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Figure 1: Examples from our test set of motions. The left two images are natural (motion capture data). The two images to the right are
unnatural (badly edited and incompletely cleaned motion). Joints that are marked in red-yellow were detected as having unnatural motion.
Frames for these images were selected by the method presented in [Assa et al. 2005].

Abstract

In this paper, we investigate whether it is possible to develop a mea-
sure that quantifies the naturalness of human motion (as defined by
a large database). Such a measure might prove useful in verifying
that a motion editing operation had not destroyed the naturalness
of a motion capture clip or that a synthetic motion transition was
within the space of those seen in natural human motion. We explore
the performance of mixture of Gaussians (MoG), hidden Markov
models (HMM), and switching linear dynamic systems (SLDS) on
this problem. We use each of these statistical models alone and as
part of an ensemble of smaller statistical models. We also imple-
ment a Naive Bayes (NB) model for a baseline comparison. We test
these techniques on motion capture data held out from a database,
keyframed motions, edited motions, motions with noise added, and
synthetic motion transitions. We present the results as receiver op-
erating characteristic (ROC) curves and compare the results to the
judgments made by subjects in a user study.

CR Categories: I.3.7 [Computer Graphics]: Three Dimensional
Graphics and Realism—animation I.2.6 [Artificial Intelligence]:
Learning— Parameter learning G.3 [Mathematics of Computing]:
Probability and Statistics—Time series analysis

Keywords: human animation, natural motion, machine learning,
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1 Introduction

Motion capture is an increasingly popular approach for synthesiz-
ing human motion. Much of the focus of research in this area
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has been on techniques for adapting captured data to new situa-
tions. Motion capture data can be reordered in time [Arikan and
Forsyth 2002; Kovar et al. 2002; Lee et al. 2002], similar motions
can be interpolated [Wiley and Hahn 1997; Rose et al. 1998; Ko-
var and Gleicher 2004], motion can be edited [Gleicher 2001], and
new motions can be generated by combining motions for individ-
ual limbs [Ikemoto and Forsyth 2004]. Models of human motion
can also be used to synthesize new motion [Brand and Hertzmann
2000; Li et al. 2002]. Each of these techniques proposes heuristics
or models that attempt to restrict the output of the algorithms to
natural-looking motion, but no single naturalness measure exists to
assess the quality of the output. In this paper, we explore whether
it is possible to provide such a measure.

How can we quantify what it means for a sequence of human mo-
tion to appear natural? One approach is to propose a set of heuristic
rules that govern the movement of various joints. If a given se-
quence violates any of the rules, it is judged to be unnatural. For
example, a character’s motion could be tested for angular momen-
tum conservation in flight or violation of the friction cone when the
foot is in contact. This bottom-up approach will likely have diffi-
culty with the more stylistic elements of human motion, because a
motion can be physically correct without appearing natural.

A second approach is to develop a set of perceptual metrics that
provide guidelines for the flaws that people are likely to no-
tice [Reitsma and Pollard 2003; O’Sullivan et al. 2003; Harrison
et al. 2004; Pollick et al. 2003]. For example, Reitsma and Pol-
lard measured the sensitivity of users to changes in horizontal and
vertical velocity. Taken together, such studies could provide a set
of guidelines to assess whether a given motion will be perceived as
natural.

A third approach is to train a classifier to distinguish between natu-
ral and unnatural movement based on human-labeled, ground-truth
data [Ikemoto and Forsyth 2004; Wang and Bodenheimer 2003].
For example, Wang and Bodenheimer used an optimization ap-
proach to find weights for a transition metric that best matched the
judgments of sequences by users. Here we present an alternative
take on this approach. We assume that the learning algorithm will
be trained only on positive (natural) examples of the motion. We
make this assumption because natural motions are readily available
from commercial motion capture systems. Negative (unnatural) ex-
amples, on the other hand, are precious because each must be hand
labeled by a person. As a consequence of this scarcity, the negative



examples that would be required for training do not exist. A further
concern is that the characteristics of these negative examples are
likely to be specific to the adaptation method that generated them
and not representative of unnatural motions in general. We will
demonstrate that using our approach, a variety of motions can be
assessed using models that have been trained on a large corpus of
positive examples (Figure 1).

