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Figure 1: Capture and animation of the dynamic motion of the surface of the human body.

Abstract

During dynamic activities, the surface of the human body moves
in many subtle but visually significant ways: bending, bulging, jig-
gling, and stretching. We present a technique for capturing and an-
imating those motions using a commercial motion capture system
and approximately 350 markers. Although the number of mark-
ers is significantly larger than that used in conventional motion
capture, it is only a sparse representation of the true shape of the
body. We supplement this sparse sample with a detailed, actor-
specific surface model. The motion of the skin can then be com-
puted by segmenting the markers into the motion of a set of rigid
parts and a residual deformation (approximated first as a quadratic
transformation and then with radial basis functions). We demon-
strate the power of this approach by capturing flexing muscles, high
frequency motions, and abrupt decelerations on several actors. We
compare these results both to conventional motion capture and skin-
ning and to synchronized video of the actors.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: human animation, motion capture, skin deformation

1 Introduction

Optical motion capture has been used very successfully to create
compelling human animations for movies and sports video games;
however, it provides only a much simplified version of what we
would see if we were to view a person actually performing those
actions. The data contain an approximation of the motion of the
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skeleton but miss such subtle effects as the bulging of muscles and
the jiggling of flesh. The current state of the art for whole body
capture uses a set of 40-60 markers and reduces it to the rigid body
motion of 15-22 segments. To the extent possible, the markers are
placed on joint axes and bony landmarks so that they can more eas-
ily be used to approximate the motion of the skeleton. Biomechan-
ical invariants are often used to reduce the number of markers to
less than the number required to fully specify the orientation of
each limb.

In this paper, we take a different approach to motion capture and
use a very large set of markers (approximately 350) placed not on
bony landmarks but on the muscular and fleshy parts of the body.
Our goal is to obtain not only the motion of the skeleton but also
the motion of the surface of the skin.

We accurately reconstruct the motion of the surface of the body by
applying the three-dimensional trajectories for this dense marker
set to a subject-specific polygonal model (Figure 1). The polygonal
model is first optimized to fit the three-dimensional locations of the
markers from a static pose. During the motion, the rigid body mo-
tion of the dense marker set is extracted and the remaining motion
of the markers is used to compute local deformations of the polygo-
nal model. The position of occluded markers is estimated from the
locations of neighboring markers using a local model of the surface
shape. The deformations of the marker set allow the muscle shapes
in the polygonal model to grow and shrink and the fleshy areas to
move dynamically.

To demonstrate the viability of this technique, we captured the mo-
tion of two subjects: a male football player (university-level offen-
sive lineman) and a female professional belly dancer. Both subjects
exhibited significant muscle and skin deformation when they per-
formed dynamic activities. To evaluate the results, we compared
motion captured with the dense marker set to synchronized video
and to similar motions captured with a standard marker set and ren-
dered using the same model and the skinning techniques available
in commercial software.

2 Background

Data-driven approaches such as the one described in this paper are
only one possible way to create an animation of the deformations



of the human body as it moves. Other approaches that have been
used successfully include skinning from example and anatomically
based models such as physical simulations of muscles. We now de-
scribe each technique and the classes of the deformations it is capa-
ble of modeling. We discuss the face and hands separately because
some techniques are applicable to those body parts in particular.

The first techniques to be developed required the modeler to spec-
ify the contribution of each bone to the position of the vertices by
painting weights on the model (this approach is nicely described
by Lewis and colleagues [2000]). These techniques, which have
been variously called skeleton subspace deformation, single weight
enveloping, and simply skinning, are easy to implement and fast
to compute and therefore remain in use today. Unfortunately, with
the basic implementation of this algorithm, no set of weights will
prevent collapsing joints or the “candy wrapper” effect because the
volume of the body is not preserved. A number of recent solu-
tions attempt to fix these problems in an automatic fashion without
incurring significant computational cost: interpolating spherical ro-
tations rather than performing linear interpolation [Kavan and Zara
2005], approximating the model by swept ellipsoids [Hyun et al.
2005], adding deformable chunks under the surface of the skin to
provide a very simple model of muscle and fat [Guo and Wong
2005], or constructing a simple anatomical model from the out-
side in [Pratscher et al. 2005]. These techniques model the bending
of the skin around joints but cannot show dynamic effects such as
jiggling of the flesh or muscle bulging due to exertion.

