
Local Layering

James McCann∗

Carnegie Mellon University

Nancy Pollard†

Carnegie Mellon University

Figure 1: Local layering allows complicated overlapping between graphical objects without manually splitting layers or painting masks.

Abstract

In a conventional 2d painting or compositing program, graphical
objects are stacked in a user-specified global order, as if each were
printed on an image-sized sheet of transparent film. In this pa-
per we show how to relax this restriction so that users can make
stacking decisions on a per-overlap basis, as if the layers were pic-
tures cut from a magazine. This allows for complex and visually
exciting overlapping patterns, without painstaking layer-splitting,
depth-value painting, region coloring, or mask-drawing. Instead,
users are presented with a layers dialog which acts locally. Behind
the scenes, we divide the image into overlap regions and track the
ordering of layers in each region. We formalize this structure as
a graph of stacking lists, define the set of orderings where layers
do not interpenetrate as consistent, and prove that our local stack-
ing operators are both correct and sufficient to reach any consistent
stacking. We also provide a method for updating the local stacking
when objects change shape or position due to user editing – this
scheme prevents layer updates from producing undesired intersec-
tions. Our method extends trivially to both animation compositing
and local visibility adjustment in depth-peeled 3d scenes; the latter
of which allows for the creation of impossible figures which can be
viewed and manipulated in real-time.

CR Categories: I.3.3 [Computing Methodologies]: Computer
Graphics—Picture/Image Generation

Keywords: layers, visibility, compositing, image editing, stack-
ing, animation

∗e-mail: jmccann@cs.cmu.edu
†e-mail: nsp@cs.cmu.edu

Figure 2: Left: A standard paint program (GIMP pictured) pro-
vides only a global ordering of layers. Right: Our local layer-
ing prototype allows a different ordering in each region of overlap.
Here the local layering dialog is being used to control the overlap
of the white and gray ropes at one of their crossing points.

1 Introduction

Standard digital image compositing, as used in modern paint and
video editing packages, blends a stack of layers together to create a
final image. The order and type of blending performed is uniform
over the entire picture; thus, if part of layer A occludes part of layer
B, then any other part of layer A must, perforce, occlude layer B.
Image editors normally have some form of layers dialog to allow
the ordering of objects to be changed.

In this paper we show how to allow object ordering edits to be made
at a local, rather than global, level. Stacking control is performed
through a local layers dialog (Figure 2) which controls stacking at
a user-selected point in the image. With this local ordering control,
users are able to create layers that weave over, under, and through
one-another (Figures 1, 3), mimicking the behavior of objects in the
real world (Figure 4).

The computational core of our approach is a method of representing
local layering: the list-graph. Building on this structure, we define
a consistent stacking, and prove that our local order-adjustment op-
erators are both correct and sufficient to navigate the space of con-
sistent stackings. We are also able to preserve and update this local
ordering information in the presence of objects that change shape
or position due to user edits. Though our prototype implementation
is raster-based, the algorithms presented will work in any scenario
where there are planar graphical primitives whose regions of in-
tersection can be computed (e.g. any vector image built from the
basic primitives outlined by the scalable vector graphics specifica-
tion [2003]).

Figure 4: Left, objects stacked in the real world. Middle, objects stacked with local layering. Right, layers used.

Figure 3: Complex overlapping creates visual interest; this com-
position uses only four layers – the snake, the rose, the staff, and
the background.

2 Background

In graphics, the notion of representing scenes as stacks of partially-
transparent layers was largely borrowed from the film industry, and
dates to the late 1970s. Along with premultiplied alpha and the
compositing algebra of Porter and Duff [1984], the main contri-
bution of graphics to compositing was the notion of intrinsic al-
pha, in which transparency is viewed as part of each pixel. It is
this notion which encourages us to think of pixels in raster images
as belonging to discrete objects instead of image-sized layers with
associated image-sized mattes. More information about the his-
tory of compositing is available in a technical memo by Alvy Ray
Smith [1995], and makes for interesting reading. Compositing re-
mains largely unchanged in today’s image- and video- editing pro-
grams (e.g. [Kimball and Mattis 1995–2009; Apple 1999–2009]).

The inverse problem, that of creating a stack of layers correspond-
ing to an image, is of interest to vision researchers as a primitive for
image understanding [Nitzberg and Mumford 1990]. In real scenes,
layers may be segmented using any number of features (e.g. mo-
tion [Adelson and Wang 1994]). If all object contours are known,
such a stack of layers – corresponding to front- and back- facing
regions of the object – may be constructed using the paneling algo-
rithm of Williams [1997]. This approach has been systematized for
modeling [Karpenko and Hughes 2006; Cordier and Seo 2007].