Our approach to this problem is based on the assumption that the
evaluation of naturalness is not intrinsically a subjective criterion
imposed by the human observer but is, instead, an objective mea-
sure imposed by the data as a whole. Simply put, motions that we
have seen repeatedly are judged natural, whereas motions that hap-
pen very rarely are not. Humans are good at this type of evaluation
because they have seen a lot of data. The amount of collected mo-
tion capture data has grown rapidly over the past few years and we
believe that there is now an opportunity for a computer to analyze a
lot of data, resulting in a successful method for evaluating natural-
ness.

The contributions of this paper are threefold. First, we pose the
question of whether it is possible to quantify natural human motion
independent of any specific adaptation task. Second, we hierarchi-
cally decompose human motion into its constituent parts (individual
joints, limbs, and full body) and build a statistical model of each one
using existing machine learning techniques. We then combine these
models into an ensemble model for classification of the motion as
natural or unnatural. We present ROC curves of the performance
of these techniques on a broad set of test sequences and compare
the results to human performance in a user study. And finally, we
contribute a substantial database of human motion and a testing set
that will enable others to apply their algorithms to this problem.
Both training and testing datasets are freely available on the web:
http://graphics.cs.cmu.edu/projects/natural/.

2 Related Work

To our knowledge there is little work in computer animation that di-
rectly explores the question of quantifying natural human motion;
however, many algorithms for synthesizing and editing human mo-
tion have been designed with the goal of restricting their output to
natural human motion. We briefly review that work and then dis-
cuss related problems in other disciplines.

One early technique for amplifying the skills of the naive animator
was Perlin’s work using modulated sine waves and stochastic noise
to create lifelike animation [Perlin 1995]. We test on both positive
and negative sequences that are similar in that sinusoidal noise has
been added to motion capture data.

Many motion editing techniques have been proposed, each with a
set of optimization criteria intended to ensure that the resulting mo-
tion is natural (see, for example [Gleicher 2001; Sulejmanpasic and
Popovic 2005]). Some of these techniques have been adapted into
commercial software, and we use Maya to perform editing on mo-
tion capture data to generate part of our negative test set.

Motion graphs create new animations by resequencing pieces of
motion capture data. The naturalness of the resulting motion de-
pends largely on the quality of the motion transitions. Several al-
gorithms have been proposed for creating natural transitions [Lee
et al. 2002; Kovar et al. 2002; Arikan and Forsyth 2002]. We use
synthetic motion transitions, both good and bad, as part of the test
set in our experiments.

Wang and Bodenheimer [2003] used optimization to tune the
weights of a transition metric based on example transitions clas-

sified by a human viewer as good or bad. They made several as-
sumptions to make the optimization process tractable. For example,
they did not consider how changes in the blending algorithm would
affect the naturalness for a given distance metric. They also stud-
ied the optimal duration for a transition given a previously learned
distance measure [Wang and Bodenheimer 2004].

Limb transplant is one way to generalize the motion in an available
database. Ikemoto and Forsyth [2004] used an SVM to classify a
synthesized motion as “looks human” or “does not look human.”
Their approach was quite effective for this problem, but it is a su-
pervised learning approach and therefore requires a relatively large
number of positive and negative training examples specific to limb
transplant. In contrast, our goal is to use unsupervised learning to
construct a measure that can be trained only on positive examples
and that works for motion produced by a variety of motion editing
algorithms.

The question of how to quantify human motion is also related to re-
search that has been performed in a number of other fields. For ex-
ample, researchers interested in speaker identification have looked
at the problem of deciding whether a particular speaker produced
a segment based on a corpus of data for that speaker and for oth-
ers [Cole 1996]. Classifying natural vs. unnatural images for fraud
detection is similarly related to our problem [Farid and Lyu 2003].

Closer to our problem is the work of Troje [2002] who was inter-
ested in identifying features of a human walk that can be used to
label it as male or female. He reduced the dimensionality of the
dataset as we do, with PCA, and then fit sinusoids to the resulting
components. This approach is specific to a cyclic motion such as
walking and would not easily generalize to our very large, hetero-
geneous database. However, the performance of his classifier was
better than that of human subjects on a point light visualization of
the walking motion.

