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Figure 1: In less than 2 seconds per frame, our method simulates fluids through this detailed city with over 120 million voxels, an 4000×
speedup compared to standard techniques. Our modular approach allows the user to rearrange building tiles at runtime.

Abstract

We present a new approach to fluid simulation that balances the
speed of model reduction with the flexibility of grid-based methods.
We construct a set of composable reduced models, or tiles, which
capture spatially localized fluid behavior. We then precompute cou-
pling terms so that these models can be rearranged at runtime. To
enforce consistency between tiles, we introduce constraint reduc-
tion. This technique modifies a reduced model so that a given set
of linear constraints can be fulfilled. Because dynamics and con-
straints can be solved entirely in the reduced space, our method is
extremely fast and scales to large domains.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation;

Keywords: reduced models, fluid simulation, domain decomposi-
tion, constraint reduction

1 Introduction

Offline physics-based animation can produce stunning examples of
fluid motion. However, realtime applications generally simulate
fluids only over small domains as a secondary effect. Fluid effects
distant from the user are usually simulated at very low resolution
or not at all. In the future, however, we expect interactive virtual
environments with millions of simultaneous users where complex
dynamic effects will play a primary role in the interaction: mov-
ing vehicles will splash through puddles as buildings leave turbu-
lent eddies in the wind. Enabling such applications requires that
such phenomena be computed everywhere with high resolution, and

moreover that the dynamical state be consistent for all users. The
difficulty is computing high resolution dynamics over such large
environments. Existing fluid simulation approaches cannot scale to
these large, realtime scenarios.

In 3D geometry, one of the principle solutions to creating complex
virtual environments has been to exploit combinatorial explosion.
For example, detailed cities can be created by tiling buildings drawn
from a comparatively small set. New creatures and vehicles can be
assembled from component parts. However, there has thus far been
no analogue to this process in simulation.

This work proposes such a perspective on fluid dynamics. We
precompute modular simulation tiles which capture fluid behavior
given specific boundary conditions such as the presence of an ob-
stacle. Each simulation tile is a reduced model created from high-
resolution simulations. As shown by Treuille et al. [2006], these
models allow very fast simulations with runtime complexity inde-
pendent of the grid resolution. Tiles can be assembled at runtime to
simulate novel fluid configurations. For example, we simulate wind
through a large city composed of tiles specialized for each building
type. Our results demonstrate that such tilings can scale to very
large domains.

Our main contributions relate to tile coupling. We show that simula-
tion operators can be precomputed, decomposed, and reconfigured
at runtime based on the tiling, thus enabling novel tile configura-
tions without additional precomputation. Simulation is fast because
the dynamics operate entirely in the reduced space. We also show
that the tiles can be constructed so as to maintain pairwise consis-
tency at runtime. In general, reduced models have so few degrees
of freedom that maintaining consistency quickly over-constrains the
system. This can lead to severe artifacts at tile boundaries and un-
natural behavior in the interior of the coupled tiles. We address
this problem by introducing constraint reduction, an algorithm that
modifies fluid tiles so that they can exactly fulfill a large number
of linear constraints in the full-dimensional space. We show that
this technique generalizes to arbitrary linear constraints. Like sim-
ulation, constraint satisfaction can be solved entirely in the reduced
space. These techniques allow us to flexibly assemble fluid simula-
tions on a scale previously unattainable in computer graphics.

2 Related Work

Fluid simulation in computer graphics has focused on three basic
fluid representations: grid and mesh-based Eulerian simulations,
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meshless Lagrangian methods, and model reduction. An important
step in Eulerian fluid simulation was the introduction of an uncon-
ditionally stable advection step by Stam [1999]. Improvements to
this method based on hierarchical space decomposition [Losasso
et al. 2004] and non-uniform meshes [Feldman et al. 2005; Elcott
et al. 2005] have produced impressive results, but do not typically
allow real-time simulation. Recent work has mapped a number of
Eulerian methods to the GPU, including stable advection [Wu et al.
2005], pressure projection [Krüger and Westermann 2003; Bolz
et al. 2003; Goodnight et al. 2003], Lattice Boltzmann methods
[Li et al. 2003], and the coupled map lattice [Harris et al. 2002].
These implementations enable real-time performance for medium-
sized fluid domains; however, they fundamentally have the same
time complexity as their CPU variants. Lagrangian particle rep-
resentations such as vortex methods [Angelidis and Neyret 2005;
Angelidis et al. 2006; Park and Kim 2005; Selle et al. 2005] and
smoothed particle hydrodynamics [Müller et al. 2003; Zhu and
Bridson 2005; Keiser et al. 2005; Adams et al. 2007] do not depend
on grid resolution, but the effective resolution of the fluid depends
on the particle density.

