each motion sequence contains
trajectories for the absolute position and orientation of the root node
(pelvis) as well as relative joint angles of 18 joints. These joints are
head, thorax, upper neck, lower neck, upper back, lower back, and
left and right humerus, radius, wrist, femur tibia, and metatarsal.

We denote the set of motion capture data in the database as {qn|n =
1, ...,N}, where qn is the joint angle representation of a specific
pose in the database. The control signals obtained from the in-
terface at time t are represented by the locations of a small set of
retro-reflective markers worn by the user, denoted as c̃t . We al-
ways place markers on the torso of the user so that the absolute
position and orientation of the user, denoted as z̃t , can be directly
obtained from the control signals, c̃t . The online motion control
problem is to synthesize the current human body pose, q̃t , in real
time based on the current low-dimensional control signals, c̃t , ob-
tained from the vision-based interface, motion capture data in the
database, {q1, ...,qN}, and the synthesized poses in the previous
frames, [q̃1, ..., q̃t−1].

The system contains three major components (figure 2):

Motion performance. The user wears a small set of retro-reflective
markers to perform a motion in front of two synchronized video
cameras. The system automatically extracts the locations of the
markers, [c̃1, ..., c̃t ], and the absolute position and orientation of the
motion, [z̃1, ..., z̃t ], from the video streams in real time. The tra-
jectories of the markers specify the desired trajectories of certain
points on the animated character.

Online local modeling. To synthesize the current pose q̃t , we first
search the motion capture database for examples that are close to
the current control signals c̃t and the synthesized poses in the pre-
vious frames [q̃1, ..., q̃t−1]. Because the runtime computational cost
depends on the efficiency of the nearest neighbor search process,
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Figure 3: Marker detection and correspondence: a user acts out the motion in front of two synchronized video cameras. (a) and (b) The
images from the left and right cameras respectively. (c) The detected marker positions in the left image. (d) The detected marker locations
in the right image and the epipolar lines of the markers that were detected in the left image. For each marker in the left image, the matching
marker in the right image should be located on its corresponding epipolar line.

we introduce a data structure, a neighbor graph, and an algorithm
that accelerates the nearest neighbor search by utilizing the tempo-
ral coherence of the control signals. The nearest neighbors, denoted
as {qtk |k = 1, ...,K}, are then used to learn a local linear model of
human pose near the current control signal.

Online motion synthesis. The local linear model is used to recon-
struct the user’s pose, q̃t , based on the control signals obtained from
the vision-based interface, c̃t , a human pose prior term that ensures
that the synthesized motion satisfies the probabilistic distribution of
human motions in the database, and a smoothness term that mini-
mizes velocity changes in the synthesized motion.

We describe these components in more detail in the next three sec-
tions.

4 Motion Performance

In this section, we describe a simple but robust vision algorithm to
extract the locations of the retro-reflective markers from two syn-
chronized video cameras. We then describe the subject calibration
process that makes the vision-based interface robust to users of dif-
ferent sizes and to variations in marker placement.

4.1 Motion Analysis

Our system employs two Pulnix video cameras (TMC-6700-CL),
which have 640×480 image resolution and a frame rate of 60 fps,
as input devices (figure 3). We use the method described by
Zhang [1999] to determine the intrinsic parameters of the cameras
and the relative transformation between them. To illuminate the
retro-reflective markers, we placed a photography light near each
camera. To make detection more robust, we apply background sub-
traction techniques based on the statistics of the images and search
just the foreground pixels. The system computes the mean and stan-
dard deviation of each background pixel in each color channel for
a sequence of frames where the user is not present. During online
tracking, pixels that differ in at least one color channel by more
than a user-defined threshold from the background distribution are
labelled as foreground pixels. We then perform a morphological
filter (dilation) on the foreground pixels to enlarge the region and to
ensure that markers on the boundary are included.

After the system locates the markers in each image, we establish a
correspondence between the markers using epipolar geometry and
color similarity constraints. The epipolar geometry constraint re-
duces the search space for the corresponding marker to only those

markers that lie on a single epipolar line [Xu and Zhang 1996]. Fig-
ure 3 (c) and (d) shows the marker locations and the corresponding
epipolar lines. Because the number of markers is small, the epipo-
lar line constraint is generally sufficient to find the correct point
correspondences. Occasionally, more than one point in the second
camera might satisfy the epipolar geometry constraint from the first
camera, but temporal coherence can be used to reduce this ambi-
guity. Given a point correspondence between the two calibrated
cameras, we compute the marker’s 3D location by finding the in-
tersection of rays cast from the 2D markers in both cameras. Oc-
clusion might prevent a marker from being seen by both cameras.
To address this problem, we also include the 2D locations of the
markers seen by only one camera in the control signals.