The next set of techniques also determine how the surface should
deform as a function of the pose of the character but use examples
to provide hints about the shape of the skin at key poses. Lewis
and his colleagues [2000] combined this idea with skeleton sub-
space deformation. Sloan and his fellow researchers [2001] used
radial basis functions to interpolate efficiently among a set of exam-
ples. Wang and Phillips [2002] allowed the skinning to have more
degrees of freedom (and therefore more weights). Mohr and Gle-
icher [2003] used a similar approach except that they introduced
the degrees of freedom required to incorporate the examples as ad-
ditional joints rather than as skinning weights. Each of these tech-
niques used pose-specific models for the character. The examples
were created by hand and leveraged the insight of the modeler re-
garding the shape of the body and the poses to be specified. These
techniques can model changes in the shape of the body as a func-
tion of pose but do not model dynamic effects such as changes in
shape as a function of the torque being applied at a joint.

Other data-driven approaches rely on scanned models for the exam-
ple poses. Allen and his colleagues [2002] used scanned data for the
upper body with correlated poses from motion capture to interpo-
late a subdivision surface model and animate new sequences of mo-
tion capture data. The SCAPE system used a set of high resolution
scans for one subject to animate the body shapes of new subjects
based on a single scan and a set of marker positions [Anguelov et al.
2005]. They decoupled the motion into a rigid body component and
a residual deformation as we do. As with the previous data-driven
approaches, this system captured joint angle-specific deformations
that were present in the data but could not capture dynamic effects
in the surface of the skin.

Another alternative is to continuously capture skin deformation as
Sand and his colleagues [2003] did and as we do. These data will
necessarily be at a lower resolution than a laser scan. Sand and
his colleagues used a conventional marker set to capture the motion
of the skeleton and then extracted the surface model from silhouette
information captured with three video cameras. Because silhouettes
do not completely specify the geometry at any moment in time, they
generalized observations based on the joint angles of neighboring
limbs. This system could not capture dynamic effects that were not

visible in the silhouette.

There is a large body of work on modeling and simulating the un-
derlying musculature of the human body (for example [Scheepers
et al. 1997; Wilhelms and Gelder 1997; Nedel and Thalmann 2000;
Teran et al. 2005a]). A number of these systems tackle the very
difficult problem of not only modeling the complex anatomy but
also simulating a part of its functionality. In particular, a several of
these systems model the flex of muscles as they apply joint torques.
Recently, Teran and his colleagues [2005b] proposed modeling the
quasi-static movement of flesh with finite elements. Simple dy-
namic models have been used to add dynamic effects to the motion
of skin [Larboulette et al. 2005]. No simulations have been con-
structed that combine a complete model of the human body with a
dynamic simulation and control system in part because of the dif-
ficulty of controlling it to perform a task. However, the control
system for some behaviors can be simpler, as Zordan and his col-
leagues [2004] demonstrated with their anatomical model and con-
trol of breathing. The most anatomically accurate models do not
show the motion of the skin but show muscle shape and the result-
ing action (for example [Dong et al. 2002; Lemos et al. 2005]).

The hands and face are in some sense special cases for the prob-
lem of animating skin motion: the face because its planarity makes
it more amenable to capture and the hands because their bony
anatomical structure makes them more amenable to anatomical
modeling [Albrecht et al. 2003; Kurihara and Miyata 2004]. Be-
cause the motion of the face cannot be reasonably approximated
by rigid body motion, facial animation has motivated the study of
techniques for cleaning and using dense marker sets [Guenter et al.
1998; Lin and Ouhyoung 2005]. Facial deformations do not include
significant occlusions and are appropriate for capture techniques
such as structured light [Zhang et al. 2004; Wang et al. 2004].

3 Overview

We present a data-driven approach to capturing and animating the
surface of a human character’s skin. The data is captured by placing
several hundred small markers on an actor. Although the number of
markers is large, the motion of the markers does not fully capture
the motion of the skin. To supplement this sparse sample, we use
a high-resolution, subject-specific surface model. We address two
main issues in this work: processing missing/noisy markers and de-
forming the reference model to match the marker motion. Because
of the large number of small markers and occlusions by other body
parts, the three-dimensional (3D) positions of the markers from the
motion capture device frequently exhibit missing and disconnected
segments. We employ a local model defined on each marker by
its neighbors to merge the disconnected segments and fill in the
missing markers. To best fit the marker positions to the reference
model, we divide the marker motion into a set of rigid motions and
approximate the residual deformation of each part. These two con-
tributions are discussed in detail in the next two sections. Section 6
discusses our results and compares the animated motion to alterna-
tive techniques for model deformation and to synchronized video
and conventional motion capture. The last section of the paper dis-
cusses the limitations of our approach and future work.

