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Fig. 1. What can human actions tell us about the 3D structure of a scene? Quite a lot,
actually. Consider the people depicted on the left. They were detected in a time-lapse
sequence in one of rooms A, B, or C. Which room did they come from? See the text
for the answer.

Abstract. We present an approach which exploits the coupling between
human actions and scene geometry. We investigate the use of human pose
as a cue for single-view 3D scene understanding. Our method builds upon
recent advances in still-image pose estimation to extract functional and
geometric constraints about the scene. These constraints are then used to
improve state-of-the-art single-view 3D scene understanding approaches.
The proposed method is validated on a collection of monocular time-
lapse sequences collected from YouTube and a dataset of still images of
indoor scenes. We demonstrate that observing people performing differ-
ent actions can significantly improve estimates of 3D scene geometry.

1 Introduction

The human body is a powerful and versatile visual communication device. For
example, pantomime artists can convey elaborate storylines completely non-
verbally and without props, simply with body language. Indeed, body pose,
gestures, facial expressions, and eye movements are all known to communicate
a wealth of information about a person, including physical and mental state,
intentions, reactions, etc. But more than that, observing a person can inform us
about the surrounding environment with which the person interacts.

Consider the two people detections depicted in Figure 1. Can you tell which
one of the three scenes these detections came from? Most people can easily see
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Fig. 2. Overview of the proposed approach. We propose the use of both appear-
ance and human action cues for estimating single-view geometry. Given an input image
or set of input images taken by a fixed camera (e.g., a time-lapse), we estimate human
poses in each image (a), yielding a set of human-scene interactions (b), which we ag-
gregate over time (for time-lapses). We use these to to infer functional surfaces (c) in
the scene: sittable (red), walkable (blue). We simultaneously generate multiple room
hypotheses (d) from appearance cues alone. We then select a final room hypothesis
and infer the occupied space in the 3D scene using both appearance and human action
cues. See all results on the project website.

that it is room A. Even though this is only a static image, the actions and
poses of the disembodied figures reveal a lot about the geometric structure of
the scene. The pose of the left figure reveals a horizontal surface right under its
pelvis ending abruptly at its knees. The right figure’s pose reveals a ground plane
under its feet as well as a likely horizontal surface near the hand location. In
both cases we observe a strong physical and functional coupling between people
and the 3D geometry of the scene. In this work, we aim to exploit this coupling.

This paper proposes to use human pose as a cue for 3D scene understanding.
Given a set of one or more images from a static camera, the idea is to treat each
person as an “active sensor,” or probe that interacts with the environment and
in so doing carves out the 3D free-space in the scene. We represent human poses
following J.J. Gibson’s notion of affordances [1] — each pose is associated with
the local geometry that permits or affords it. This way, multiple poses in space
and time can jointly discover the underlying 3D structure of the scene.

In practice, of course, implementing this simple and elegant scenario would
be problematic. First of all, the underlying assumption that the humans densely
explore the entire observed 3D scene is not realistic. But more problematic is
the need to recover high-quality 3D pose information for all people in an image.
While several very promising 2D pose estimation approaches exist [2—4], and it
is possible to use anthropometric constraints to lift the poses into 3D [5], the
accuracy of these methods is still too low to be used reliably.
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As a result, in this paper we take a soft, hybrid approach. We first employ
the single-view indoor reconstruction method of Hedau et al. [6] which produces
a number of possible 3D scene hypotheses. We then use existing human detec-
tion machinery to generate pose candidates. The crux of our algorithm is in
simultaneously considering the appearance of the scene and perceived human
actions in a robust way to produce the best 3D scene interpretation given all
the available evidence. We evaluate our approach on both time-lapses and still
images taken from the Internet, and demonstrate significant performance gains
over state-of-the-art appearance-only methods.

1.1 Background

Our goal is to understand images in terms of 3D geometry and space. Tradi-
tional approaches in computer vision have focused on using correspondences
and multiple view geometry for 3D reconstruction. While these methods have
been successful, they are not applicable when only a single view of the scene is
available. Since humans can infer scene structure from a single image, single-view
reconstruction is a critical step towards vision systems with more human-like ca-
pabilities. Furthermore, 3D scene estimates from a single image not only provide
a richer interpretation of the image but also improve performance of traditional
tasks such as object detection [7, 8].