Our method uses a model reduced fluid representation, most closely
resembling the approach introduced by Treuille et al. [2006]. In
model reduction, the number of variables does not depend on the
spatial resolution, making this technique ideally suited for real-time
simulation of high-resolution dynamics. Model reduction has been
used in a number of other branches of graphics including nonlin-
ear deformation [James and Fatahalian 2003], finite element meth-
ods [Barbič and James 2005], and precomputed radiance transfer
[Sloan et al. 2002]. Recently, Barbič and Popovič [2008] demon-
strate real-time control of such methods. Model reduction is also
a topic of active research in the field of computational fluid dy-
namics and applied mathematics, where the technique is known
as proper orthogonal decomposition (POD), Karhunen-Loéve de-
composition, or subspace integration [Holmes et al. 1996; Rowley
et al. 2006; Ausseur et al. 2004; Sirovich 1987; Couplet et al. 2005;
Marion and Temam 1989; Sirisup and Karniadakis 2004; Lumley
1970].

Model reduced simulations are very fast, but highly inflexible: the
user has little leeway to alter the simulation conditions after the
model is constructed. Our work addresses this problem by allow-
ing the user to rearrange a set of coupled reduced models. Perhaps
the best known examples of reconfigurable tiles in computer graph-
ics are Wang tiles [Cohen et al. 2003] which can be arranged to
produce non-periodic textures or complex geometric scenes. Sim-
ilarly, for fluids, Chenney [2004] introduces flow tiles, which pro-
duce divergence-free flows so long as the tiles are appropriately
combined. In contrast to flow tiles, which are static vector fields,
our method enables dynamic simulation.

Our tile representation requires explicit consistency constraints. A
similar need to maintain consistency across simulation domains is
encountered in finite element simulations of fluids, where the tech-
nique is called domain decomposition. To enforce coupling con-
straints arising on the boundaries between subdomains, one can add
penalty terms [Farhat et al. 2001; Farhat et al. 2003; Tezaur et al.
2008; Zhang et al. 2006], or enforce strict compliance via Lagrange
multipliers [Babuška 1973; Farhat et al. 2000; Tezaur and Farhat
2006]. Toselli and Widlund [2005] provide a good overview of
these techniques. Finite element methods use analytic basis func-
tions which are specifically designed such that boundary constraints
can be satisfied. By contrast, the basis vectors used in our model
are more expressive, but do not satisfy coupling constraints by con-
struction.

To our knowledge, there is little work on coupling model reduced
fluid simulations. LeGresley and Alonso [2003] decompose the
simulation domain into a model reduced fluid simulation but use

full resolution fluid simulation to capture fine scale features in cer-
tain areas. However, this work does not address the case of coupling
two separately computed reduced simulations. Borggaard et al.
[2006] tackle the problem of performing singular value decompo-
sition (SVD) on a very large fluid simulation spatially partitioned
across a set of processors. Their intent is to produce a single basis
from this data, not a set of coupled reduced models. Perhaps the
closest work to our own is that of Lucia and King [2002], who per-
form domain decomposition to isolate regions that contain shock-
waves and then combine a set of model reduced simulations in or-
der to capture shockwaves in high-speed flow fields. They use a
penalty-based method to enforce continuity across boundaries, but
do not address the problem of creating bases that can be spatially
reconfigured while fulfilling continuity constraints at runtime.

Contrary to existing work on reduced fluid models which relies on
SVD to compute the basis, we use SVD-based models as a starting
point, and then modify the basis to enable coupling of previously
incompatible tiles.

3 Fluid Tiles

The central idea of our approach is to cover the simulation domain
with a small set of simulation primitives, called tiles. Each tile
consists of a velocity basis representing the possible flow within its
subdomain. For example, if one tile represents the fluid flow around
the Empire State Building, then its basis spans a subset of possible
flows around this obstacle. The boundaries between subdomains
correspond to tile faces. To satisfy constraints across faces, we de-
velop a set of rules governing the assembly of tiles: we create a
small set of boundary bases associated with the tile faces. As long
as adjacent faces share the same boundary basis, our construction
guarantees that all constraints within the tiling can be satisfied.

3.1 Monolithic Fluid Reduction

In our algorithm, each tile corresponds to a spatially-localized lin-
ear model of fluid velocities. Simulation on such a representation is
called model reduction. In this section, we briefly review the nec-
essary basics of model reduction for fluid simulations, and we refer
the reader to [Treuille et al. 2006] for more details.