4 Data Collection and Cleaning

We captured the movement of the markers with a commercial
optical motion capture system consisting of 12 near infra-red
cameras with 4 megapixel resolution capturing at a rate of 120
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Figure 2: Capture setup: (a) Twelve cameras surrounding a small
capture region. Two cameras (shown in red) were aimed up rather
than down to capture downward facing markers; (b) 350 small
markers attached to the subject’s body.

frames/second [Vicon Motion Systems 2006]. To increase accu-
racy, we positioned the cameras close to the subject with a small
capture region (approximately 2 m by 2 m by 2.5 m high). Two
cameras were aimed up rather than down to capture markers facing
toward the ground. Figure 2(a) shows the camera configuration.

We placed approximately 350 reflective markers on the subject’s
body. To capture the subtle movement of the skin effectively, we
chose small markers (diameter 3.0 mm) with a hemispherical shape
to minimize the offset of the markers from the body. Although
it is not necessary to have an even distribution of the markers on
the body, we drew an approximate grid on the subject’s body, and
placed the markers on that grid. The average distance between two
neighboring markers was 4-5 cm. We supplemented the grid pat-
tern with additional markers in areas where more resolution would
likely be needed (the tip of the elbow and the point on the lower part
of the shoulder blade, for example). Figure 2(b) shows the marker
placement.

We reconstructed the 3D positions of the markers with the VICON
IQ 2.0 software [Vicon Motion Systems 2006]. In conventional mo-
tion capture, reconstruction is aided by a skeleton model and a rigid
link assumption; however, because of the significant deformations
in our captures, we could not make this assumption. This assump-
tion is also not valid for motion capture of the face, but our whole
body capture was fully 3D and therefore contained many more oc-
clusions than are seen in the more nearly 2D data captured from the
face. Occlusions are difficult to handle because they occur simulta-
neously in regions.

In the next section, we present a novel method for cleaning and
recovering damaged marker data based on a local reference frame
defined at each marker and the spatial relationship with neighboring
markers. We first define the local reference frame and then explain
how it can be used to clean and recover corrupted data by identify-
ing trajectories that can be merged and facilitating hole filling. The
final step in the cleaning process is smoothing.

4.1 Local Reference Frame

We first select a pose as the reference pose and use it to estimate the
local shape of the body. We selected the pose shown in Figure 2(b)
as the reference pose because few markers were occluded. We as-
sume that subjects begin each motion in the reference pose and that
there are no missing markers in the first frame. This last assump-
tion was reasonable for our experiments because only two or three
markers near the armpit were occluded and these could be filled in
manually by referring to frames where they were visible. We create
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Figure 3: (a) a marker (red dot) and its one-ring neighbors (blue
dots); (b) a local reference frame on the marker.

(a) (b) (c)

left arm

Figure 4: The reference pose: (a) markers; (b) marker surface; (c)
local frame at each marker.

a mesh from the marker positions in the reference pose. Neighbor-
ing markers are identified based on the geodesic distance along the
skin. This process was done manually for our experiments. We call
the resulting mesh the marker surface (Figure 4(a) and (b)). The
indices of the vertices on the surface are assigned to the markers as
labels. The construction of the marker surface is done only once for
each subject.

On the marker surface, we denote the marker with index i as mi,
1 ≤ i ≤ N, where N is the number of markers, and its one-ring
neighbor as mi,k, 1 ≤ k ≤ di, where di is the valence of marker i.
We denote the position of the i-th marker by x0

i and the position of
its one-ring neighbors as x0

i,k in the reference pose. Using a similar
technique to that of Lipman and his colleagues [2005], we define
the local frame for marker i in the reference pose with its origin
located at x0

i and the triplet (t0
i ,b

0
i ,n

0
i ), where n0

i is the normal
vector of the marker surface at the i-th marker in the reference pose,
t0
i is a unit vector with direction equal to the projection of the vector

(x0
i,1−x0

i ) onto the tangential plane defined by n0
i , and b0

i is a unit
vector orthogonal both to n0

i and t0
i . We call this local frame of

the reference pose the local reference frame. Note that t0
i can be

defined using any of the one-ring neighbors, and our choice of x0
i,1

is arbitrary. Figure 3 illustrates the definition of the local frame.

The position x̂0
i,k of the k-th 1-ring neighbor measured in the local

reference frame of marker i is

x̂0
i,k = R0

i (x
0
i,k−x0

i ), (1)

where R0
i ∈ R

3×3 is a rotation matrix defined as [t0
i b0

i n0
i ]

T.

4.2 Merging Disconnected Trajectories

The 3D marker data from the optical motion capture system con-
sists of a set of reconstructed marker trajectories. However, as men-
tioned above, a marker trajectory may be broken into many partial



trajectories because markers are frequently occluded or confused
with a nearby marker. Because the markers at the first frame were
already labeled during the construction of the mesh surface, the par-
tial trajectories that include those markers inherit the labels while
the other trajectories remain unlabeled. The unlabeled trajectories
then need to be merged with labeled trajectories. Estimating which
trajectories to merge based on the last known position and velocity
of a marker would likely not work well for highly dynamic motions
and long occlusions. Instead, we observe that the topology of mark-
ers placed on the skin does not change and estimate the position
of occluded markers from the position of the visible neighboring
markers.