When combining images of separate objects in a 3d scene, simple
global layering is not enough, due to occlusion cycles. If available,
depth information can be used to provide a local stacking [Duff
1985]. Alternatively, layers can be modified by removing occluded
pieces [Snyder and Lengyel 1998]. The core of the approach pre-
sented by Snyder and Lengyel, which is to compile an occlusion
graph into a series of compositing operations, may be useful to ac-

celerate display of our list-graphs. However, because Snyder and
Lengyel rely on whole-image operations, their technique cannot
handle the situation where two layers A and B must be composited
A over B in one place and B over A in another. Similar stacking
results may be attained manually – for example by designing 3d
geometry for a 2d scene (e.g. [Debevec et al. 1996]) or by masking
out parts of objects that are occluded – though to do so is tedious.

Our construction works on the adjacency graph of regions of over-
lap of graphical objects. This is similar, in spirit, to a planar
map [Baudelaire and Gangnet 1989] – a method of representing
a vector drawing in which all curves are treated as lying in the same
plane and separate fills and strokes may be assigned to any region
or portion of an edge. Just as users can simulate local layering in
a stacked representation by duplicating layers and painting masks,
users can simulate local layering (and stacking) in a planar map by
adjusting fills and colors of regions, potentially touching many ad-
jacent regions to make one visibility edit. In contrast, our system
maintains structural information about objects and stacking in each
overlap region, and thus can automatically re-stack adjacent regions
when visibility editing and compute proper pixel colors in overlaps
of transparent objects.

Where our method relaxes the rigid structure of a layer-based ap-
proach, Asente, et al. [2007] propose a method that infers structure
from a planar map in order to allow more intuitive editing opera-
tions. Their system estimates object colors for closed curves and
extracts a potential stacking order by examining regions of overlap.
This allows the system to propagate region fill colors in a reason-
able way as curves are moved. As these stacking orders are esti-
mates based on region coloring, they cannot reliably be made in
drawings with, e.g. artist-simulated transparency. This is accept-
able as it is not the goal of Asente, et al. to calculate the stacking
of objects; rather, the inferred stacking is one of many cues used to
determine reasonable behavior during edits. In contrast, our system
explicitly maintains a consistent stacking order and allows it to be
edited directly.

Wiley [2006] presents a vector-graphics drawing system, Druid,
that represents regions and their stacking as valid over/under la-
bellings of the intersections of a set of boundary curves. This sys-
tem is able to elegantly handle self-overlapping surfaces, and (in
contrast to planar maps) does produce a full visibility-order for each
region of overlap. While Druid presently only supports solid fill
colors, one could imagine extending it to produce results similar to
our own by constructing closed curves around layer boundaries of
raster objects.

Though our proposed algorithm does not handle self-overlaps, it
does have several technical advantages over that of Wiley: Our
core re-stacking operator is polynomial time, whereas the core re-
labeling method of Druid involves a worst-case exponential-time
search (though heuristics and construction of equivalence classes

Figure 5: Left, an example figure containing three objects. Dotted
lines indicate occluded contours. Right, the corresponding regions
of overlap and list-graph. Lists containing one or fewer elements
are not shown.

make the common case scale reasonably well). Rendering from our
representation is fast, because the stacking order of surfaces inside
regions is known; Druid must infer relative surface depths when
rendering, which is time-consuming. Our editing operations are
sufficient to reach all valid orderings; such a result would be dif-
ficult to prove given Wiley’s editing operations (though it is likely
true). Finally, it is not clear how to generalize the edge-crossing
representation in Druid to animation, whereas our adjacent-region
method was easy to generalize by giving regions temporal extent.

From a practical standpoint, our system is simple to describe, prove
properties of, and implement. Also, because we extend the notion
of a conventional layers dialog, our stacking adjustment method
may be more familiar to users.

Igarashi et al. give a heuristic method, based on continuously mon-
itored and updated depth values, to generate a temporally-coherent
stacking order for a deformable 2d object [2005]. Their method is
designed for self-occlusions of a single object and does not make
guarantees about an intersection-free result, while our method is
designed for complex layering of multiple objects and is provably
correct.

Limited local layer re-ordering support is provided by the Push-
Back tool in Real-Draw PRO [Mediachance 2001–2009]. This tool
moves the top layer of a stack to some other point in the stack in
a user-selected region. This automates the traditional mask-based
method of achieving local re-ordering, but retains the drawback of
requiring the user to manually define the region of effect. In con-
trast, our method can locally re-order all layers and automatically
extends layer edits as far as is needed to prevent layer interpenetra-
tion.

3 Method

With local layering, layers can be ordered just as one would order
paper cut-outs, weaving and overlapping but never passing through
one-another. In this section, we examine the techniques we use to
achieve this goal. Specifically, we discuss how our local stacking is
represented; the operators invoked when the user instructs the pro-
gram to change the order of layers in a region of overlap; and the
ability of these operators to navigate all possible stackings. Addi-
tionally, we talk about how we handle the case where layers change
content (e.g. if the user transforms or paints on a layer).