Researchers working in activity recognition have looked at detec-
tion of unusual activities, which is similar to our problem in that an
adequate negative training set would be difficult to collect. As a re-
sult, most approaches have focused on unsupervised learning. For
example, Zhong and his colleagues [2004] used an unsupervised
learning approach to detect unusual activity in video streams of hu-
man motion. Hara and his colleagues [2002] took motion detector
data acquired from an intelligent house, performed vector quanti-
zation, and estimated the probability of a sequence of sensor data
with a HMM. Hamid and his colleagues [2005] used clustering of
event n-grams to identify and explain anomalous activities.

3 Data

We explore the performance of three classes of statistical machine
learning techniques when trained on a large database of motion cap-
ture data and tested on sequences of unnatural and natural motion
from a number of different sources. Because the validity of these
results depends heavily on the training and testing datasets, we first
describe those datasets and then explain the statistical techniques
and show their performance.

3.1 Training Database

The training database consisted of 1289 trials (422,413 frames or
about 4 hours) and included motions from 34 different subjects per-
forming a variety of behaviors. Those behaviors included locomo-
tion (42%: 5% jumping, 3% running, and 33% walking), physical
activities (16%: basketball, boxing, dance, exercise, golf, martial



arts), interacting with the environment (7%: rough terrain, play-
ground equipment), two subjects interacting (6%), and common
scenarios (29%: cleaning, waiting, gestures).

The motion was originally captured with a Vicon motion capture
system of 12 MX-40 cameras [Vicon Motion Systems 2005]. The
motion was captured at 120Hz and then downsampled to 30Hz. The
subjects wore 41 markers, the 3D positions of which were located
by the cameras. Using an automatically obtained skeleton for the
user, the motion was further processed to the ASF/AMC format,
which includes absolute root position and orientation, and the rel-
ative joint angles of 18 joints. These joints are the head, thorax,
upper neck, lower neck, upper back, lower back, and left and right
humerus, radius, wrist, femur, tibia, and metatarsal.

For the experiments reported here, we converted each frame of raw
motion data to a high-dimensional feature vector of angles and ve-
locities. For the root segment, we compute the angular velocity and
the linear velocity (in the root coordinate system of each frame).
For each joint, we compute the angular velocity. The velocities
are computed as a central difference between the joint angle or the
position on the previous frame and on the next frame. As a re-
sult, both joint angles and their velocities can be represented by
unit quaternions (four components each). The complete set of joint
angles and velocities, together with the root’s linear velocity (three
components) and angular velocity (quaternion, four components),
form a 151-dimensional feature vector for each frame. The quater-
nions are transformed to be on one-half of the 4D sphere to handle
the duplicate representation of quaternions. If the orientation of a
joint crosses to the other half-sphere, we choose the alternative rep-
resentation for that quaternion and divide the motion sequence at
the boundary to create two continuous sequences. Fortunately this
problem occurs relatively rarely in natural human motion because
of human joint limits.

3.2 Testing Motions

We generated a number of different test sets in an effort to span
the space of natural and unnatural motions that might be generated
by algorithms for producing human motion. Unlike our training
data, the testing suite contains both positive (natural) and negative
(unnatural) examples.

The negative testing sequences were obtained from a number of
sources:

• Edited motions. Alias/Wavefront’s Maya animation system
was used to edit motion capture sequences to produce negative
training examples. The editing was performed on either a joint
or a limb using inverse kinematics.

• Keyframed motions. These motions were keyframed by
an animator with significant Maya experience but limited
keyframing experience.

• Noise. Noise has been used to generate human motion [Perlin
1995] and to improve the quality of captured motion by
adding variation. We generate both positive and negative test-
ing examples by varying the amount of noise and relying on a
human observer to assess the naturalness of the motion.

• Motion transitions. These motions were computed using a
commonly accepted metric for transitions (maintain contact
constraints and keep the sum of the squared changes in joint
angles below a threshold). Transitions above a high threshold
and below a low threshold were then classified as good or bad
by a human viewer.

• Insufficiently cleaned motion capture data. In the process of
cleaning, motion capture data is transformed from the 3D
marker locations to relative joint angles using a model of
the subject’s skeleton. For most marker sets, this process is
accomplished through the use of inverse kinematics. If the
markers have not been placed carefully or the kinematic chain
is near a singularity, this process may result in unnatural mo-
tion (for example, knees that do not fully extend or swing out
to the side if significantly bent).

The negative, or unnatural, testing set consisted of 170 trials (27774
frames or 15 minutes).