Once the system labels the markers in the first frame, it can label the
markers in each subsequent frame by matching the current marker
locations to the marker set found for the most recent synthesized
motion (described in section 6). Because the synthesized motion
is reconstructed from the motion capture database, it includes any
occluded markers. Therefore, the system can automatically handle
missing markers by labelling a marker that was occluded once it
can be seen again. The marker tracking and labelling system runs
in real time and did not require manual intervention for the exper-
iments reported here. The marker labelling appears to be robust to
variations in body type and occlusion.

4.2 Subject Calibration

Subject calibration ensures that the vision-based interface is robust
to users of different sizes and to variations in marker placement.
Subject calibration consists of two steps: skeleton calibration and
marker calibration.

Skeleton calibration. Skeleton calibration estimates the user’s
skeleton model from the 3D locations of a few markers obtained
from the vision-based interface. In our experiments, we place mark-
ers on the left hand, left elbow, left foot, left knee, and each shoul-
der. Two markers are placed on the front of the waist. We instruct
the user to assume a “T” Pose and capture the 3D locations of the
markers. The locations of this small set of markers are not suffi-
cient to compute a detailed skeleton model; therefore we use these
measured 3D marker locations to interpolate a database of detailed
skeleton models from a variety of subjects. We then place markers
on the right limb and model the right side of the skeleton model in
a similar fashion. Each user need perform the skeleton calibration
step only once.

Marker calibration. The goal of marker calibration is to determine
the location of the control markers used in the interface relative to



the inboard joint. For example, the location of the hand marker
relative to the coordinate system of the wrist. We first measure
the location of the markers for the “T” pose in the world coordi-
nate frame. Given this information and user’s skeleton model, we
compute the 3D positions of the inboard joints relative to the world
coordinate frame in the “T” pose via forward kinematics. The lo-
cation of markers in the coordinate system of the inboard joint can
then be found by computing the difference between the location of
the inboard joint and the marker relative to the world coordinate
frame. This calibration step must be repeated if the marker place-
ment changes. The system can handle extra markers if the marker
calibration step is repeated for the new marker set.

We preprocess the motion capture database by computing the 3D
location of the control markers cn corresponding to the motion cap-
ture data for each frame in the database qn:

cn = f(qn; s̃, ṽl ,z0) (1)

where the function f is the forward kinematics function that com-
putes the marker positions from the joint angles of the current
frames, qn, given the user’s skeleton model, s̃, and the locations
of the control markers, ṽl , relative to the inboard joint. We choose
the default root position and orientation, z0, as 06×1.

5 Online Local Modeling

The motion synthesis problem is difficult because the positions of
the small set of markers worn by the user do not adequately con-
strain the joint angles of a full-body human model. The key idea
of our approach is to use a lazy learning algorithm to automatically
construct a series of simple local models that sufficiently constrain
the solution space. The lazy learning algorithm postpones all com-
putation until an explicit request for information (e.g. prediction or
local modeling) is received [Aha 1997].

The motions to be synthesized, [q̃1, ..., q̃t ], form a nonlinear mani-
fold embedded in a high-dimensional space. At run time, the sys-
tem automatically learns a series of low-dimensional linear models
to approximate this high-dimensional manifold. To build a local
model, we search the motion capture database for examples that
are close to the current marker locations and recently synthesized
poses. These examples are then used as training data to learn a sim-
ple linear model via Principal Component Analysis (PCA) [Bishop
1996]. A new local model is created to synthesize each pose.

The system relies on the current control signals from the interface
c̃t and the synthesized poses in the previous two frames [q̃t−1, q̃t−2]
to find the K closest examples {qtk |k = 1, ...,K} for the current pose
q̃t . The query metric, for each example qn in the database, is

α‖cn −T(z̃t ,z0)c̃t‖
2 +(1−α)‖qn −2q̃t−1 + q̃t−2‖

2 (2)

where ‖·‖ denotes a Euclidean norm. T(z̃t ,z0) is the transformation
matrix that aligns the current root position and orientation of the
control markers, z̃t , with the default root position and orientation
of the motion capture data, z0. The first term evaluates how well
the control parameters associated with the example pose match the
control signals from the interface. The second term evaluates the
continuity of the motion that would result if qn were to be placed
after q̃t−1 and q̃t−2. In our experiments, α is set to 0.8.