3.1 Data structure

Where a global layering approach needs only one list to track the
relative ordering of objects, our approach requires lists for each re-
gion of overlap. To store these local orderings we use a structure

Figure 6: Above, a version of the stacking given in Figure 5 con-
taining an undesirable intersection between the green circle and
tan blob. The list-graph, below, is inconsistent (inversion indicated
with dotted lines). Lists containing one or fewer elements are not
shown.

we call a list-graph. A drawing and the corresponding list-graph
appear in Figure 5.

Definition 3.1 (List-graph). A list-graph G is an undirected graph
with a list stored at each vertex. We write L ∈ G to indicate that list
L appears at some vertex of G, and x < y ∈ L to indicate object
x appears under – though not necessarily directly under – object y
in the stacking given by list L. It is not the case that all objects
must appear in all lists, or that they must appear in the same order
in those lists which they inhabit.

To construct a list-graph from a set of overlapping objects, one first
partitions the image into regions of overlap – that is, connected re-
gions of the plane covered by the same set of objects. For each
region of overlap, a list-graph vertex is created that contains a stack-
ing order for the layers that appear in that region. Edges are created
between any two vertices whose associated regions of overlap share
an edge. The stacking order stored at each vertex may either be ini-
tialized to a global order or set based on an existing order (e.g. when
moving a layer), which we will demonstrate later.

Since our operators are defined in terms of areas-of-overlap and the
list-graph abstraction, they apply equally well in a raster or vector
setting (as long as the primitive objects contain no self-overlap).
However, our prototype uses raster graphics exclusively, and we
consider a layer to exist anywhere it has non-zero alpha. More im-
plementation details are given in Section 5.

It is important that layers do not pass through each-other in our final
image. We formalize this notion as consistency:

Definition 3.2 (Consistency). A list-graph G is consistent if for
all adjacent lists A, B ∈ G and all pairs of layers x, y ∈ A ∩ B,
x < y ∈ A ⇐⇒ x < y ∈ B.

An example of the sort of artifact produced by an inconsistent list-
graph is given in Figure 6.

3.2 Local Order Adjustment

Of course, being able to represent different orderings is of no use if
users have no way of specifying them. In order to make local or-
dering adjustments, we introduce the Flip-Up and Flip-Down
operators (pseudo-code for Flip-Up appears in Figure 7). These

0: Flip-Up(L, x, t):
1: if (x 6∈ L ∨ t 6∈ L) return
2: while (x < t ∈ L):
3: Let y be the element directly above x in L.
4: Swap x and y in L.
5: for (L′ adjacent to L):
6: Flip-Up(L′, x, y)

Figure 7: Pseudo-code implementing the Flip-Up operator,
which places layer x above layer t in list L while maintaining con-
sistency. Flip-Down is defined similarly, replacing the condition
in line 2 with x > t ∈ L and the word “above” with “below”.

x

ai

Ai F1 F2 B

b

x̂

Figure 8: Side view of scenario in Lemma 3.5; if it was the case
that x < ai ∈ Ai before a call to Flip-Up, then it must have
been the case that x < b ∈ B as well. (e.g. x was at x̂.)

operators are local versions of the “move above” and “move below”
operators in a global layering setting. When Flip-Up(L, x, t) is
called, the procedure first makes sure that x, t ∈ L, then proceeds to
slowly inch x up in the local stacking – calling Flip-Up on all the
adjacent lists after each increase to make the list-graph consistent.
(If it were, instead, to jump x immediately above t then the infor-
mation about x’s new order with respect any element x < b < t
would not be propagated.) Flip-Down proceeds similarly, lower-
ing x until it is below t.

However, while the rearrangement operators in a global setting are
trivial, these local operators are not, and thus need to be proven
correct.

Theorem 3.3 (Termination of Flip-Up). On list-graph G,
Flip-Up(L, x, t) terminates in O(#edges · #layers) time.

Proof: If Flip-Up is called on a list L with no neighbors, then
O(#layers) work is needed. Otherwise, with the proper data
structures, O(1) work is done per execution of the recursive call
on line 6. We charge this work to the edge traversed by the re-
cursive call. Consider an edge between lists A and B. Since
x must be moved up one step in either A or B (line 4) to tra-
verse the edge between them, and x is never lowered, at most
|A| + |B| = O(#layers) calls are made. Multiplying, at most
O(#edges · #layers) work was done.

Theorem 3.4 (Soundness of Flip-Up). After Flip-Up(L, x, t)
runs on a consistent list-graph G, the list-graph remains consistent
and x appears above t in list L.