The positive tests consisted primarily of motion capture data that
was held out from the database. Additional positive testing data
were created by adding noise to these motions and by generat-
ing motion transitions that were judged good by an expert human
viewer. The natural motions consisted of 261 trials (92377 frames
or 51 minutes).

4 Approach

The input data for our models, motion capture data, is a multivari-
ate time series consisting of vectors of features (joint angles and
velocities) sampled at discrete time instants. From this perspec-
tive, a model for natural motion must capture probabilistic depen-
dencies between features across time. We construct this model in
three steps. First, we select a statistical model to describe the vari-
ation in the data over time. We investigate three relatively standard
techniques: mixtures of Gaussians (MoG), hidden Markov models
(HMM) and switching linear dynamic systems (SLDS). Associated
with each model is a set of model parameters and a likelihood func-
tion that measures the probability that an input motion sequence
could be generated by the model. Second, we fit the model parame-
ters using a corpus of natural human motion as training data. Third,
given a novel input motion sequence, we compute a score which
can be interpreted as a measure of naturalness.

By thresholding the naturalness score we obtain a classifier for nat-
ural motion. There are two types of classification errors: false pos-
itives (the classifier predicts natural when the motion is unnatural)
and false negatives (the opposite case). By varying the threshold
we can trade-off these two types of errors. The ROC curve for a
classifier summarizes its performance as a function of the thresh-
old setting [Van Trees 1968] (see Figures 3 and 4 for examples).
Each threshold choice corresponds to an operating point on the
ROC curve. By comparing the area under the ROC curve, we can
measure the relative performance of a set of classifiers without the
need to choose a particular threshold. In practice the choice of op-
erating point on the ROC curve will be dictated by the application
requirements and will be assessed using a set of positive and nega-
tive examples that were not used for training.

We could construct a single statistical model of naturalness using
the full 151-dimensional input feature vector from Section 3.1 for
training. However, learning an accurate model for such a high-
dimensional feature vector is difficult, even with a (relatively) large
amount of training data. Therefore, we propose to hierarchically
decompose the full body motion into its constituent parts and train
an ensemble of statistical models, each responsible for modeling a
particular part: joints, limbs, or the whole body. Given an input
sequence, these smaller models would produce a set of likelihood
scores and an ensemble rule would be used to combine these scores
into a single naturalness measure. The ensemble approach has three
potential advantages over creating a single model based on the com-
plete feature vector:
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Figure 2: The three hierarchical groups of features. (a) At the low-
est level each joint and its velocity form a feature group. Each
feature group is illustrated as a green circle. The white circle rep-
resents the group of features from the root segment (linear velocity
and angular velocity). (b) The next level consists of sets of joints
grouped as limbs. (c) At the highest level, all the joints are com-
bined into one feature group (without velocity information).

• One potential problem in learning the parameters of statistical
models is overfitting, which occurs when a model has exces-
sive capacity relative to the amount of available training data.
When overfitting occurs, the trained models do not generalize
well during testing because they are excessively tuned to the
training data set. The ensemble approach gives us flexibility
in controlling the capacity of the individual models to prevent
overfitting. In particular it allows us to control the degree of
coupling between features in the model.

• In some motion sequences, the patterns of unnatural motion
may be confined to a small set of joint angles. These cases
can be difficult to detect with a single statistical model, be-
cause the small set of features with unnatural motion will be
swamped by the majority of the features which are exhibiting
natural motion. The ensemble approach avoids this problem
because our method of combining the statistical models looks
for an unnatural classification by any of the models, not an
average classification of unnaturalness.

• The ensemble approach makes it possible to examine small
groups of joints and identify the ones most strongly associ-
ated with the unnatural motion. This property should make it
possible to provide guidance to the animator about what ele-
ments of the motion deserve the most attention.