After subtracting the mean, pt , of the K closest examples in the
local region we apply PCA to the covariance matrix of these K ex-
amples, {qtk |k = 1, ...,K}, in the joint angle space. We obtain a
linear model for the current pose q̃t :

q̃t = pt +Ut ·wt (3)

where Ut is constructed from the eigenvectors corresponding to the
largest eigenvalues of the covariance matrix of the local examples.
wt is a B-dimensional vector, which is a low-dimensional repre-
sentation of the current pose q̃t . The number of nearest neigh-
bors, K, and the dimension of the space, B, are selected locally
and adjusted for the current query point by a leave-one-out cross-
validation [Stone 1974; Atkeson et al. 1997a]. More specifically,
each time a prediction is required, a set of local models are iden-
tified, each with a different dimension, B, and each including a
different number of neighbors, K. The generalization ability of
each model is then assessed through a local leave-one-out cross-
validation procedure and the best model is selected for reconstruc-
tion. The dimension of the new space is usually less than seven in
the experiments reported here and is therefore much lower than the
dimension of the original space.

The local model avoids the problem of finding an appropriate
structure for a global model, which would necessarily be high-
dimensional and nonlinear. Instead, we assume that a series of low-
dimensional, local models are sufficient to approximate the global
high-dimensional manifold. Our local models do not require any
parameter tuning because all parameters are automatically selected
by cross-validation.

5.1 Fast Online K-nearest Neighbor Search

The main drawback of the local model is the time required to find
the nearest neighbors. Because the number of queries will be large,
the computational cost can be significantly reduced by preprocess-
ing the motion capture database to create a data structure that al-
lows fast nearest-neighbor search. This section introduces a neigh-
bor graph and an algorithm that accelerates the runtime query by
utilizing temporal coherence.

We first build a neighbor graph, each node of which represents a
pose in the human motion database qn. We connect the i-th node
and j-th node if and only if they satisfy:

‖qi −q j‖L1 < max{
fm∆d

fc
,ε} (4)

where ‖ · ‖L1 denotes the L1 distance. ∆d represents the largest L1
distance between two consecutive poses in the database. fm and fc
are the camera frame rates used for the motion capture and the con-
trol interface respectively. ε is a specified search radius for nearest
neighbors. In our experiments, ∆d is 1.75 degrees per joint angle
and ε is 3 degrees per joint angle.

Let {qt−1k
|k = 1, ...,K} be the nearest neighbors of the previous

frame. The nearest neighbors of the query point {qtk |k = 1, ...,K}
can be approximately found by searching {qt−1k

|k = 1, ...,K} and
their neighbors in the neighbor graph. A 2D example of our nearest

Database size mean min. max. error
Boxing 71597 752.31 36 8968 0.025

Hetergeneous 433622 710.1 31 9101 0.014

Table 1: Performance of the nearest neighbor search algo-
rithm, where mean, min. and max. are the mean number of nodes
searched, the minimal number of nodes searched, and the maxi-
mum number of nodes searched. All three numbers are significantly
smaller than the size of the database. The error (degree per joint)
is measured by computing the L2 distance between the pose syn-
thesized by the examples found using exhaustive search and the
pose synthesized by the examples found using our nearest neighbor
search.
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Figure 4: A 2D example of the fast nearest neighbor search using two dimensions of the neighbor graph for the boxing database: (a) the
data points in the database after we project them into the 2D eigen-space; (b) the magenta circle represents the previous pose, q̃t−1, and the
magenta square represents the current pose, q̃t . At run time, we use the neighbors of the previous frame (blue points) {qt−1k

|k = 1, ...,K} and
a precomputed neighbor graph to find the neighbors of {qt−1k

|k = 1, ...,K} in the neighbor graph (red points). The algorithm then searches
only the red and blue points to find the nearest neighbors of the current query point. (c) the green points are the nearest neighbors found using
this algorithm.

neighbor search algorithm is shown in figure 4. The neighbor graph
significantly reduces the computational time of the search by just
examining the data points in the neighboring nodes of the last query
point. Table 1 shows that the performance scales well with the size
and heterogeneity of the database.

6 Online Motion Synthesis

The system automatically extracts the absolute root position and
orientation, [z̃1, ..., z̃t ], of the reconstructed motions directly from
the vision-based interface. This section focuses on how to recon-
struct the joint angle values, [q̃1, ..., q̃t ], from the low-dimensional
control signals, [c̃1, ..., c̃t ]. At run time, the system automatically
transforms the low-dimensional control signals from the vision-
based interface to full-body human motions frame by frame using
the learned local linear model (Equation 3), the training examples in
the local region, {qtk |k = 1, ...,K}, the previous synthesized poses,
[q̃1, ..., q̃t−1], and the current low-dimensional control signals, c̃t .
We use the local linear model (Equation 3) as a hard constraint and
optimize the current pose q̃t in the low-dimensional space wt using
a set of three energy terms: prior, control, and smoothness:

The prior term, Eprior , measures the a-priori likelihood of the cur-
rent pose using the knowledge embedded in the motion capture
database. The prior term is used to constrain the reconstructed
pose to satisfy the probabilistic distribution determined by the train-
ing examples {qtk |k = 1, ...,K} in the local region. We assume the
poses in the local region are a multivariate normal distribution, and
the pose prior term maximizes