First, consider a simulation with only one tile. The entire domain
is then spanned by a single velocity basis. The unreduced simu-
lation state is represented by a vector u ∈ RN consisting of the
velocities defined at sample points. Our implementation uses a
MAC grid [Foster and Metaxas 1996], although other velocity dis-
cretizations are possible. The reduced order model operates in an
m-dimensional space spanned by basis states B = [b1 . . .bm].
These basis states are computed as the right singular vectors to
the m smallest singular values of a matrix of simulation snapshots
U = [u1 . . .uk]. In the following, we will denote the process of
extracting these first m basis states as

B = svdm{U}. (1)

Reduced states can be converted to full states by multiplying by the
basis: u = Br. Conversely, assuming B is orthonormal, we can
project the full state into the reduced space with the transpose basis:
r = BTu. Given any linear operator X acting on the full space, a
reduced version of X can be computed as BTXB.

As demonstrated in [Treuille et al. 2006], the Navier Stokes equa-
tions can be reduced to

dr

dt
=

 
µD +

X
i

Airi

!
r, (2)
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Figure 2: Domain decomposition: Left: Decomposition into two
domains, inducing divergence constraints in cells split between A
and B. Right: Duplication of boundary values leads to equivalent
equality constraints for duplicated values. The divergence of the
cells can be enforced in each tile separately.

where µ is the diffusion coefficient, D denotes the reduced diffu-
sion operator, and Ai is a reduced linear operator that advects r
using the velocity field bi. It is useful to consider the matrices
Ai as slices of an advection tensor Â of rank three. During sim-
ulation, the advection matrix is computed by summing all slices
weighted by their corresponding reduced state coefficient. Because
the basis B spans only divergence-free velocity fields, incompress-
ibility need not explicitly be enforced, unlike traditional Eulerian
fluid simulations.

Treating the advection velocities as constant throughout each time
step, we can integrate (2) analytically, leading to an integration that
is both unconditionally stable and energy-preserving if the fluid is
inviscid. Given a time step ∆t, we compute the next reduced state
as

r(t+ ∆t) = e∆t(µD+
P

i Airi)r(t). (3)

This matrix-vector product can be computed using iterative Taylor
or Padé approximation, making the integration fast even for high-
dimensional reduced models.

3.2 Tiled Fluid Reduction

The monolithic reduction described above is fast but inflexible.
Even small changes to the simulation domain require complete re-
computation of the model. We therefore replace the monolithic ba-
sis with a modular set of tiles that can be assembled at runtime. To
obtain these tiles, we decompose the simulation domain. Within
each subdomain, the fluid flow is computed by a reduced model.

Fig. 2 shows an illustration of domain decomposition. Consider a
discretized domain which we split in two parts A and B as shown
in Fig. 2. The Navier-Stokes equations include the constraint that
the divergence must be zero across the simulation domain. This
constraint must still be enforced when we split the domain. If cells
are split by the decomposition, the divergence constraints lead to
constraints involving all adjacent tiles (see Fig. 2, left). If the de-
composition splits the domain such that velocities normal to the in-
terface are defined on the boundary, we can also duplicate boundary
velocities, as shown in Fig. 2, on the right. In this case, the afore-
mentioned divergence constraints can be enforced in each tile sepa-
rately. In order for the discretization to be consistent, the velocities
twice defined on the boundary need to be equal, leading to equality
constraints. Both interpretations are equivalent. In the following

sections, we will use the second convention, since it simplifies that
algorithmic description. We will now discuss how to compute ten-
sors for a tiled domain, before returning to the contraints in Sec. 4.

Computing the necessary tensors for simulation using tiles can be
treated as a special case of monolithic model reduction. Consider
two reduced models A and B corresponding to domains DA and
DB as in Fig. 2. A reduced basis BA of A covers only DA, and
we can consider it zero everywhere else. The same holds for BB .
We can recombine the two bases into a combined basis of sizem =
mA +mB :

B =

»
BA 0
0 BB

–
. (4)

Then, the state of the complete system can be written as r =
[rTA, r

T
B ]T . Diffusion and advection operators can now be computed

as before. In particular, for the basis in equation (4), the diffusion
operator becomes

D =

»
DAA DAB

DBA DBB

–
, (5)

where the interior terms DAA and DBB depend only on BA or
BB , respectively, while the coupling terms DAB and DBA depend
on both BA and BB .

The situation for the advection tensor Â is similar. How-
ever, since Â is a rank three tensor, it has eight components
ÂAAA, ÂAAB , . . . , ÂBBB . The six blocks with mixed super-
scripts are coupling terms. Because the full-dimensional diffusion
and advection operators are sparse and highly localized in space,
the cost of computing the coupling terms is proportional only to the
size of the interface, not the full dimension N .