We designed groups of features to capture dependencies between
joints at different scales. Each group of features forms a fea-
ture vector that is associated with a single model in the ensem-
ble. Specifically, given the input 151-dimensional feature vector
described in Section 3.1, we define a set of 26 smaller feature vec-
tors by combining joint angles and joint velocities into groups of
features (figure 2). At the lowest level, we create an 8-D feature
vector from each of the 18 basic joints (angle and velocity). An-
other feature vector is created for the linear and the angular veloc-
ity of the root segment (seven features). To represent the aggregate
motion of parts of the body, we assign a feature vector to each of
the limbs: two arms (each three joints; 24 features), two legs (each
three joints; 24 features), the head-neck group (head, upper neck,
lower neck; 24 features) and the torso/root group (thorax, upper
back, lower back, plus root; 31 features). Finally, at the top level,
we define a feature vector representing the full body pose (rota-
tion angles for all 18 joints but no velocities; 72 features). For
the models created using HMM and SLDS, the feature vectors that
comprise each of these feature groups are first processed with PCA

(99% variance kept for the full-body model, 99.9% variance kept
for the smaller models) to reduce the dimensionality.

Given an ensemble of models, we generate a naturalness measure
for a motion sequence D of length T by first computing a score si
for each model, where the model has parameters θi:

si =
logP(D | θi)

T

The scores for each model will generally not be in the same range.
Therefore we must normalize the scores before they can be com-
bined. For each model, we compute the mean µi and standard devi-
ation σi of the scores for the training data (after eliminating a small
percentage of the high and low scores to reduce the effect of out-
liers). The final score for sequence D is then computed as follows:

s = min
i

(

si −µi

σi

)

, i = 1,2, . . . ,26

We choose the minimum (worst) normalized score from among the
si because we assume that the entire motion should be labeled as
unnatural if any of its constituent feature groups have bad scores.

We now describe the three statistical models used in our experi-
ments, as well as a baseline method and a user study used for vali-
dating our results.

4.1 Mixture of Gaussians

We first experimented with a mixture of Gaussians (MoG) model
because of its simplicity. The probability density of each feature
vector was estimated using a mixture of 500 Gaussians, each with a
spherical covariance. In this rudimentary representation, the dy-
namics of human motion are only encoded through the velocity
components of the feature vector. As the result, this model is quite
weak at modeling the dynamics of human movement.

4.2 Hidden Markov Models

Next, we experimented with a hidden Markov model (HMM) [Ra-
biner and Juang 1993], because it explicitly encodes dynamics
(change over time) and has been shown to work extremely well in
other time-series domains such as speech recognition. In a HMM,
the distribution of the body poses (and velocities) is represented
with a mixture of Gaussians. In general, each hidden state in a
HMM indexes a particular mixture density, and transitions between
hidden states encode the dynamics of the data. Given positive train-
ing examples, the parameters of the HMM can be learned using the
Expectation-Maximization (EM) algorithm. The parameters con-
sist of the probabilities in a state transition matrix for the hidden
state, an initial state distribution, and mixture density parameters.
In the general case, this set of parameters includes mixture weights
for each hidden state and the mean vectors and covariance matrices
of the Gaussians.

For the full body HMM, we used a model with 180 hidden states.
For the other feature groups comprising the ensemble of HMM, we
used only 60 hidden states because the feature vectors were much
smaller. Each hidden state in the HMM was modeled as a single
Gaussian with a diagonal covariance matrix.



4.3 Switching Linear Dynamic Systems

A switching linear dynamic system (SLDS) model can be viewed
as a generalization of a HMM in which each switching state is as-
sociated with a linear dynamic system (LDS) instead of a Gaus-
sian distribution over the output space [Pavlović et al. 2000]. In a
HMM, each switching state defines a “region” in the output space
(e.g, poses and velocities), where the mean vector determines the
location of the region and the covariance matrix determines its ex-
tent. In contrast, each LDS component in an SLDS model defines a
family of trajectories with linear dynamics. We used a second-order
auto-regressive (AR) model in our experiments. In this model, tra-
jectories begin at an initial state that is described by a mixture of
Gaussians. As the trajectory evolves, the state of the motion at time
t is described by a linear combination of the state values at times
t−1 and t−2 and the addition of Gaussian noise. By switching be-
tween these LDS components, the SLDS can model a system with
nonlinear, non-Gaussian dynamics using a set of simple building
blocks. Note that our application of SLDS does not require a sep-
arate measurement process, because we model the motion directly
in the feature space.

Closely related to our SLDS model is the motion texture model [Li
et al. 2002]. The primary difference is that the motion texture ap-
proach confines each LDS element to a “texton” that is constrained
to begin and end at specific keyframes, whereas we adopt the clas-
sical SLDS framework where transitions between LDS models can
occur at each time step.