P(q̃t |qt1 , ...,qtK ) =
exp(− 1

2 (q̃t −pt)
T Λt

−1(q̃t −pt))

(2π)
d
2 |Λt |

1
2

(5)

where d is the dimension of q̃t . The vector pt and the matrix
Λt are the mean vector and covariance matrix of the data sam-
ples {qtk |k = 1, ...,K} in the local region. |Λt | is the determinant
of the covariance matrix Λt . We minimize the negative log of
P(q̃t |qt1 , ...,qtK ), yielding the energy formulation

Eprior = (q̃t −pt)
T Λt

−1(q̃t −pt) (6)

The control term, Econtrol , measures the deviation of the marker
locations in the reconstructed motion from the control inputs ob-
tained from the vision-based interface:

Econtrol = ‖f(q̃t ; s̃, ṽl , z̃t)− c̃t‖
2 (7)

where the function f is the forward kinematics function (Equa-
tion 1). Generating the animated sequence from only this constraint
in the original joint angle space is similar to performing per-frame
inverse kinematics as was done by Badler and Yamane and their
colleagues [Badler et al. 1993; Yamane and Nakamura 2003]. If
markers are visible to only one camera, we use the intrinsic and
extrinsic parameters of that camera to project the 3D locations to
2D locations in the camera’s image plane and then minimize the
difference between the projected 2D locations and the 2D marker
locations from the single camera.

The smoothness term, Esmoothness, measures the smoothness of the
synthesized motion if q̃t were placed after [q̃1, ..., q̃t−1]. We assume
that the pose at time t depends only the poses at time t-1 and t-2,
and the smoothness term is

Esmoothness = ‖q̃t −2q̃t−1 + q̃t−2‖
2 (8)

where q̃t−1 and q̃t−2 are the synthesized poses in the previous two
frames.

Combining Equations 6, 7 and 8 and substituting q̃t using the lo-
cal model (Equation 3), the complete energy function for motion
synthesis is

arg minwt wT
t Ut

T Λt
−1Utwt +α‖f(wt ;Ut ,pt , s̃, ṽl , z̃t)− c̃t‖

2

+β‖Utwt + p̄t −2q̃t−1 + q̃t−2‖
2

(9)
We initialize the optimization with the closest example in the
database and optimize using the Levenberg-Marquardt program-
ming method [Bazaraa et al. 1993]. The solution converges rapidly
because of a good starting point and a low-dimensional optimiza-
tion space (generally less than seven). In our experiments, α is set
to 0.8 and β is set to 0.2.
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(a) small walking database (b) medium-size boxing database (c) large heterogeneous database

Figure 5: Comparison of four dimensionality reduction methods: each curve shows the average reconstruction error with increasing number
of dimensions. We cannot compute the complete GPLVM error curves for the medium and large databases because of the computational cost.

7 Numerical Comparison

In this section, we compare alternative techniques for the con-
stituent elements of our performance animation system: dimension-
ality reduction for the human poses and local models for synthesis.

7.1 Dimensionality Reduction

The performance of the system depends on the ability to repre-
sent human motion in a low-dimensional space. Without this low-
dimensional representation, the mapping from the control signals to
the motion database would be one to many. The low dimensional
space also reduces the time required for optimization.

In this section, we compare the performance of our online dimen-
sionality reduction algorithm with other dimensionality reduction
methods. Previous work in dimensionality reduction can be di-
vived into three categories: global principal component analysis
(PCA) [Bishop 1996], nonlinear dimensionality reduction [Mardia
et al. 1979; Scholkopf et al. 1999; Roweis and Saul 2000; Tenen-
baum et al. 2000; Lawrence 2004], and mixtures of local linear
models (LLM) [Fukunaga and Olsen 1971; Bregler and Omohun-
dro 1995; Hinton et al. 1995]. To study the performance of these
algorithms on human motion data, we constructed three human
motion databases: a 6-second walking database (700 frames), a
10-minute boxing database (71597 frames), and a 1-hour hetero-
geneous database (433622 frames) that includes walking, running,
jumping, hopping, dancing, basketball, boxing, Kendo, and climb-
ing on playground equipment.

Figure 5 plots the performance of one algorithm from each of these
classes as well as the approach described in this paper. Each curve
shows the average reconstruction error per joint with increasing
number of dimensions. The average reconstruction error is the L2
distance between the original motion and the motion reconstructed
from the low-dimensional space.

Principal Component Analysis (PCA). PCA finds a global lin-
ear subspace approximating the nonlinear manifold of the motion
capture database. Global PCA is widely used because of its sim-
plicity and computational efficiency [Bishop 1996]. The number of
dimensions required increases dramatically as the size and hetero-
geneity of the human motion database increase. For the walking
database, 14 dimensions are required to obtain a reconstruction er-
ror of less than one degree. For the boxing database, 27 dimensions
are required and the large heterogeneous database requires at least
38 dimensions.