This construction can be generalized to arbitrary tilings of the do-
main. Because the adjacency graph between spatial subdomains
is sparse, the combined advection and diffusion operators are also
block-sparse.

4 Constraints

As described in 3.2, velocities are defined twice along the inter-
face F between adjacent subdomains DA and DB . To keep the
simulation consistent between tiles, we therefore obtain equality
constraints

uA(x) = uB(x) ∀x ∈ F . (6)
We can assemble these constraints into a constraint matrix C which
is satisfied when CBr = 0. The system is overconstrained as soon
as the number of samples in F , Nb, exceeds the number of com-
bined degrees of freedom mA + mB . Solving for r will therefore
yield the trivial solution r = 0. A naı̈ve solution turns these con-
straints into a penalty by solving for the updated state r′ that mini-
mizes

‖CBr′‖2 + α‖r− r′‖2. (7)
The regularization parameter α balances between constraint satis-
faction and state modification. Large values of α allow inconsistent
boundary velocities, leading to serious simulation artifacts. On the
other hand, as α → 0, large corrections are applied to achieve an
admissible state. If the tiles are too different, this leads to locking:
only a very low-dimensional subspace of states can be represented
by adjacent tiles, and the simulation will be locked into this sub-
space. The accompanying video shows an example of these arti-
facts.

4.1 Constraint Reduction

To solve this problem, we introduce the constraint reduction
method. We will modify the basis vectors B to allow exact con-
straint satisfaction while preserving sufficient degrees of freedom
for the simulation.
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Figure 3: (a) Decomposition of the spacecraft. The domain is split into six subdomains. Two parts are empty, while the other subdomains
contain the wings, the body and the tail, respectively. (b) Slices through the velocity basis of the spacecraft body. (c) Basis vectors from the
boundary basis between body and tail of the spacecraft. Blue and green represent positive and negative flow across the boundary.

Consider again the two adjacent tiles A and B. The mixed con-
straints between those tiles (i. e. the constraints depending on val-
ues from both A and B) are the equality constraints (6). We can
write these constraints as:

CBr = CrBArA −ClBBrB = eA − eB = 0, (8)

where Cr selects the right face ofA, and Cl selects the correspond-
ing velocities on the left face of B. Both eA and eB are of dimen-
sion Nb, the number of velocity samples on the interface. If we can
make sure eA and eB lie in the same linear space S with low di-
mension s < m, only s degrees of freedom are needed to fulfill the
constraints. We can enforce this condition for all basis vectors. We
will therefore construct a new basis B̃A = [b̃A1 , . . . , b̃

A
mA

] such
that

Crb̃
A
i ∈ S ∀i ∈ {1 . . .mA}, (9)

and similarly for BB . In this case, the space S represents the al-
lowed boundary states at the interface between A and B.

We construct S as a reduced model of observed boundary states.
We extract the boundary values of all bases that should be made
compatible in a database E. In our example involving only two
bases, this database is E = [Clb

A
1...mA

,Crb
B
1...mB

]. Given E,
we compute an Nb×s boundary basis for S: S = svds{E}. See
Fig. 3 (c) for an example. Often, more than two tiles share a com-
patible boundary. In these cases, E is assembled from all bases
involved, or form a different set of examples representative of the
flow patterns across the boundary.

Given the boundary basis, we can compute the modified bases B̃A

and B̃B . For each basis vector, we first project each of its faces
into the appropriate boundary basis. Since this breaks the zero-
divergence constraints inside the domain, we then fix the bound-
aries and find the closest divergence-free field given the bound-
ary conditions by Helmholtz-Hodge decomposition. Finally, we
reorthonormalize the basis using the standard Gram-Schmidt pro-
cess.

Our modified basis now satisfies (9), and we can proceed to solve
the constraint satisfaction problem. Since the constraint violations
eA and eB lie in S, we can transform them into a basis for S by
rewriting (8) as

STCB̃r = Mr = 0, (10)

where we recombined the constraints into one system C and use
the combined modified basis B̃. M is an s ×m matrix, revealing
the effective dimension of the constraints applied to the modified
basis. Note that we have not compromised on any of the constraints
— all constraints are fulfilled exactly. We did, however, modify
the basis in order to do so, potentially losing optimal reconstruction
properties of the SVD-based construction.

In order to find a state that satisfies the constraints, we can now
solve (10). We can choose m and s such that enough degrees of
freedom are left even if a tile is constrained from all sides. In a
three dimensional tiling of space, there will be three constrained
boundaries per tile. For m dimensions per tile and s dimensional
boundary bases, we therefore have to choose m > 3s to avoid
locking. When building large scenes from many coupled tiles, the
reduced constraint matrix M is block-sparse as only adjacent tiles
have non-zero entries.