In recent years, there have been significant advances in using statistical ap-
proaches for single-view 3D image understanding [6,9-18]. To make progress
on the extremely difficult and severely underconstrained problem of estimating
scene geometry from a single image, these approaches impose domain specific
constraints, mainly regarding the human-made nature of the scenes. However,
although they assume a human-centric scene structure, each of these approaches
treats humans as clutter rather than as a cue. This work aims to demonstrate
that humans are not a nuisance, but rather another valuable source of con-
straints.

Other work on the interface between humans and image understanding has
mostly focused on modeling these constraints at a semantic level [19-21]. For
example, drinking and cups are functionally related and therefore joint recog-
nition of the two should improve performance. Semantic-level constraints have
been also shown to improve object discovery and recognition [20, 22, 23], action
recognition [19, 21, 24, 25], and pose estimation [26, 27].

In this paper we specifically focus on modeling relationships at a physical
level between humans and 3D scene geometry. In this domain, most earlier work
has focused on using geometry to infer human-centric information [28,29]. For
instance, Gupta et al. [29] argued that functional questions such as “Where
can [ sit?” are more important than categorizing objects based on name, and
used estimated 3D geometry in images to infer Gibsonian affordances [1], or
“opportunities for interaction” with the environment. Our work focuses on the
inverse of the problem addressed in [28,29]: we want to observe human actors,
infer their poses and then use the functional constraints from these poses to
improve 3D scene understanding. Our goal is to harness the recent advances in
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person detection and pose estimation [2-4, 30, 31], and design a method to im-
prove single-view indoor geometry estimation. Even though the building blocks
of this work, human pose estimation [3] and 3D image understanding [6, 10],
are by no means perfect, we show that they can be robustly combined. We also
emphasize our choice of the monocular case, which sets our work apart from
earlier work on geometric reasoning using human silhouttes [32] in multi-view
setups. In single-view scenarios, the focus has been on coarse constraints from
person tracks [33-35], whereas we focus on fine-grained physical and functional
constraints using human actions and poses.

2 Overview

Our work is an attempt to marry human action recognition with 3D scene un-
derstanding. We have made a number of simplifying assumptions. We limit our
focus to indoor scenes: they allow for interesting human-scene interactions and
several approaches exist specifically for estimating indoor scene geometry [6, 10,
8]. We use a set of commonly observed physical actions: reaching, sitting, and
walking to provide constraints on the free and occupied 3D space in the scene.
To achieve this, we manually define surface constraints provided by each action,
e.g., there should be a sittable horizontal surface at the knee height for the sit-
ting action. We adopt a geometric representation that is consistent with recent
methods for scene layout estimation [6, 10]. Specifically, we build upon the work
of Hedau et al. [6]: each scene is modeled in terms of the layout of the room
(walls, floor, and ceiling) and the 3D layout of the objects. It is assumed that
there are three principal directions in the 3D scene (Manhattan world [36]) and
therefore estimating a room involves fitting a parametric 3D box.

While temporal information can be useful for detecting human actions and
imposing functional and geometrical constraints, in this work, we only deal with
still images and time-lapse videos with no temporal continuity. Time-lapses are
image sequences recorded at a low framerate, e.g., one frame a second. Such
sequences are often shot with a static camera and show a variety of interactions
with the scene while keeping the static scene elements fixed. People use time
lapses to record and share summaries of events such as home parties or family
gatherings. This type of data is ideal for our experiments since it has a high
diversity of person-scene interactions. It also enables us to test our method on
realistic data with non-staged activities in a variety of natural environments.