Nonlinear dimensionality reduction. Direct synthesis of human
motions in the low-dimensional space requires an explicit map-
ping from the low-dimensional space to the original configuration
space. Most previous research in nonlinear dimensionality reduc-
tion [Mardia et al. 1979; Scholkopf et al. 1999; Roweis and Saul
2000; Tenenbaum et al. 2000], therefore, is not appropriate for
our work. An exception is the work of Lawrence [2004], where
a Gaussian Process Latent Variable Model (GPLVM) was proposed
to compute a global nonlinear map from the low-dimensional latent
space to a high-dimensional space. Recently, Grochow and his col-
leagues [2004] applied GPLVM to human motion data to animate
a character interactively. GPLVM works well for the small walk-
ing data set (figure 5(a)). The average reconstruction error in the
2D latent space is about 2.7 degrees per joint; however, like global
PCA, the performance of the GPLVM deteriorates as the size and
heterogeneity of the database increase.

Mixtures of local linear models (LLM). LLM first partitions the
data space into disjoint regions with a clustering technique and then
performs PCA for each cluster [Fukunaga and Olsen 1971; Bregler
and Omohundro 1995; Hinton et al. 1995]. LLM performs well for
all three databases (figure 5). For the walking database, six dimen-
sions are required to obtain a reconstruction error of less than one
degree. For the boxing database, eighteen dimensions are required
and the large heterogeneous database requires at least 27 dimen-
sions. The performance of LLM is dependent on the number and
quality of the clusters.

Our method provides better performance for our application than
the three other methods because it is a local method where the
model is constructed at run-time using only the current set of near-
est neighbors. LLM has better performance than either global PCA
or GPLVM because LLM models clusters of the data. Our local
modeling method is more efficient than LLM because we build the
local model based on the neighbor set of the current query data
rather than a precomputed cluster center. Our method scales well
with the size and heterogeneity of the database; the algorithm cre-
ates similar error curves for the three testing databases. For the
walking database, four dimensions are required to obtain a recon-
struction error of less than one degree. For the boxing database,
six dimensions are required and the large heterogeneous database
requires at least five dimensions.

7.2 Online Motion Synthesis Using Local Models

The local model used for online motion synthesis is different from
previous lazy learning methods such as locally weighted regres-
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(a) Boxing (b) Walking

Figure 6: Comparison of methods for synthesizing motions from low-dimensional continuous control signals. (a) Average errors for boxing
motion: 7.67 degrees/joint per frame for nearest neighbor synthesis (NN), 6.15 degrees/joint per frame for locally weighted regression
(LR), and 2.31 degrees/joint per frame for our method. (b) Average errors for walking motion: 4.46 degrees/joint per frame for NN, 3.32
degrees/joint per frame for LWR, and 1.30 degrees/joint per frame for our method. None of the testing sequences are in the database and
boxing and walking motions are synthesized from the same set of markers used for the two camera system (figure 1).

sion [Atkeson et al. 1997a] because we synthesize the motion in
a low-dimensional parametric space constructed from a set of clos-
est examples rather than directly interpolating the local examples.
In figure 6, we compare our method with two popular local learn-
ing methods: nearest neighbor (NN) and locally weighted regres-
sion (LWR). Nearest neighbor synthesis simply chooses the clos-
est example. Locally weighted regression interpolates the nearby
points by their distance to the query point and has proven very ef-
fective in such problem domains as motor learning [Atkeson et al.
1997b] and speech synthesis [Daelemans and van de Bosch 2001].
Figure 6 shows that our method creates more accurate results than
either nearest neighbor synthesis or locally weighted regression.

8 Results

We test the effectiveness of our algorithm on different behaviors
and different users using a large and heterogeneous human mo-
tion database and evaluate the quality of the synthesized motions
by comparing them with motion capture data recorded with a full
marker set. Our results are best seen in video form1, although we
show several frames of a few motions in figure 7.

We tested our system by controlling and animating a virtual char-
acter using two synchronized streams of video data and a small
set of markers. Figure 7.1–7.5 shows sample frames of the results.
The users control boxing, Kendo, walking, running, jumping and
hopping. In the accompanying video, we also demonstrate that the
users can transition from one behavior to another, for example from
walking to running and that the system can synthesize motions in
which the user is not fully facing forward. The video also illustrates
a one camera system which uses a slightly larger set of markers.

We also compare the reconstructed motion with motion capture data
recorded with a full marker set.