Note that due to the way we decompose the domain, we only
constrain velocities normal to the interface. These constraints are
equivalent to zero-divergence constraints that arise when cells are
split between domains instead of duplicating values. One caveat is
that the constraints do not enforce smoothness of the velocity field.
It is therefore possible that the velocities tangential to the interface
are discontinuous at the interface. Smoothness is typically main-
tained by viscosity, but it can be enforced by adding constraints on
the tangential velocities close to the interface. This can increase nu-
merical accuracy at the cost of requiring a higher value of s to rep-
resent the higher-dimensional boundary states. We have included
a comparison of simulations with both types of constraints in the
accompanying video material.

4.2 General Constraints

Before we turn to the algorithmic details in Sec. 5, let us discuss
the case of general linear constraints. We again have a set of linear
constraints involving a number of reduced models Ai with bases
BAi : X

i

CAiBAirAi = 0. (11)

As before, we modify each basis BAi such that each CAiBAiri
lies in a small space S with dimension s < mAi . Note that the
constraints do not need to be spatially localized or sparse. Poten-
tially, all components of BAirAi could be referenced in each con-
straint. However, it is crucial that the bases BAi can be modified
such that the constraint violations for each reduced model Ai lie
in a small subspace S. In the general setting, we then find bases
B̃Ai = [b̃Ai

1 . . . b̃Ai
m ] such that

CAi b̃
Ai
j ∈ S ∀j ∈ {1 . . .mAi}, (12)

while minimizing the distortion to the bases:

‖b̃Ai
j − bAi

j ‖. (13)

Note that CAi can include constraints only affecting a single basis
BAi , such as zero-divergence constraints.

The two-step technique described in Sec. 4.1 finds an approximate
minimum of Eq. 13 while fulfilling the constraints exactly. Since
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// Decompose domain, choose basis dimensionm
forall raw bases Bi do1

Compute examples UBi
O(neN

4/3)2
Compute raw basis Bi = svdm{UBi

} O(n2
eN + n3

e)3
forall boundary types Sj do4

// Collect boundary states Ej from all relevant Bi, choose s

Compute boundary basis Sj =svds{Ej} O((tm)2Nb+(tm)3)5
forall tiles k do6

// Choose basis i and boundary types j1 . . . j6
Compute modified basis B̃k O(mN4/3)7
Compute interior tensor blocks ÂAAA and DAA O(m3N)8

forall pairs of tiles (B̃1, B̃2) do9
Compute coupling tensors between B̃1 and B̃2 O(m3Nb)10

Algorithm 1: Tile creation from examples.

the modifications to each basis vector are typically small, not ex-
actly finding the global minimum does not lead to noticeable arti-
facts.

5 Algorithmic Details

Algorithm 1 summarizes the necessary steps to set up a tiled simula-
tion. For each of the t tiles, we first compute ne examples by taking
snapshots of a full simulation within the domain of the tile which
has N degrees of freedom (line 2). These examples are distilled
into a raw basis of dimension m as described in Sec. 3.1 (line 3).
Before computing the SVD, we choose an orthogonal set of exam-
ples. Typically, this drastically cuts the number of examples taken
into account in the SVD, while retaining virtually all information.
We are then left with aN×O(ne) matrix. By computing only right
singular values, the computational complexity of performing SVD
is only linear in N .

Similarly, we extract the boundary velocities relevant for each
boundary type j from the raw bases and collect these boundary
states in a matrix Ej which is of size Nb × O(tm), where Nb
is the number of samples in a boundary face. An SVD extracts a
boundary basis Sj of dimension mb (line 5).

The raw bases and boundary bases are then combined into tiles. For
each raw basis Bi, we chose boundary bases for each face that will
be coupled to other tiles. We then perform constraint reduction and
compute a modified basis B̃i (line 7). As described in Sec. 4.1, this
process requires solving a sparse linear system for each basis vector,
yielding a total cost of O(mN4/3) using conjugate gradients1.

Finally, we compute advection and diffusion operators for the tile
bases B̃i (line 8). Computing the interior advection tensors ÂAAA

for each tile dominates the computational cost. The interior diffu-
sion tensors DAA require onlyO(m2N) time. The coupling terms
must be computed for each pair of tiles that is to be coupled; for
k tiles, there are O(k2) such pairs. However, the coupling ten-
sor computation involves iterating over the boundary region only,
yielding the more favorable O(m3Nb) time complexity (line 10).