At frame t, we denote the instantaneous set of available markers as
Y t . Suppose that marker mi is missing while some of its neighbors
are available (mi,k ∈ Y t ). We first find the translation dt

i ∈ R
3×1

and the rotation Rt
i ∈R

3×3 that move available neighbors from their
current position xt

i,k approximately to their reference position x̂0
i,k in

the local reference frame for mi. Then, we estimate the current po-
sition of the marker mi by bringing the origin of the local reference
frame back to the global frame.

The neighbors have not necessarily moved rigidly as a group be-
cause of deformations so the calculation of the rigid transformation
is a least squares optimization:

argmin
dt

i ,Rt
i

di

∑
k|mi,k ∈Y t

||Rt
i · (x

t
i,k +dt

i)− x̂0
i,k||

2
. (2)

This is a typical form of the well-known absolute orientation prob-
lem in shape matching and several analytical solutions have been
published (see [Kanatani 1994] for a comparison of the different
schemes). In our implementation, we adapt the method of [Horn
1987].

A minimum of three neighboring markers must be available to
compute the rigid transformation. If more than three neighbor-
ing markers are available, the estimate should be more robust to
noise. Therefore, we perform this computation in a greedy fashion;
we first estimate the missing markers that have the largest number
of available neighbors and then estimate those with fewer neigh-
bors (including previously estimated marker positions in the calcu-
lation).

Now that the current position of all markers has been estimated,
we can search for trajectories to merge. For each missing marker
mi, the system searches for an unlabelled trajectory that is within a
threshold distance ε1

i of the marker’s estimated position and which
does not overlap in time with the existing trajectory of mi. The
threshold is selected based on the average distance from a marker
to its neighbors in the reference pose:

ε1
i = α1 ∑di

k=1 ||x̂
0
i,k||

di
, (3)

where α1 is a tolerance.

This matching process is not perfect because a marker from a differ-
ent part of the body might be close enough to the estimated position
of the missing marker to create an incorrect merge. For example,
a marker on the upper arm near the armpit might be confused with
nearby markers on the side of the torso. To disambiguate marker
trajectories from other body parts, we test that the entire candidate
trajectory is within the threshold ε2

i of the position estimated from
the neighbors at each frame. The threshold ε2

i is computed in a sim-
ilar fashion to ε1

i with tolerance parameter α2. We set α1 and α2

to 0.5 and 0.6 in our experiments.

This algorithm may fail to find matching trajectories during mo-
tions with extreme local deformations because those deformations
do not fit into the α1 and α2 tolerances. Thus, we merged the valid
unlabeled trajectories manually after the process. Matching trajec-
tories might not exist for some markers in some frames because of
occlusion, which results in gaps or holes in the trajectories of the
marker. We resolve these in the hole filling process described in the
next section.

4.3 Hole Filling

We fill the holes in the merged trajectories by learning a statisti-
cal model of the spatial relationship between each marker and its
neighbors. We apply Principal Component Analysis (PCA) to the
position of each marker and its one-ring neighbors throughout the
entire motion. This operation reduces the local deformation around
the marker to a low dimensional control space and allows us to re-
construct the marker location by estimating the best fit to the avail-
able markers.

We first transform the position of each marker and its neighbors
to a local frame. For the marker mi at frame t, the position of the
neighbors in the local frame is

x̂t
i,k = R̄t

i(x
t
i,k−xt

i), (4)

where xt
i and x̂t

i,k are the global position of the marker i and the
local position of its k-th neighbor, respectively, and R̄t

i is a rotation
matrix. Ideally, R̄t

i would be the rotation matrix that transforms the
marker positions to the local frame as described in Section 4.1, but
because we are dealing with damaged data, it may not always be
possible to find that transformation (marker mi,1 may be missing).
Instead, we select the rotation matrix R̄t

i that puts x̂t
i,k as close as

possible to the local reference position:

argmin
R̄t

i

di

∑
k|mi,k ∈Y t

||x̂t
i,k− x̂0

i,k||
2
. (5)

This definition of the local frame is consistent even with damaged
data. The method of [Horn 1987] is used for optimizing Equation 5.