Leave-one-out evaluation. First, we evaluate the reconstructed
motions by leaving out one sequence of motion capture data from
each database as the testing sequence (figure 7.6). The 3D trajec-
tories from the control markers used for the two camera system (as
captured by the Vicon system) are then input to our online motion
synthesis system to construct an animation (figure 7.7). This test,

1http://graphics.cs.cmu.edu/projects/performance-animation

however, does not include the effect of errors in the tracking of
markers in the two camera vision system.

End-to-end evaluation. To perform an end-to-end evaluation, we
synchronize the Vicon system and our two camera system and cap-
ture the movement of the user wearing the full set of markers. We
then compare the motion from the Vicon system using the full
marker set and the motion from the two camera system using the
small set of markers. The result of this test for boxing is shown in
the video. The reconstruction error for the boxing sequence is 2.54
degrees per joint angle.

9 Discussion

We have presented an approach for performance animation that uses
a series of local models created at run time from a large and het-
erogeneous human motion database to reconstruct full-body human
motion from low-dimensional control signals. We demonstrate the
power and flexibility of this approach with different users wearing
a small set of markers and controlling a variety of behaviors in real
time by performing in front of one or two video cameras. Given an
appropriate database, the results are comparable in quality to those
obtained from a commercial motion capture system; however, our
performance animation system is far less expensive and requires
less time to suit up the user.

Because the models are local, the system handles a heteroge-
neous database without difficulty. In our experiments, combining
databases containing different behaviors had no effect on the per-
formance of the local models or on the quality of the reconstructed
motion. When we used a database in which each clip was labelled
according to its behavior, we observed that the nearest neighbor
search would rarely pick up a sequence of poses from a behavior
other than the one the user was performing. A global method such
as PCA or GPLVM has a much more difficult time modeling a het-
erogeneous database because it must compute a global model of the
entire database rather than consecutive local models of the region
around the user’s current pose. Global models might be appropriate
for applications such as synthesis of motion without a continuous
driving signal (for example, [Safonova et al. 2004]), but given the
temporal coherence of the control signals of our performance ani-
mation system, they were not required.
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Figure 7: Performance animation from low-dimensional signals. (1) The input video and corresponding output animation. (2)–(5) Animations
created by users using the two camera system. (6) Ground truth motion capture data. (7) Synthesized motion from the same marker set as
that used for the two camera system.



The performance of the system scales well with the size of the
database because the nearest neighbor search is independent of the
size of the database; however, it is dependent on the density of the
database because an ε ball is searched to find the nearest neighbors
at run time. If repeated poses in the database became an issue, the
size of the ε ball could be reduced or the database could be culled
for duplicate sequences as a pre-computation step.

The system achieves some generality beyond the database particu-
larly with respect to small changes in style (speed and exact pos-
ture). However, we do find nearest neighbors for the entire pose on
each frame and therefore novel combinations of behaviors (hopping
while performing Kendo, for example) will likely not yield reason-
able results. We have not yet attempted to assess how far the user’s
motions can stray from those in the database before the quality of
the resulting animation declines to an unacceptable level.

We have tested the system with users whose motion was not part of
the database and found that the quality of the reconstructed motion
was still good. We have not yet attempted to rigorously assess the
dependence of the system on the body type of the user. A larger set
of prototype skeleton models would likely result in a better match
to the user’s skeleton as would a more sophisticated pose for cal-
ibration (such as a “motorcycle” pose with all joints slightly bent
rather than a “T” pose).

We made somewhat an arbitrary decision in choosing where to
place the markers for a specific behavior, although we always put
several markers on the torso to compute the root position and orien-
tation. For locomotion, we placed markers only on the hands, feet,
and shoulders, which allowed a user wearing street clothes to con-
trol the character’s motion. For boxing, we added a marker on the
head because head motion is a key element of boxing. For Kendo,
we placed markers on the lower arms rather than on the hands in or-
der to reduce occlusion by the sword. We also added one marker on
the sword. A more principled analysis of marker placement could
be performed using synthetic data rendered with a graphical model
of the character performing the target behavior.

We have tested the system with two synchronized cameras and a
small set of markers. One limitation of the current system is that it
does not allow the user to move freely in the space because of the re-
quirement that most markers be seen by at least one camera. A third
camera would reduce the constraints on the user’s facing direction.
For any given number of cameras, a larger set of markers should re-
construct the motion more accurately but will increase the level of
the intrusiveness of the animation interface. Similarly, adding more
cameras to the system could improve the performance; the system,
however, will become more expensive and cumbersome. The num-
ber of cameras and markers should probably be determined by the
application.

We chose to use two cameras and a small marker set because a user
might be able to create such a simple and cheap setup at home.
Other sensors also fit this description and might provide the types
of control signals we seek. For example, inertial measurement units
(IMUs) are now sold in small packages and could include a wire-
less link to the animation computer [Xsens MT-9 2004; MicroStrain
3DM-G 2004]. A standard performance animation system for hu-
man characters would require at least 18 IMUs for full-body motion
control. The local models should allow us to significantly reduce
the number of IMUs and thus the cost of the system.