As in the HMM case, the SLDS model parameters are estimated
using the EM algorithm. However, a key difference is that ex-
act inference in hybrid dynamic models like SLDS is generally in-
tractable [Lerner 2002]. We employed an approximate Viterbi in-
ference algorithm which computes an approximation to the highest
probability switching sequence [Pavlović et al. 2000].

Given a new motion sequence, we compute a score that corresponds
to the log likelihood of the data under the SLDS model. This score
is the sum of the log likelihoods for each frame of data. Per-frame
scores depend on the cost of switching between models and the size
of the one-step-ahead error between the model’s prediction and the
actual feature vector.

For the full body SLDS, we used an SLDS model with 50 switch-
ing states. For the other groups of features comprising the ensemble
model, we used 5 switching states each. We used diagonal covari-
ance matrices for the noise process.

4.4 Naive Bayes (Baseline Method)

To establish a baseline for the other experiments, we also imple-
mented a simple marginal histogram probability density estima-
tor based on the Naive Bayes (NB) model. Assuming indepen-
dence between the components of our 151-dimensional feature vec-
tor (which is clearly wrong), we computed 1D marginal histograms
for each feature over the entire training database. Each histogram
had 300 buckets. Given this model, we estimated the score of a new
testing sequence by summing over the log likelihoods of each of the
151 features for each frame and then normalizing the sum by the
length of the motion sequence. Note that this method captures nei-
ther the dependencies between different features (even those com-
prising a single joint angle), nor the temporal dependencies between
features at different frames (although velocities do provide some
measure of dynamics). As expected, this method does not perform
particularly well, but we included it as a baseline with which to
compare the other, more complicated approaches.
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Figure 3: The ROC curves for each statistical model and for the
human subjects in our user study. The circle on each curve repre-
sents the equal error rate. The area under the ROC curve is given in
parentheses.

4.5 User Study

To evaluate our results, we performed a user study approved by
Institutional Review Board (IRB) of Carnegie Mellon University.
Twenty-nine male subjects and twenty-five female subjects with
different backgrounds and races were obtained by university-wide
advertising.

We randomly selected and rendered 118 motion sequences from
our testing set (approximately half from the positive testing set and
half from the negative testing set). We showed the rendered videos
to subjects in two segments with a 10 minute break between the
segments. Each segment contained half the sequences in a ran-
dom order and the ordering of the presentation of the two segments
was randomized between subjects. After watching each motion, the
subjects wrote their judgment about the naturalness of the motion
(yes or no). The total length of the study (including the break) was
about 30 minutes. For comparison with the statistical models, the
results of the user study are summarized in Section 5.

5 Experiments

We trained the statistical models on the database of four hours of
human motion and tested them on a set of 261 natural and 170 un-
natural motions. Figure 3 shows the ROC curves for each method.
The ROC curve for the user study was computed by varying the
threshold for the number of subjects who must mark a motion as
natural for it to be labeled as natural. The testing set for the human
subjects was only 118 of the 431 testing motions in order to prevent
fatigue.

Table 1 gives the area under the ROC curve for each method. For
the single full-body models (151 features), SLDS had the best per-
formance, followed by HMM and MoG. Each ensemble of 26 mod-
els performed better than the single model that used the same sta-
tistical technique. This improvement occurs largely because the
smaller statistical models and our method of combining their scores
makes the ensemble more sensitive to unnatural motion of a single
joint than a single statistical model. The ensemble of HMM had
the largest area under the ROC curve, although the performance of



Method Positive Test Bad Motion Edited Keyframed Noise Transition Area Under Number of
Set (261) Capture (37) (60) (11) (30) (32) ROC Parameters

Naive Bayes 0.69 0.75 0.73 0.80 0.76 0.40 0.75 45,600
MoG 0.71 0.86 0.97 1.00 0.37 0.28 0.78 76,000

Ensemble MoG 0.74 0.89 0.80 1.00 0.80 0.40 0.88 201,000
HMM 0.72 0.78 1.00 1.00 0.53 0.22 0.78 21,087

Ensemble HMM 0.82 0.89 0.78 1.00 0.83 0.75 0.91 43,272
SLDS 0.76 0.78 0.75 1.00 0.43 1.00 0.87 333,150