The overview of our approach is shown in Figure 2. First, we detect hu-
mans performing different actions in the image and use the inferred body poses
to extract functional regions in the image such as sittable and reachable sur-
faces (Section 3). For time-lapses, we accumulate these detections over time for
increased robustness. We then use these functional surface estimates to derive
geometrical constraints on the scene. These constraints are combined with an ex-
isting indoor scene understanding method [6] to predict the global 3D geometry
of the room by selecting the best hypothesis from a set of possible hypotheses
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Fig. 3. Example action detection and pose estimation results. The predicted surface
contact points are shown by ellipses: blue (walkable), red (sittable), green (reachable).
Shown actions are: standing (1-2), sitting (3-5), and reaching (6-8).

(Section 4.1). Once we have the global 3D geometry, we can use these human
poses to reason about the free-space of the scene (Section 4.2).

3 Local Scene Constraints from People’s Actions

Our goal is to predict functional image regions corresponding to walkable, sittable
and reachable surfaces by analyzing human actions in the scene. We achieve this
by detecting and localizing people performing three different actions (standing,
sitting, reaching) and then using their pose to predict contact points with the
surfaces in the scene. For time-lapses, contact points are aggregated over multiple
frames to provide improved evidence for the functional image regions.

Given a person detected performing an action, we predict contacts with sur-
faces as follows: (i) for walkable surfaces we define a contact point as the mean
location of the feet position, and use all three types of actions; (ii) for sittable
surfaces, we define a contact point at the mean location of the hip joints, and
consider only sitting actions; and (iii) for reachable surfaces, we define a con-
tact point as the location of the hand further from the torso, and use only
reaching actions. These surfaces are not mutually exclusive (e.g., beds are sit-
table and reachable). To increase robustness, we place a Gaussian at the contact
points of each detection and weight the contribution of the pose by the classifier
confidence. The standard deviation of each Gaussian is set to a fraction of the
detection bounding box, 1/4 in X- and 1/40 in Y-direction, respectively. This
yields probability maps h for the different types of functional image regions, as
illustrated in Figures 2c¢ and 4c,d.

Our approach is agnostic to the particular method of pose detection; in this
work, we use two complementary approaches. We build primarily on the ar-
ticulated pose model of Yang and Ramanan [3]. Here, we employ the model
for detecting human action by training a separate model for each of the three
actions. Additionally, we use the model of Felzenszwalb et al. [31] for sitting
and standing: the low variance of the relevant joints of these actions (e.g., feet
for standing) enable us to accurately approximate poses by simply transferring
a fixed pose. Since the sitting detector may also respond to standing people,
we discriminate between different actions by jointly calibrating the detectors of
each model with respect to each other by fitting a multinomial logistic regression



6 D.F. Fouhey, V. Delaitre, A. Gupta, A.A. Efros, I. Laptev, J. Sivic

(a) Input Image  (b) Pose Detections (c) Walkable (d) Reachable

Fig. 4. Predicting functional image regions. (a) An image from a time-lapse se-
quence. (b) Overlaid example person detections from different frames: standing (blue),
reaching (green). (c,d) Probability maps of predicted locations for (c) walkable and (d)
reachable surfaces. Note that the two functional surfaces overlap on the floor.

model. Action classification is performed in a non-maxima suppression manner:
if bounding boxes of several detections overlap, then the detection with the high-
est calibrated response is kept. The articulated pose estimator and deformable
parts model are calibrated separately, and produce independent estimates of
functional regions. Examples of detected actions together with estimated body
pose configurations and predicted contact points are shown in Figure 3.

4 Space Carving Via Humans

In the previous section we discussed how we estimate human poses and functional
regions such as sittable and walkable surfaces. Using the inferred human poses,
we now ask: “What 3D scene geometry is consistent with these human poses
and functional regions?” We build upon [29], and propose three constraints that
human poses impose on 3D scene geometry:

Containment: The volume occupied by a human should be inside the room.
Free space: The volume occupied by a human cannot intersect any objects in
the room. For example, for a “standing pose,” this constraint would mean that
no voxels below 5ft can be occupied at standing locations.

Support: There must be object surfaces in the scene which provide sufficient
support so that the pose is physically stable. For example, for a “sitting” pose,
there must exist a horizontal surface beneath the pelvis (such as a chair). This
constraint can also be written in terms of the functional regions; for example,
sittable regions must be supported by occupied voxels in the scene.