Another limitation of the system is that an appropriate database
must be available. That should not be a problem for a sports video
game because the virtual players are often animated using motion
capture. We believe that the range of behaviors expected of the user
is sufficiently limited in many other applications and that this ap-
proach will be widely applicable. For example, local models could

be used to constrain the search space for markerless human motion
capture [Cheung et al. 2003] as well as motion planning [Yamane
et al. 2004]. Commercial motion capture systems could use the
local model to filter noisy data and fill in missing values automati-
cally. Another potential application is the automatic synthesis of
detailed full-body animation based on a small set of trajectories
keyframed by an animator [Pullen and Bregler 2002].

Acknowledgments

The authors would like to thank Moshe Mahler for his help in mod-
eling and rendering the images for this paper and Justin Macey for
his assistance in collecting and cleaning the motion capture data.
The authors would like to thank Alias/Wavefront for their donation
of Maya software. This material is based upon work supported by
the National Science Foundation under Grants No. CNS-0196217,
IIS-0205224, and IIS-0326322.

References

AHA, D. 1997. Editorial, special issue on lazy learning. In Artifi-
cial Intelligence Review. 11(1-5):1–6.

ARIKAN, O., AND FORSYTH, D. A. 2002. Interactive motion
generation from examples. In ACM Transactions on Graphics.
21(3):483–490.

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. F. 2003. Mo-
tion synthesis from annotations. In ACM Transactions on Graph-
ics. 22(3):402–408.

ATKESON, C. G., MOORE, A. W., AND SCHAAL, S. 1997a. Lo-
cally weighted learning. In Artificial Intelligence Review. 11(1-
5):11-73.

ATKESON, C. G., MOORE, A. W., AND SCHAAL, S. 1997b. Lo-
cally weighted learning for control. In Artificial Intelligence Re-
view. 11(1-5):75–113.

BADLER, N. I., HOLLICK, M., AND GRANIERI, J. 1993. Real-
time control of a virtual human using minimal sensors. In Pres-
ence. 2(1):82–86.

BAZARAA, M. S., SHERALI, H. D., AND SHETTY, C. 1993. Non-
linear Programming: Theory and Algorithms. John Wiley and
Sons Ltd. 2nd Edition.

BISHOP, C. 1996. Neural Network for Pattern Recognition. Cam-
bridge University Press.

BRAND, M., AND HERTZMANN, A. 2000. Style machines. In
Proceedings of ACM SIGGRAPH 2000. 183–192.

BRAND, M. 1999. Shadow puppetry. In Proceedings of IEEE
International Conference on Computer Vision. 1237–1244.

BREGLER, C., AND OMOHUNDRO, S. 1995. Nonlinear image
interpolation using manifold learning. In Advances in Neural
Information Processing Systems 7. 973–980.

CHEUNG, G., BAKER, S., AND KANADE, T. 2003. Shape-from-
silhouette of articulated object and its use for human body kine-
matics estimation and motion capture. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition. 77–
84.



DAELEMANS, W., AND VAN DE BOSCH, A. 2001. Treetalk:
Memory-based word phonemisation. In Data-Driven Techniques
in Speech Synthesis, Kluwer. 149-172.

DONTCHEVA, M., YNGVE, G., AND POPOVIC, Z. 2003. Lay-
ered acting for character animation. In ACM Transactions on
Graphics. 22(3):409–416.

FREEMAN, W. T., ANDERSON, D., BEARDSLEY, P., DODGE, C.,
KAGE, H., KYUMA, K., MIYAKE, Y., ROTH, M., TANAKA,
K., WEISSMAN, C., AND YERAZUNIS, W. 1998. Computer
vision for interactive computer graphics. In IEEE Computer
Graphics and Applications. 18(3):42–53.

FUKUNAGA, K., AND OLSEN, D. 1971. An algorithm for find-
ing intrinsic dimensionality of data. In IEEE Transactions on
Computers. C-20:176–183.

GROCHOW, K., MARTIN, S. L., HERTZMANN, A., AND
POPOVIC, Z. 2004. Style-based inverse kinematics. In ACM
Transactions on Graphics. 23(3):522–531.

GUO, S., AND ROBERGE, J. 1996. A high level control mechanism
for human locomotion based on parametric frame space interpo-
lation. In Eurographics Workshop on Computer Animation and
Simulation’96. 95–107.

HINTON, G., REVOW, M., AND DAYAN, P. 1995. Recognizing
handwritten digits using mixtures of linear models. In Advances
in Neural Information Processing Systems 7. 1015–1022.

HOWE, N., LEVENTON, M., AND FREEMAN, W. 1999. Bayesian
reconstruction of 3d human motion from single-camera video.
In Advances in Neural Information Processing Systems 12. 820–
826.