Once a good set of boundary bases has been computed, we can
add tiles to our library without having to touch existing tiles. Af-
ter choosing appropriate existing boundary bases, we perform con-
straint reduction and compute interior tensors only on the new tile
(lines 7 and 8). To enable coupling to all existing tiles, we need to
compute O(k) coupling tensors (line 10).

1The cost for solving a linear system of size N representing a 3D finite
difference discretization of an elliptic boundary value problem can be solved
inO(N4/3) time using conjugate gradients [Shewchuk 1994]. The systems
treated herein are of this type.

if not initialized or connectivity changed then1
Assemble tensors Â and D O(k)2

Contract advection tensor A =
P

i Airi O(km3)3
Assemble M = ∆t(A + µD) O(km2)4
Compute preliminary state r′ = eMr O(km2)5
Project state: solve (7) for new state r O(k4/3m8/3)6
Advect particles O(np(m+ k))7

Algorithm 2: Computations performed in each time step.

Algorithm 2 summarizes the computations during runtime. We are
given the adjacency graph between tiles, and assemble the global
tensors from their precomputed parts at the start of the simulation
and whenever the adjacency graph changes (lines 1–2). In each
time step, we first contract the global advection tensor. Since each
tile instance has only a fixed number of neighbors (six in three di-
mensions), the assembled global operators are block-sparse with
7m entries per row or column, leading to a total cost of O(km3)
for evaluating line 3. Time integration is performed using Eq. 3.
We use Taylor expansion to approximate the matrix-vector multi-
plication with the matrix exponential (line 5). This requires only
one sparse matrix-vector multiplication and one vector addition per
iteration. In all our experiments, the Taylor approximation of the
matrix exponential converges to machine precision in fewer than
20 iterations.

After integration, we project the system into the admissible space
defined by the constraints. This requires the solution of the block-
sparse system (10). Eq. 10 is underconstrained, and has an m − s
dimensional solution space. To disambiguate the system, we add a
small regularization term as in Eq. 7: we use α = 10−8 for double
and α = 10−4 for single precision. Since constraints are restricted
to adjacent tile instances, the number of non-zero entries per row
never exceeds 7m, similar to the advection and diffusion tensors
(line 6).

We thus obtain a sequence of reduced states that can be used for
evaluation or visualization. In our experiments, we use massless
marker particles for flow visualization. For each particle, we need
to check which of the k tile instances currently affect it, and com-
pute the velocity at its current position by computing a weighted
sum of all m basis velocities at the particle position. For np par-
ticles, this leads to the total cost of O(np(m + k)) for particle
advection.

Note that particle advection is the only step that requires the full
basis present in memory. All other computations require only re-
duced size structures (column “Tensors” in Table 1). Note also that
particle advection is trivially parallelizable.

6 Results

To assess the properties of coupled fluid tiles, we have conducted
a variety of experiments and comparisons. Timings exclude visual-
ization (particle advection, particle filtering, and rendering).

Simulation Error. To measure our algorithm’s approximation er-
ror, we perform simple tests in 2D and 3D. In both cases, we ran
a simulation of horizontal wind evolving into vortices over 200
frames. Animations are contained in the accompanying video ma-
terial. We compare the full simulation at different resolutions to
monolithic model reduction [Treuille et al. 2006] with 32 basis
states (64 in 3D), and coupled model reduction over a pair of adja-
cent tiles with 16 basis states each (32 in 3D) and a 6-dimensional
boundary basis. The results are summarized in Figure 4.

Averaging over the whole domain, the errors for tiled and mono-
lithic simulations are similar. In terms of L2-error, the coupled re-
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Figure 4: Simulation Error compared to a ground truth simula-
tion. Left: 2D test with 256 × 128 ground truth. Right: 3D test
with 64 × 32 × 32 ground truth. Shown is the relative L2 error:
δ(x,y) = ||x− y||/||x|| plotted against time for 200 frames.

duced simulation outperforms a full-scale simulation that is down-
sampled by a factor of 16 (8 in 3D). Especially for larger domains,
this indicates that reduced models are significantly faster than full
simulations, even if we compare to a downsampled simulation in-
curring similar errors. These results measure error in cases where
the test case is close to the training data.

2D Boxes. Modular reduced models show simulation errors sim-
ilar to monolithic reduced models even in situations where tiles are
combined in novel ways. To demonstrate this, we ran a 150×50 sim-
ulation of horizontal flow through a domain containing two square
obstacles. We then split the domain into three 50×50 subdomains
called, from left to right, A, B, and C. Both A and C contain ob-
stacles; B does not. Finally, we discard B and compute tiles for A
and C independently. The reduced models for A and C are then
coupled to form a tiled simulation (see Fig. 5).