Our goal is to use these constraints from observed human poses to estimate
room geometry and the occupied voxels in the scene. Estimating voxels occupied
by the objects in the scene depends on the global 3D room layout as well as the
free-space and support constraints. On the other hand, estimating 3D room
layout is only dependent on the containment constraint and is independent of
the free-space and support constraints. Therefore, we use a two-step process: in
the first step, we estimate the global 3D room layout, represented by a 3D “box,”
using appearance cues and the containment constraints from human actors. In
the second step, we use the estimated box-layout to estimate the occupied voxels
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in the scene. Here, we combine cues from scene appearance and human actors
to carve out the 3D space of the scene.

4.1 Estimating Room Layout

Given an image and the set of observed human poses, we want to infer the global
3D geometry of the room. We build on the approach of Hedau et al. [6] which
first estimates three orthogonal vanishing points and then samples multiple room
layout hypotheses that are aligned with the estimated three scene directions. The
best hypothesis is selected using a learned scoring function based on global ap-
pearance cues, such as detected straight lines and classifier outputs for different
surfaces (walls, floor, ceiling). However, estimating the room layout from a sin-
gle view is a difficult problem and it is often almost impossible to select the
right layout using appearance cues alone. We propose to further constrain the
inference problem by using the containment constraint from human poses. This
is achieved with a scoring function that uses appearance terms, as in [6], and
terms to evaluate to what degree the hypothesized room layout is coherent with
observed human actors.

Given input image features x and the observed human actors H (represented
by functional surface probability maps h), our goal is to find the best room layout
hypothesis y*. We use the following scoring function to evaluate the coherence
of image features and human poses with the hypothesized room layout y:

flz, Hyy) = Y(z,y) + o(H,y) + p(y), (1)

where ¥(z, y) measures the compatibility of the room layout configuration y with
the estimated surface geometry computed using image appearance, ¢(H,y) mea-
sures compatibility of human poses and room layout, and p(y) is a regularizing
penalty term on the relative floor area that encourages smaller rooms.

As we build upon the code of Hedau et al., the first term, ¢ (x, y) is the scoring
function learned via Eqns. 3-4 of [6]. The second term enforces the containment
constraints and expands as

S(H,y) = > #(C(h),y), (2)

heH

where ((h) is the mapping of support surfaces onto the ground plane and ¢
measures the normalized overlap between the projection and floor in the hy-
pothesized room layout. Intuitively, ¢(H,y) enforces that both the human body
and the objects it is interacting with should lie inside the room. We approximate
¢(h) by using the feet locations of detected actors, which produces accurate re-
sults for our action vocabulary. Finally, the term p(y) = —c-max(0,(A—M)/M)
imposes a penalty for excessive floor area A, measured with respect to the mini-
mum floor area M out of the top three hypotheses; in our experiments, ¢ = 1/8.
We need this regularization term since ¢(H,y) can only expand the room to
satisfy the containment constraint.
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4.2 Estimating Free Space in the Scene

Once we have estimated room layouts we now estimate the voxels occupied by
objects. However, this is a difficult and ill-posed problem. Hedau et al. [6] use
an appearance based classifier to estimate pixels corresponding to objects in
the scene. These pixels are then back-projected under the constraint that every
occupied voxel must be supported. Lee et al. [10] and Gupta et al. [29] further
constrain the problem with domain-specific cuboid object models and constraints
such as “attachment to walls”. We impose functional constraints: a human actor
carves out the free space and support surfaces by interacting with the scene.

The room layout and camera calibration gives a cuboidal 3D voxel map in
which we estimate the free space. We first back project the clutter mask of
Hedau et al. [6], and then incorporate constraints from different human poses to
further refine this occupied voxel map. Specifically, we backproject each func-
tional image region h at its 3D height!, yielding a horizontal slice inside the
voxel map. This slice is then used to cast votes above and below in voxel-space:
votes in favor of occupancy are cast in the voxels below; votes against occupancy
are cast in the voxels above. The final score for occupancy of a particular voxel
is a linear sum of these votes, weighed by the confidence of human pose detec-
tions; as the result is probabilistic, to produce a binary interpretation, we must
threshold the results.