KONAMI BOXING AND POLICE 911 GAME, 2001.
http://www.konami.com.

KOVAR, L., AND GLEICHER, M. 2004. Automated extraction and
parameterization of motions in large data sets. In ACM Transac-
tions on Graphics. 23(3):559–568.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. In ACM Transactions on Graphics. 21(3):473–482.

LAWRENCE, N. D. 2004. Gaussian process latent variable models
for visualization of high dimensional data. In Advances in Neural
Information Processing Systems 16. 329–336.

LEE, J., CHAI, J., REITSMA, P., HODGINS, J., AND POLLARD,
N. 2002. Interactive control of avatars animated with human
motion data. In ACM Transactions on Graphics. 21(3):491–500.

LI, Y., WANG, T., AND SHUM, H.-Y. 2002. Motion texture:
A two-level statistical model for character synthesis. In ACM
Transactions on Graphics. 21(3):465–472.

MARDIA, K., KENT, J., AND BIBBY, M. 1979. Multivariate
Analysis. Academy Press.

MICROSTRAIN 3DM-G, 2004. http://www.microstrain.com.

OORE, S., TERZOPOULOS, D., AND HINTON, G. 2002. A desk-
top input device and interface for interactive 3d character. In
Proceedings of Graphics Interface 2002. 133–140.

PULLEN, K., AND BREGLER, C. 2002. Motion capture assisted
animation: Texturing and synthesis. In ACM Transactions on
Graphics. 21(3):501–508.

REN, L., SHAKHNAROVICH, G., HODGINS, J. K., PFISTER, H.,
AND VIOLA, P. A. 2004. Learning silhouette features for control

of human motion. In Computer Science Technical Reports 2004,
Carnegie Mellon University. CMU-CS-04-165.

ROSE, C., COHEN, M. F., AND BODENHEIMER, B. 1998. Verbs
and adverbs: Multidimensional motion interpolation. In IEEE
Computer Graphics and Applications. 18(5):32–40.

ROWEIS, S., AND SAUL, L. 2000. Nonlinear dimension-
ality reduction by locally linear embedding. In Science.
290(5500):2323–2326.

SAFONOVA, A., HODGINS, J., AND POLLARD, N. 2004. Syn-
thesizing physically realistic human motion in low-dimensional,
behavior-specific spaces. In ACM Transactions on Graphics.
23(3):514–521.

SCHOLKOPF, B., SMOLA, A., AND MULLER, K.-R. 1999. Kernel
principal component analysis. In Advances in Kernel Methods–
SV Learning, MIT Press. 327–352.

SEMWAL, S., HIGHTOWER, R., AND STANSFIELD, S. 1998. Map-
ping algorithms for real-time control of an avatar using eight sen-
sors. In Presence. 7(1):1–21.

SHIN, H. J., LEE, J., GLEICHER, M., AND SHIN, S. Y. 2001.
Computer puppetry: An importance-based approach. In ACM
Transactions on Graphics. 20(2):67–94.

SIDENBLADH, H., BLACK, M. J., AND SIGAL, L. 2002. Implicit
probabilistic models of human motion for synthesis and tracking.
In European Conference on Computer Vision. 784–800.

SONY EYE TOY SYSTEMS, 2003. http://www.eyetoy.com.

STONE, M. 1974. Cross-validatory choice and assessment of sta-
tistical predictions. In Journal of the Royal Statistical Society.
36:111–147.

TENENBAUM, J., SILVA, V., AND LANGFORD, J. 2000. A global
geometric framework for nonlinear dimensionality reduction. In
Science. 290(5500):2319–2323.

VICON SYSTEMS, 2004. http://www.vicon.com.

WILEY, D. J., AND HAHN, J. K. 1997. Interpolation synthesis
of articulated figure motion. In IEEE Computer Graphics and
Applications. 17(6):39–45.

XSENS MT-9, 2004. http://www.xsens.com.

XU, G., AND ZHANG, Z. 1996. Epipolar Geometry in Stereo,
Motion, and Object Recognition: A Unified Approach. Kluwer.

YAMANE, K., AND NAKAMURA, Y. 2003. Natural motion an-
imation through constraining and deconstraining at will. In
IEEE Transactions on Visualization and Computer Graphics.
9(3):352–360.

YAMANE, K., KUFFNER, J. J., AND HODGINS, J. K. 2004.
Synthesizing animations of human manipulation tasks. In ACM
Transactions on Graphics. 23(3):532–539.

YIN, K., AND PAI, D. K. 2003. Footsee: An interac-
tive animation system. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation.
329–338.

ZHANG, Z. 1999. Flexible camera calibration by viewing a plane
from unknown orientations. In Proceedings of the International
Conference on Computer Vision. 666–673.