Next, we build a PCA model for each marker using the frames in
which the marker and all of its neighbors are present. PCA allows
us to represent the neighborhood of a marker (in the local frame)
in a reduced orthogonal basis while retaining the desired accuracy
(99% in our implementation). The system uses this model to esti-
mate the positions of missing markers by selecting the coefficient
of each basis vector to minimize the squared distance between the
reconstructed positions of the available neighbors and their mea-
sured positions. If a marker is missing in a frame, the PCA models
for each of its neighbors are used to estimate a value for the marker.
Those values are averaged to improve the robustness of the estima-
tion.

4.4 Smoothing

We apply a time-domain filter to each marker trajectory to reduce
noise. Because the rigid body motions of the human body are large
in most of our experiments, filtering the global trajectory would ad-
versely affect both the rigid body motion and the shape of the body.
Instead, we filter in the local frame defined in Equation (2). The
system applies a smoothing filter several times to the local trajec-
tory based on the update rule x̂t

i ← x̂t
i−λ∆4x̂t

i , where λ is a damp-
ing factor controlling the rate of convergence and ∆ is a derivative



operator in time. The filtered position in the local frame is then
transformed back to the global frame.

5 Skin Animation

Given the locations of the markers at each frame, the skin animation
problem can be formulated as a scattered data interpolation problem
of deforming the vertices of the detailed model to match the marker
locations. However, the space of deformations for humans is likely
too complex to be approximated by a standard linear interpolation
technique such as radial basis interpolation.

Instead, we reduce the complexity of the problem by factoring the
deformation space into two pieces. We first segment the full body
into a set of rigid parts, and then focus on the local deformation that
remains after the rigid body motion is removed. The residual defor-
mation still consists of higher-order deformations such as twisting
and bulging, and we represent it as a linear combination of a set
of predefined primitive deformation modes. Finally, the remaining
residuals are resolved with radial basis interpolation.

5.1 Registration

We created a detailed model of each subject by photographing the
subject and asking a professional artist to make a model for the sub-
ject using commercial modeling software (Maya 7). We provided
size information for the subject by importing the marker surface for
the reference pose into Maya. In addition to serving as a reference,
the photographs were used to create textures for the model.

Although the artist used the marker surface to size the model, the fi-
nal model is not a perfect fit to the reference marker surface. We ad-
just the detailed surface to fit the marker surface using optimization.
We adopt the method of Allen and his colleagues [2003] for regis-
tering two surfaces and find a global transformation for each vertex
that minimizes an objective function with three terms: minimize
the sum of the distance from each marker to the surface, preserve
the original shape of the detailed surface model by minimizing the
sum of the difference between the global transformations of pairs
of neighboring vertices, and maintain a correspondence between the
markers and the vertices at 40 important landmarks of the body (el-
bows, knees, etc.). Initially, we assign weights only to the second
and third terms so that the model is registered globally first. Af-
ter the convergence, we perform the optimization again with equal
weight for all the terms.

5.2 Segmentation and Weighting

For near-rigid segmentation, we used the method of James and
Twigg [2005], in which mean shift clustering is used to group tri-
angles having similar rotational movement. We apply this method
to the marker surface captured while the subject was demonstrat-
ing the range of motion of each of his or her joints. Figure 5(a)
shows the result after mean shift clustering. The large deforma-
tion around the upper arms and shoulders is not handled well and
mean shift generates many groups containing just one triangle. We
manually adjust the result so that the body is divided into 17 parts
(Figure 5(b)). This segmentation is done only once for each subject.

We assign a set of weight values αi,p, 1 ≤ p ≤ Np, to the markers,
where αi,p is the weight value of the marker mi for part p, Np is the

total number of parts and ∑Np
p=1 αi,p = 1. The weight for a part is 1

(a) (b) (c)

Figure 5: Near-rigid segmentation: (a) after the mean shift segmen-
tation (triangles of the same color belong to the same group while
the black colored triangles do not belong to any group); (b) after
the manual adjustment of the segmentation; (c) weight distribution
on the detailed surface.

if the marker is inside the part and 0 for all other parts. For mark-
ers on the boundary between parts, we determine the weight values
by computing the likelihood that the marker belongs to each neigh-
boring part. The system compares the marker’s motion to the rigid
body motion of the neighboring parts (as defined by the markers
that are labeled as fully inside the part). Based on the error value,
we employ a gaussian model for computing the likelihood that a
marker belongs to a neighboring part [Anguelov et al. 2004], and
we assign the marker to the part if its weight is more than a pre-
defined threshold (0.2 in our experiments). Markers may belong to
multiple parts.

Finally, the weight for each vertex of the detailed model is deter-
mined by finding the nearest triangle of the marker surface and
assigning the weight obtained by interpolating the weights of the
three markers based on the barycentric coordinate of the projected
vertex position on the triangle. We denote the weight value for part
p of the vertex j as β j,p. Figure 5(c) shows the weight distribution
of the detailed model.