For comparison, we ran a full simulation using the same boundary
conditions as in the coupled simulation seen in Fig. 5. We also com-
pute a monolithic reduced model from this new full-dimensional
simulation. We then compare the tiled simulation and the mono-
lithic reduced model against the new “ground truth” simulation.
Note that in this experiment, the monolithic model is tested with its
own training data, while the tiled model is not. Nevertheless, both
techniques show similar errors. The relative L2 error approaches
one because the reduced models dissipate energy faster than the
full simulation (we calibrated the diffusion in all models be visu-
ally similar, leading to higher dissipation in the reduced models).

The L2 error is a crude measure of simulation quality, especially
in the case of turbulent flows. Absent a good error measure, we
have visually evaluated the performance of our approach by testing
its ability to transfer vortices across tile boundaries. In order to
highlight interesting areas of the flow, we advect a large number
of particles and filter for a subset whose paths have high curvature.
These particles tend to best show the important features of the flow.

Tiled simulation using boundary bases produces results that are far
superior to simpler alternatives. We refer the reader to the ac-
companying video for animated comparisons. Without coupling
constraints, divergence along the boundary creates severe artifacts.
Overlapping the two bases and blending between their velocities
yields an approximately divergence-free flow, but flow features
such as vortices are not transferred across the tile boundaries. Ful-
filling the consistency constraints approximately without perform-
ing constraint reduction leads to a locked simulation (i. e. a small
value for α in Eq. 7), or insufficient coupling and divergence arti-
facts (i. e. a large value for α in Eq. 7). Constraint reduction solves
these issues by making the tiles compatible, thus allowing for in-
formation exchange across the boundary while fulfilling the consis-
tency constraints exactly.

0

0.25

0.5

0.75

1

64 mono 2x32 tiled
2x32 smooth

Figure 5: 2D Boxes example. Left: Vortices and other features can
cross from one tile to another by virtue of the coupling basis. The
dotted line indicates the tile boundary. The two squares are fixed
obstacles. Right: Relative error of monolithic, tiled simulation,
with and without smoothness constraints, plotted against time for
1000 frames.

Spacecraft. This example demonstrates our algorithm’s ability to
recombine pieces of geometry simulated entirely independently. To
compute the tiles for this scene, we ran a total of 15 full dimensional
simulations of incompressible fluid flow on a three million voxel
248×196×71 domain. We simulated five different “wind” directions
for each of the three spacecraft designs. We then decomposed each
spacecraft into wings, tail, and body. We thus obtained 14 tiles:
three wing pairs, three body parts, three tails, and two additional
tiles above the wings.

We created 16-dimensional boundary bases for each of the possible
boundaries shown in Fig. 3 (a). This enables like parts to be inter-
changed at runtime. Finally, we created 64-dimensional simulation
bases for each of the 14 tiles. The accompanying video shows real-
time simulations including part substitutions and wind variations
within a 90◦ range. The results show that our approach captures
the turbulent wakes left by this obstacle even for tile combinations
not originally simulated.

City. We simulated a large city, demonstrating that our approach
enables interactive simulation on huge domains. We performed 90
fluid simulations for 200 frames of various 2×2 building config-
urations on a 114×114×146 domain. The simulations were ini-
tialized with wind from one of the four compass directions or a
turbulent initial state without net wind. For each building type, we
extracted time series for a 57×57×146 domain from the simulations.
We then built two 12-dimensional coupling bases for the x and y
faces, respectively, and computed 72-dimensional simulation bases
for each building from these coupling bases. In this setting, every
building can be coupled with every other building. We use these
bases to build a set of cities ranging from 5×5 to 16×16 blocks.
Again, we visualize flow using filtered particles. The results in the
accompanying video show that our technique captures small scale
simulation features, turbulent wakes that cross tile boundaries, and
enables runtime part substitution and simulation modification such
as the introduction of tornadoes or the removal or changing of tiles.
Fig. 1 shows pathlines of particles advected in the flow field of a
city consisting of 16×16 blocks.

Note that the tornado tile was added to our library after all the
other building blocks had already been computed. As pointed out
in Sec. 5, if the boundary bases are left unchanged, the existing tiles
do not have to be modified in order to add new tiles.