Ensemble SLDS 0.82 0.76 0.82 1.00 0.67 0.97 0.90 159,340
Human Subjects 0.93 0.75 1.00 0.81 1.00 0.92 0.97 NA

Table 1: The percentage of each type of testing data that was classified correctly by each classification method (using the point on the ROC
curve with equal error rate). The number of test sequences for each type of motion is given in parentheses.
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Figure 4: ROC curves for each of the 26 HMM and the combined
ensemble HMM. The HMM for the individual joints are shown in
red, for limbs in green, and for the full body in blue. The lowest
curve corresponds to the right wrist which also causes the curve for
the right arm to be low.

all three ensemble methods was similar. The human subjects per-
formed significantly better than any of the methods, indicating that
it may well be possible to develop better methods.

Table 1 also gives the percentage of the testing data that were clas-
sified correctly for each category of the test set and each model.
The threshold setting for each classifier corresponds to the point of
equal error rate on the ROC curve (see Figure 3). This point on the
ROC curve is where the percentage of false positives equals the per-
centage of false negatives. Bad motion capture data was not easy
for most of the classifiers to detect with only the ensemble of MoG
and of HMM having success rates near 90%. The human subjects
were also not particularly good at detecting those errors, perhaps
because the errors were generally of short duration and the subjects
did not have experience with the process of capturing or cleaning
motion capture data. All of the methods were able to correctly clas-
sify more than 70% of the edited motions as unnatural, and MoG,
HMM, and the human subjects had a success rate of over 95% on
those motions. The keyframed motions were small in number and
were largely classified correctly as unnatural by all methods and the
human subjects. The addition of sinusoidal noise was more diffi-
cult for most of the methods to detect with only ensemble MoG and
ensemble HMM achieving scores near 80%. The human subjects,
on the other hand, could easily discriminate these motions, scoring
100%. Motions with bad transitions were the most difficult type
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Figure 5: Response of the ensemble of HMM to the positive and
the negative testing data. Each row shows the responses of all 26
models to a particular testing sequence. The intensity of the color
(red to yellow) indicates a decreasing score (more unnatural). Each
column corresponds to a single ensemble, grouped as follows: A-
joints, B-limbs, and C-full-body, (see Figure 2).

to identify for all of the methods, with the exception of SLDS and
ensemble of SLDS. During a bad transition, the velocities change
due to blending in a way that is locally smooth, but is inconsistent
with the dynamics of the initial and final motion. We hypothesize
that the good performance of the SLDS models can be attributed to



their ability to correctly model longer-term temporal properties.

Table 1 also describes the number of parameters in each of the mod-
els. These parameters are the degrees of freedom that the model can
exploit in fitting the data and provide a crude measure of the rep-
resentational resources of the models. The ensemble of MoG and
of SLDS have many more parameters than the ensemble of HMM
but produce slightly inferior performance. This discrepancy is per-
haps a sign that these more complex models may be overfitting the
training data.

Figure 4 further explores the performance of the ensemble of
HMM. Each type of model is shown in a different color: single
joints, limbs, and full body. As expected, the ensemble model that
is computed by combining the scores of the individual HMM has
significantly better performance than any single HMM. The indi-
vidual HMM are fairly tightly bunched indicating that each poten-
tially has value in the computation of the overall score.

One advantage of the ensemble approach is that it can be used not
only to detect unnatural motions but also to localize problem areas.
This property is illustrated in Figure 5 where the color of a block
indicates whether a particular HMM found each motion to be natu-
ral (black) or unnatural (red to yellow). In order to detect unnatural
motion in an individual joint or limb, we compare the normalized
score from the corresponding smaller model with the threshold that
gives the equal error rate for the ensemble classifier. Joints that
are below threshold are flagged as unnatural and rendered with a
color that is proportional to the score. Two unnatural motions are
visualized in Figure 1 with the joints that were detected as unnat-
ural shown in red-yellow. By localizing problem areas to partic-
ular joints or limbs, we found errors in our previously published
database that had not been noticed when the data was cleaned and
processed.

Our user study produced a true positive rate of 93% and a 7% false
positive rate. The subjects were drawn from a variety of disciplines
and had not spent any significant time studying human motion data
so it is perhaps not surprising that their classification did not agree
completely with that of the authors when they assembled the test-
ing database. Informal interviews with the subjects indicated that
they were sometimes confused by the absence of objects that the
character should have been interacting with (a box that was stepped
onto, for example). If the semantics of the motion was not clear,
they were likely to label it as unnatural. The subjects also missed
some errors in the motion, most commonly those of short duration.