5.3 Deformation

Based on the segmentation, we factor the full body motion into a
rigid body transformation of the segmented parts and their local de-
formation. The local deformation is further divided into two terms:
a quadratic deformation and its residual.

We first define the local frame for each rigid part in the reference
pose. We call this frame the local part reference frame. The origin
of the local frame is the average of the reference pose position of
all markers assigned to that part. The three axes of the local frame
are the three eigenvectors of the covariance matrix of the markers’
positions. We define the rigid translation and rotation of the part
p which transform a global position into its local position as d̃0

p ∈

R
3×1 and R̃0

p ∈ R
3×3. We denote the position of the i-th member

marker assigned to part p as pp,i, 1≤ i≤Yp, where Yp is the number
of markers assigned to part p. For a position p0

p,i at the reference
pose, the local position p̂0

p,i is computed as p̂0
p,i = R̃0

p(p0
p,i + d̃0

p).
We call this the local part reference position of the marker.

The rigid transformation (d̃t
p and R̃t

p) for a given part p at frame
t is computed so that it brings the position of all member markers
as close as possible to their local part reference positions using the
absolute orientation method [Horn 1987]. The local position p̂t

p,i is
computed as p̂t

p,i = R̃t
p(pt

p,i + d̃t
p). The remaining error between



p̂t
p,i and the reference position for that marker is the local deforma-

tion.

We approximate the local deformation of each part with a continu-
ous deformation field. Human body movements include non-linear
deformations such as twisting, bulging and bending. Inspired by the
work of Müller and his colleagues [2005], we choose quadratic de-
formations to represent the local deformation. With this approach, a
complex non-linear deformation is modeled as a linear combination
of 3× 9 basic deformation modes. The quadratic transformation
is defined as a matrix Ã = [A1 A2 A3] ∈ R

3×9, where A1 ∈ R
3×3

corresponds to a linear transformation, A2 ∈ R
3×3 and A3 ∈ R

3×3

are a pure quadratic and a mixed quadratic transformation, respec-
tively. Given a 3D position p = [px py pz]

T, the quadratic trans-
formation provides a new transformed position p̃: p̃ = Ãq, where
q = [px, py, pz, p2

x , p2
y , p2

z , px py, py pz, pz px]
T is a 9 dimensional

quadratic vector corresponding to p.

At each frame, we compute the components of the quadratic trans-
formation Ãt

p of part p such that the transformation brings the local
part reference position of all member markers as close as possible
to their local positions at frame t. We use the pseudo inverse to
solve for this transformation:

Ãt
p = P̂t (Q0)T

[

Q0(Q0)T
]−1

, (6)

where P̂t = [p̂t
p,1, . . . , p̂

t
p,Yp

]∈R
3×Yp , Q0 = [q0

p,1, . . . ,q
0
p,Yp

]∈R
9×Yp

and q0
p,i is a quadratic vector corresponding to the local part refer-

ence position p0
p,i.

Finally, given the transformed position p̃t
p,i = Ãt

pq0
p,i, we use radial

basis interpolation to resolve the remaining residual rt
p,i = pt

p,i−

p̃t
p,i by determining the weight vector wt

p,i such that

rt
p, j =

Yp

∑
i=1

wt
p,iφ

(

||p̃t
p,i− p̃t

p, j||

σp

)

, for 1≤ j ≤ Yp, (7)

where φ(·) is a radial basis function and σp is a dilation factor for
part p. In our experiments, we use a cubic B-spline as the radial
basis function and set the dilation factor to be twice the maximum
distance between two nearest member markers for each part.

Provided d̃t
p, R̃t

p, Ãt
p and wt

p = {wt
p,1, . . . ,w

t
p,Yp
} at frame t, any

given position p̂0
p represented in the local part reference frame of

part p can be transformed back to its global position pt as

pt = (R̃t
p)
−1 ·

(

Ãt
pq̂0

p +∑
i

wt
p,iφ

(

||Ãt
pq̂0

p− p̃t
p,i||

σp

))

− d̃t
p, (8)

where q̂0
p is the quadratic vector of p̂0

p. Consequently, for a given
position v0

j of the vertex j of the detailed model in the reference
pose, its deformed position is computed as

vt
j =

Np

∑
p=1

β j,pvt
j,p, (9)

where vt
j,p is the deformed positions related to part p obtained by

Equation (8). We animate the model by transferring the reference
position using Equation (9).

Table 1: The number of trajectories before and after the merging
process, the number of incorrectly labeled partial trajectories, the
number of manual corrections for the missing unlabeled trajecto-
ries, and the number of holes before the hole filling process. The
number of markers was 350.