Table 1 shows statistics on scene preparation, precomputation times
and runtime performance. Both the full-dimensional and coupled
simulations were performed on a quad-core 1.1 GHz AMD Opteron
with 16GB of RAM. The reported simulation times include simu-
lation of the coupled reduced system and constraint handling. Tim-
ings do not include particle advection, particle filtering, and render-
ing. We use Mental Ray to render the scenes.
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Reduced Sim Runtime Memory
Name Shape Voxels t m s Precomp. Full Reduced Speedup Full Bases Tensors

Spacecraft 248×196×71 3.4M 14 64 16 33h 191s 0.024s 7919× 53MB 5.4GB 128MB
City 5x5 285×285×146 12M 7 72 12 26h 436s 0.108s 4029× 181MB 1.5GB 31MB
City 7x7 399×399×146 23M 7 72 12 26h ∼850s† 0.250s ∼3400× 355MB 2.3GB 73MB

City 16x16 912×912×146 121M 7 72 12 26h ∼4,400s† 1.626s ∼3900× 1.8GB 2.7GB 120MB

Table 1: Timing and memory summary. t, m and s denote the number of tiles, reduced dimension and the dimension of the boundary basis,
respectively. “Precomp.” is the precomputation time in hours, while the “Full” and “Reduced” runtimes are measured in seconds. Memory
usage for the full simulation includes velocity and pressure fields, “tensors” includes all coupling terms (even those not used in the scene).
All memory requirements assume single precision floating point storage. †Simulation time estimated by extrapolation.

The speedups we reported are approximate. We did not heavily
optimize either our full dimensional or our coupled simulation run-
time. The former could certainly be improved by using precondi-
tioning in the projection step, and the latter could be optimized by
removing dynamic memory allocation from the simulation loop and
improving cache coherence. Furthermore, for the 7×7 and 16×16
cities, the full simulation was too large to run on our machines (and
implementations), and the simulation runtime is approximated by
assuming the simulation cost per time step is linear in the number
of voxels. This is an underestimation, the asymptotic complexity is
O(N4/3) assuming the full-dimensional projection step is solved
to convergence.

7 Conclusion

We have presented a novel approach to interactive fluid simulation.
The central idea is to distill high-resolution simulation data into
fluid tiles that can be combined in a modular fashion. Our results
demonstrate that tilings can scale to very large domains. Runtime
complexity is low because dynamics and coupling operate entirely
in the low-dimensional reduced space. We believe this technique
brings us closer to complex virtual environments endowed with
high resolution dynamics.

Our technical contributions relate to coupled simulation and con-
straint satisfaction across tiles. The tile representation induces sim-
ulation operators which can be precomputed and decomposed, en-
abling assembly and reconfiguration at runtime. Moreover, the ap-
proach enables extensible libraries of tiles: we can introduce new
tiles without recomputing information about existing tiles.

Our other main contribution is constraint reduction. We modify
the simulation bases so that they can satisfy a large set of consis-
tency constraints while preserving sufficient freedom in the repre-
sentation to prevent locking. This technique generalizes to arbitrary
linear constraints on any reduced model. Beyond enforcing con-
sistency, the method opens up interesting possibilities for adapting
reduced models to linear constraints in a post-process.

The models generated this way are one step beyond models gener-
ated using plain singular value decomposition. Using our method,
tiles can be assembled at runtime to produce fluid simulations with
obstacles not contained in the original data. This modularity over-
comes one of the principle limitations of model reduction: the in-
ability to adapt the model once it has been computed.

Otherwise, our approach shares some of the limitations of mono-
lithic model reduction. Depending on the size of the domain, the
memory cost of storing bases can be high. Also, representational
limits of the basis incur greater accuracy costs than full simulation.
As expected from a data-driven technique, these errors are particu-
larly noticeable when the reduced system is presented with inputs
far from the training data. Finally, like other reduced order tech-
niques for fluid simulation, our method cannot be used to simulate
multi-phase flows. In particular, fluids with free surfaces cannot be
properly handled.

Generating the simulation data to construct fluid tiles requires some
care. It is possible to create fundamentally incompatible tiles which
lose much of the representational power during constraint reduc-
tion. This suggests a difficult but exciting open problem: Can we
generate bases that preserve their full representational power when
subject to coupling?

We hope to extend the scope of this approach to a wider range of
phenomena, such as explosions, elastic dynamics, free-surface flu-
ids, and other complex phenomena. This includes coupling differ-
ent types of reduced models in the same simulation.

We close by observing that fluid tiles are flexible, but less so than
grid representations, and they are efficient, but not as fast as pure
model reduction. As such, this work opens a continuum between
these two extreme approaches. Instead of grid cells with three de-
grees of freedom, tiles represent richer fluid behavior within their
larger subdomains. Extending this analogy, we are excited to adapt
fluid tiles to general velocity samplings, such as overlapping tiles,
and to a Lagrangian setting where the tiles are allowed to move with
respect to each other.
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