The training time for each of these statistical methods was signifi-
cant, ranging from a few hours for the simpler methods to several
days for the ensemble methods. The testing time is not long how-
ever, we were able to test the entire set of motions in 20 minutes.

6 Discussion

Our measures cannot be significantly better than the motion
database of positive examples used to train them. Motions that are
quite distant from those in the training set will likely be judged un-
natural even if they are in fact natural. In our experiments, we have
seen that unusual motions that have little in common with other mo-
tions in the database are sometimes labeled unnatural. For exam-
ple, we have only a few examples of falling in the motion database
and “natural” examples of that behavior were judged as unnatural
by our measures. On the other hand, we have also seen evidence
that the measures do generalize. For example, our testing set in-
cluded walking while picking up a coffee mug from a table. This
motion was judged natural by most of the methods although based

on a visual inspection, the closest motions in the training dataset
were a two arm reach while standing, walking, and sweeping with
a broom.

Negative examples often bear the imprint of the algorithm used to
create them. For example, carelessly edited motions might evidence
unbalanced postures or foot sliding if inverse kinematics was not
used to maintain the foot constraints. Similarly, motions that in-
clude bad transitions often have significant discontinuities in veloc-
ity as the blending routine attempts to smooth between two distant
poses with differing velocities. We have attempted to address this
concern by testing on a wide variety of common errors: motions
that were aggressively edited in a commercial animation package,
motions that were keyframed by an inexperienced animator, badly
cleaned motion capture data, bad (and good) transitions, and mo-
tions with synthetic noise added. A larger variety of negative train-
ing examples would allow a more rigorous assessment of competing
techniques.

Despite our attempt to span the space of motion errors with our neg-
ative testing set, other common errors may not be reliably detected.
For example, our methods will likely not detect very short errors
because the score on a motion is computed as an aggregate over an
entire sequence of motion. The magnitude of the error caused by
a single glitch in the motion will be reduced by the high percent-
age of good, natural motion in the sequence. This particular flaw
does not seem serious, however, because a special-purpose detec-
tor could easily be created for glitch detection. Furthermore, most
modern editing and synthesis techniques avoid this kind of error.

Our measures are also not very effective at detecting otherwise nat-
ural motion that has been slowed down by a factor of two. Such a
slow-down is sometimes difficult for human observers to detect as
well, particularly for behaviors that do not include a flight phase to
provide decreased gravity as a reference. We believe that our meth-
ods do not perform well on these motions because the poses and
lower velocities seen in these motions are “natural” in the sense
that they would be seen in such natural behaviors as slow walks.
Furthermore, the HMM have self-loops that allow slower motions
to pass without significant penalty.

Apart from their use as an evaluation tool, measures of naturalness
could be used to improve the performance of both motion synthesis
and motion editing tools by identifying motion produced by those
algorithms that was likely not natural. Those labels could be used
to adjust the threshold of a particular transition metric, (for exam-
ple, Wang and Bodenheimer [2003]) or to assess the value of a new
editing algorithm.

In order to facilitate comparison between models, we used a stan-
dard approach to dimensionality reduction and standard constraints
such as diagonal covariances to reduce the number of model param-
eters. In future work we plan to explore dimensionality reduction
approaches for the SLDS model that exploit the dynamics of the
data more effectively (for example, [Soatto et al. 2001]).

Our approach to measuring the naturalness of a motion via ensem-
bles of smaller models was quite successful. However, it is likely
that the methods could be improved, given that human observers
perform significantly better on our test set. In the approach reported
here, we used our knowledge about the synergies of human mo-
tion to pick appropriate feature groups but feature selection from
among a larger set of features might produce better results. We
combined the scores of the small models by normalizing and then
simply picking the worst score. Other, more sophisticated, methods
for normalizing or computing the score might provide better results.

In addition to screening for naturalness, our approach might work
for screening for the style of a particular character. For example, a



measure could be trained on all the keyframe motion for a particular
cartoon character. Each new motion sequence could then be tested
against that measure to determine if the motions were “in charac-
ter.” If not, those motions could be flagged for closer inspection and
perhaps re-animation by the animator.
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