# of trajectories incorrectly total
example motions before after labeled manual # of

(# of frames) merging merging (error rate) merging holes
flexing (917) 859 379 0 (0.0%) 4 25674
golfing (868) 2368 439 10 (0.4%) 32 36232

punching (574) 2247 409 25 (1.1%) 44 22948
jumprope (974) 5006 538 32 (0.6%) 64 42050

Table 2: The accuracy of the hole-filling algorithm for the punching
motion. The error values are normalized by the average distance to
the neighbors.

region abdomen elbow thigh knee
Avg. Error 0.017 0.022 0.020 0.023
Max. Error 0.052 0.062 0.045 0.051

6 Experimental Results

We first show the effectiveness of the clean-up algorithm. Table 1
shows the number of trajectories before and after the merging pro-
cess and the number of holes before the hole filling process. More
dynamic motions tend to have more disconnected trajectories. This
table also shows the number of partial trajectories assigned wrong
labels and the number of manual corrections required to merge
missing unlabeled trajectories. Those wrong and missing trajecto-
ries occurred mainly around the elbows during large deformations.
Because of noise, the number of the trajectories after merging is
still more than the number of markers; the extra trajectories usually
contained severe (one or two frames long) outliers and are ignored
in the later stages of processing. We tested the accuracy of our hole-
filling algorithm by deleting a marker that was seen in the data and
reconstructing it (Table 2). The average error was about 2%, which
is acceptable for visual quality. Figure 6 shows that our hole filling
algorithm works well even though a large number of the markers
are missing.

Next, we compare our deformation method with three different
methods: rigid deformation for each part without resolving resid-
uals (Figure 7(b)), quadratic deformation without resolving resid-
uals (Figure 7(c)) and rigid deformation with resolving residuals
(Figure 7(d)). Our method, quadratic deformation with resolving
residuals, is shown in Figure 7(e). Quadratic deformation gives
a smoother deformation and follows the marker positions better
due to its higher order deformation terms. Because the residuals
are significantly smaller in quadratic deformation than in the rigid
one, the results after resolving the residuals are also better when the
quadratic deformations are used.

We applied our method to various behaviors including slow motions
such as breathing (Figure 8(a)), and golfing (Figure 1) as well as
highly dynamic motions such as punching (Figure 1), jumping rope
(Figure 8(b)) and belly dancing (Figure 9). We compare our synthe-
sized results with video taken during the capture (Figure 8(c) and
(d)). We also compared our results with those from conventional
motion capture (Figure 8(e) and (f)). Subjects wearing conventional
marker sets were asked to perform similar motions to those captured
with the 350 marker set. As shown in the figures, our method suc-
cessfully captured the expanding and contracting of breathing and
the dynamic deformations of the surface of the torso during jump-
ing. Conventional methods failed to capture these effects.



(a) (b) (c)

Figure 6: Hole filling: (a) markers with holes; (b) after hole filling;
(c) a detailed surface model

(a)

(b) (c)

(d) (e)

Figure 7: Comparison of different deformation methods; (a) an ex-
ample pose with the markers; (b) rigid deformation without resolv-
ing residuals; (c) quadratic deformation without resolving residu-
als; (d) rigid deformation with residuals resolved; (e) quadratic de-
formations with residuals resolved (our method).

7 Discussion

In this paper we have demonstrated that data captured from a large
set of markers can be used to animate the natural bending, bulging,
and jiggling of the human form. Our contribution is twofold. First,
we provide algorithms for estimating the location of missing mark-
ers. Because the human body is articulated and our marker set is
dense, markers are frequently occluded by other parts of the body.
Therefore, missing markers are far more common in our captures
than in facial animation, the other domain where a dense marker set
has been used. Our second contribution is an algorithm for deform-
ing a subject-specific model to match the trajectories of the markers.
We do this in two stages, first capturing the rigid body motion of
the markers and then resolving the residual deformations. Our ap-
proach to this problem allowed us to animate the motion of a mus-
cular male punching and jumping rope and the performance of a
professional belly dancer. The animated deformations of their bod-
ies are dramatic and perhaps unexpected, but we demonstrate that
they are a good match to video captured simultaneously. We also
demonstrate that the subtleties of the skin motion would not have
been captured by a standard marker set working in concert with the
skinning algorithms available in commercial animation software.

Although we chose to use hand-designed models, we believe that
this approach would also work on a scanned model if such a model
were available for our subjects. The models used in the SCAPE
system had approximately 50,000 polygons [Anguelov et al. 2005];
our polygonal models had 54,000 polygons so the resolution is sim-
ilar.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 8: Comparison between our method and conventional mo-
tion capture: (a) and (d) breathing and jumping rope from our mo-
tion; (b) and (e) stills of video taken during capture (c) and (f) sim-
ilar motions from conventional motion capture.