5 Experiments

We validate the proposed approach on a collection of consumer time-lapse videos
of indoor scenes and a collection of indoor still images. Both datasets were col-
lected from the Internet and depict challenging scenes capturing one or more
people engaged in everyday activities interacting with the scene. The code and
data for the experiments is available on the project webpage.

Baselines. For both time-lapses and single images, we compare our estimates
of room geometry to a number of approaches. Our primary baseline is the
appearance-only system of Hedau et al. [6]. To provide context, we also include
another baseline, in which we impose the box model on the approach of Lee et
al. [37]. Finally, to show that all methods are operating better than chance, we
use location only to predict the pixel labels: after resizing all scenes to common
dimensions, we use the majority label in the training images for each pixel.

We use the standard metric of per-pixel accuracy. We compare the estimated
layout with a manual labeling of room geometry; note that since the camera is
fixed in time-lapses, only a single annotation is needed.

Implementation details. We train detectors on example images using the
Yang and Ramanan model for all three actions [3] and the Felzenszwalb et al.

! Because our classes are fine-grained, we can use human dimensions for the heights
of the surfaces: for reaching, it is waist height (3ft), and sitting, knee-height (1ft).
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A A

Fig. 5. Example time-lapse sequence results: given an input image, we use func-
tional regions (walkable: blue; sittable: red; reachable: green) to constrain the room
layout; having selected a layout, we can also infer a more fine-grained geometry of the
room via functional reasoning. See all results on the project website.

(b) Appearances + People (Our approach).

Fig. 6. Timelapse experiment: A comparison of (a) appearance only baseline [6]
with (b) our improved room layout estimates. In many cases, the baseline system
selects small rooms due to high clutter. On the right, even though the room is not
precisely a cuboid, our approach is able to produce a significantly better interpretation
of the scene.
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Table 1. Time-lapse experiment: Average pixel accuracy for geometry estimation
on time-lapse sequences. Our method achieves significant gains; further, using humans
alone produces competitive performance.

Location Appearance Only People Only Appearance + People
Lee et al. Hedau et al.

Overall  64.1% 70.4 % 74.9% 70.8% 82.5%

model for sitting and standing. For the standing action, we use a subset of 196
images from [3] containing standing people. For sitting and reaching, we collect
and annotate 113 and 77 new images, respectively. All images are also flipped,
doubling the training data size. As negative training data we use the INRIA out-
door scenes [38], indoor scenes from [6], and a subset of Pascal 2008 classification
training data. None of the three negative image sets contains people. On testing
sequences, adaptive background subtraction is used to find foreground regions in
each frame and remove false-positive detections on the background. We also use
geometric filtering similar to [7] to remove detections that significantly violate
the assumption of single ground plane.

5.1 Experiment 1: Understanding time-lapse sequences

This dataset contains 40 videos of indoor time-lapse sequences totaling more than
140,000 frames. The videos were collected from YouTube by using keywords such
as “time-lapse,” “living room,” “dinner,” “party,” or “cleaning.” We treat each
sequence as a collection of still images of a particular scene. Most of the frames
contain one or more people interacting with the scene or each other. Examples
include: people sitting on beds or sofas; people walking and people reaching into
drawers and on tables. On average each video has around 3500 frames and 1200,
1300 and 400 detections of standing, sitting and reaching action, respectively.

Figure 5 shows the performance of our approach on a set of time-lapses. The
second column shows the probabilistic estimates of “walkable”, “sittable” and
“reachable” surfaces in blue, red and green respectively. We use these functional
region estimates to select the best room hypothesis and estimate the free space
of the scene, which is shown in the third column. These results show that human
actors provide lot of information about the scene as they interact with it. For
example, in the first case, the far away couches and their corresponding sittable
surfaces are hard to recognize, even for human observers. Because our approach
observes human actors walking and sitting in those areas, it can easily infer the
sittable surface. Similarly, in the second row, even though the scene is cluttered,
human reaching actions help us to infer a horizontal surface on the left.

We also qualitatively compare the 3D room layout estimated by our approach
to that of Hedau et al. [6]. Figure 6 shows some examples of the relative per-
formance; comparisons for all time-lapse sequences may be found on the project
page. Quantitatively, as shown in Table 1, our method is able to consistently
improve on the baseline, averaging a gain of 7.6% (bootstrapped 95% confidence
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Table 2. Single Image Experiment: Average pixel accuracy for geometry estimation
on single images. With even a single pose, our method achieves significant gains.

Location Appearance Only Appearance + People
Lee et al. Hedau et al. Ours with Ground Truth Poses
Overall  66.4% 71.3% 77.0% 79.6% 80.8%

interval: 4.5% to 11.3%). Further, our performance is worse than the baseline
in only 7.5% of cases. To demonstrate the value of cues from people, we show
results only using human action cues to select room hypotheses; specifically, we
use only our human action compatibility and room size terms, ¢ and p, to rank
the hypotheses. Even with only people as cues, our system performs only 4.1%
worse on average than Hedau et al. and equivalently to Lee et al.

Following [39], we also quantitatively evaluate estimated free space. We ob-
tain ground-truth by manually labeling the floor occupancy map in the estimated
room. Compared to the appearance-only backprojected clutter labeling, our ap-
proach achieves a 15.1% average precision gain in estimating floor free space.

5.2 Experiment 2: Understanding single images

In the second experiment, we consider a dataset of 100 still images of indoor
scenes. As existing work treats humans as clutter, previous data sets have de-
liberately excluded humans from their scenes; we therefore must gather a new
dataset. The images were collected with Internet image search engines using
keywords such as “living room,” “eating,” or “sitting,” and in collections of pic-
tures of celebrities and political figures. We emphasize that since our approach is
general, it can be applied to the wealth of still images available on the Internet.

(b) Appearances + People (Our approach)

Fig. 7. Still Image Experiments: The correct person in the correct place can very
easily disambiguate complex scene interpretation problems. In the last example, al-
though the vanishing points are inaccurate, we produce a more accurate intepretation.
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Our results show that functional constraints from human actions provide
strong evidence of 3D geometry even in a single image. Figure 7 shows few ex-
amples of our estimated room geometry as compared to Hedau et al. [6]. Com-
parisons for all images may be found on the project website. Figure 8 shows
examples of estimated 3D room geometry and the 3D occupied voxels. Quanti-
tatively, we demonstrate 2.6% improvement (bootstrapped 95% confidence in-
terval: 0.9% —4.8%) over all still images, as seen in Table 2, and our performance
is as good or better than [6] in 88% of cases. The gain over the baseline is lower
in the still image case than in the time-lapse case; this is largely due to rooms
in which functional reasoning does not significantly adjust the interpretation,
leading to equivalent accuracy with and without people: in many cases, human
actions cannot be exploited, even if the person detections are perfect (Table 2),
e.g., if the room selected with appearance alone is correct or if all actors are
contained within an inaccurate room.

6 Discussion

While recognizing actions and estimating poses for a given person is still a very
challenging problem, we have shown that noisy pose detections can significantly
improve estimates of scene geometry and 3D layout even in a single image. This
suggest other ways of using statistically aggregated noisy pose estimates, for
example, learning relations between human actions and semantic objects (beds,
chairs, tables) in the scene [40]. We expect further gains in accuracy of the
proposed method when better pose estimators become available in future.

Acknowledgments: This work was supported by a NSF Graduate Research
Fellowship to DF, and by ONR-MURI N000141010934, Quero, OSEO, MSR-
INRIA, EIT-ICT, and ERC grant Videoworld.

Input: Image

Output: Room

Fig. 8. Still Image Experiments: Functional reasoning to detect sittable surfaces
in still images.
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Erroneous Detection

Wrong Vanishing Points

Appear. Appear. + People Detections Output

Fig.9. Failure cases (ground-truth room in green): in some cases, vanishing
point extraction fails due to clutter. In other cases, there are plausible but inaccurate
detections.
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