Figure 9: The belly dance

One limitation of our approach is its smaller capture area because
the cameras are placed close to the subject for accuracy. Thus, mo-
tions requiring a large space such as running cannot be captured in
our current system.

Our animations and models were specific to the particular actors
who performed for us. Although it might be possible to parameter-
ize the deformations seen in our capture sessions with joint angles
(as others have done) and perhaps also with velocity in a world co-
ordinate system for dynamic effects or joint torque computed from
inverse dynamics for muscle bulging, we believe that it would be
very difficult and probably impossible to generalize the dynamic
captured motion to an animated character with a significantly dif-
ferent body type. The skin motion of a heavy person, for example,
will not look realistic when applied to a skinny character.

Because we use the actual three-dimensional locations of the mark-
ers, we should be able to capture fine details that systems that use an
approximation to the marker locations or a much sparser marker set
will likely miss. For example, the pointy bone, the olecranon, on
the outside of a bent elbow is sometimes smoothed out with other
approaches, but an additional marker placed on the elbow captured
that information in our system. We added markers to supplement
our nominal grid that captured some of these details but a more
anatomically based procedure for placing the markers might cap-
ture more of these subtle details.

During hole-filling, we determined the position of the missing
markers by averaging the estimated positions from neighbors.
However, the contributions of neighbors might be weighted with
less weight given to the neighbors that were estimated rather than
measured. When learning the PCA model, we only use the frames
where a marker and all its neighbors are available, which decreases



the number of samples. Although this approach gave a reasonable
result in our experiments, an enhanced PCA such as [Shum et al.
1995] could be applied to create a more comprehensive statistical
model.

Our marker set was quite large and suiting up a subject for capture
took about an hour in our experiments. Therefore, it would might
be worth exploring whether these dynamic effects could be captured
with a more parsimonious marker set by combining a conventional
marker set with additional markers placed only on the areas of the
body expected to deform such as the belly or biceps. A smaller
marker set might be effective if the captured information was sup-
plemented by a detailed anatomical model as was done for the face
by Sifakis and his colleagues [2005].
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MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. ACM Transactions on Graphics 24, 3, 471–478.

NEDEL, L. P., AND THALMANN, D. 2000. Anatomic modeling of
deformable human bodies. The Visual Computer 16, 6, 306–321.

PRATSCHER, M., COLEMAN, P., LASZLO, J., AND SINGH, K.
2005. Outside-in anatomy based character rigging. In 2005 ACM
SIGGRAPH / Eurographics Symposium on Computer Animation,
329–338.

PRONOST, N., DUMONT, G., BERILLON, G., AND NICOLAS, G.
2006. Morphological and stance interpolations in database for
simulating bipedalism of virtual humans. The Visual Computer
22, 1, 4–13.

SAND, P., MCMILLAN, L., AND POPOVIĆ, J. 2003. Continuous
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BÜLTHOFF, H. H. 2005. Psychophysical evaluation of animated
facial expressions. In APGV 2005, 17–24.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight enveloping:
Least-squares approximation techniques for skin animation. In
ACM SIGGRAPH / Eurographics Symposium on Computer Ani-
mation, 129–138.

WANG, Y., HUANG, X., LEE, C.-S., ZHANG, S., LI, Z., SAMA-
RAS, D., METAXAS, D., ELGAMMAL, A., AND HUANG, P.
2004. High resolution acquisition, learning and transfer of dy-
namic 3-d facial expressions. Computer Graphics Forum 23, 3,
677–686.

WILHELMS, J., AND GELDER, A. V. 1997. Anatomically based
modeling. In Proceedings of SIGGRAPH 97, Computer Graph-
ics Proceedings, Annual Conference Series, 173–180.

ZALEWSKI, L., AND GONG, S. 2005. 2d statistical models of
facial expressions for realistic 3d avatar animation. In CVPR,
217–222.

ZHANG, L., SNAVELY, N., CURLESS, B., AND SEITZ, S. M.
2004. Spacetime faces: high resolution capture for modeling
and animation. ACM Transactions on Graphics 23, 3, 548–558.

ZORDAN, V. B., AND HORST, N. C. V. D. 2003. Mapping optical
motion capture data to skeletal motion using a physical model. In
2003 ACM SIGGRAPH / Eurographics Symposium on Computer
Animation, 245–250.

ZORDAN, V. B., CELLY, B., CHIU, B., AND DILORENZO, P. C.
2004. Breathe easy: model and control of simulated respiration
for animation. In 2004 ACM SIGGRAPH / Eurographics Sym-
posium on Computer Animation, 29–37.