Proof: Notice that Flip-Up will not terminate without x > t ∈
L, so all we need to show is that G remains consistent. Proceed
by contradiction. Assume that there is a pair of elements, shared
by adjacent lists A, B, which appear in different orders in each
list. Since Flip-Up never changes the relative order of non-
x elements, one of these must be x. Call the other y. Without
loss of generality, let x < y ∈ A and x > y ∈ B. Since
Flip-Up never moves x down, it must be the case that x >
y ∈ B because of the action of Flip-Up. But this leads to a
contradiction, because when Flip-Up placed x above y in B it
would have recursed to A and placed x above y there as well.

The termination and soundness of Flip-Down proceed similarly.

Now we need to address a more subtle point. While we have

shown that our operators always take consistent list-graphs to con-
sistent list-graphs, it could be the case that there are some con-
sistent configurations that cannot be reached with Flip-Up and
Flip-Down; this would – no doubt – be infuriating to users. First,
though, we need a lemma:

Lemma 3.5 (Invertability). The action of Flip-Up may be in-
verted by a sufficient number of calls to Flip-Down.

Proof: We show that the results of a call to Flip-Up(L, x, t)
may be undone by the following procedure: At step i, find a
remaining inversion – that is, choose layer ai in list Ai such
that it was the case that x < ai ∈ Ai before the call to
Flip-Up, and it is currently the case that x > ai ∈ Ai. Call
Flip-Down(Ai, x, ai).

To show this approach is correct, we demonstrate that each call to
Flip-Down strictly decreases the set of remaining inversions.
Specifically, consider b ∈ B such that x > b ∈ B before the ith
call to Flip-Down and x < b ∈ B after the call. (One possible
scenario is illustrated in Figure 8.)

Before the call to Flip-Down(Ai, x, ai), there must have been
adjacent lists Ai, F1, . . . , B such that

ai ≤ f1 < x ∈ Ai, f1 ≤ f2 < x ∈ F1, . . . , fk ≤ b < x ∈ B

(This is simply writing down the condition for Flip-Down to
have recursed to b ∈ B.) These inequalities must have also been
true just after Flip-Up returned, since the intervening i−1 calls
to Flip-Down can’t have raised x.

Consider the same adjacent lists before the call to Flip-Up. By
hypothesis, x < ai ∈ Ai; so, by consistency:

x < ai ≤ f1 ∈ Ai ⇒ x < f1 ≤ f2 ∈ F1 ⇒ . . .

⇒ x < fk ≤ b ∈ B

Thus, the ith call to Flip-Down has returned b and x to their
original order; the set of inversions strictly decreases; and we are
done.

With that lemma in hand, we can dive into the main theorem:

Theorem 3.6 (Sufficiency). The Flip-Up and Flip-Down op-
erators allow any consistent configuration of given list-graph G to
be reached from any consistent starting position.

Proof: First, we show how to take any consistent configuration of
G to a canonical form where the layers 1, . . . , n appear bottom-
to-top in numerical order:

Proceed by induction on current layer i. Assume layers i +
1, . . . , n appear in numerical order at the top of any L ∈ G in
which they occur. Now, call Flip-Up(L, i, y) for all L ∈ G and
1 ≤ y < i. This moves i to the top of every L ∈ G in which
it appears, just before elements i + 1, . . . , n. Flip-Up(L, i, k)
will never be called with k > i, because that would imply that
k < i ∈ L, which contradicts the assumption that all k > i are
at the top of L. Therefore we can place the layers in a canonical
order with calls to Flip-Up.

Of course, this means that – by Lemma 3.5 – we can take
the canonical form to any consistent form G′ using calls to
Flip-Down.

In practice, using Flip-Up and Flip-Down to navigate through
the space of consistent stackings is quite intuitive, despite the cum-
bersome construction used in the proof above.

(a) (b) (c) (d)

Figure 9: Maintaining a temporally coherent stacking. (a) The original stacking. (b) The updated layer positions, with local votes cast in
the image-space overlap between the old stacking regions (dotted) and the new (solid). (c) After vote propagation. (d) Final stacking; all
votes satisfied. The overlap at the top was not constrained, so was chosen based on a given tie-breaking order (here prioritizing the orange
crescent).

Figure 10: The user weaves together four layers by dragging them.
This example relies on temporal coherence to maintain stacking in-
formation. Our prototype places the active layer on top in new
overlaps.

3.3 Temporal Coherence

There are many situations when one wishes to initialize the local
orders in a new list-graph to match those in an existing one – for
instance, when moving (Figure 10) or editing layers, or when mov-
ing the viewpoint around a visibility-edited 3d model. This is non-
trivial, as there may not be a one-to-one correspondence between
the old regions of overlap and the new ones, and their adjacency
may have changed. To overcome this obstacle, we propose an area-
weighted voting scheme (illustrated in Figure 9). First, regions in
the old list-graph send votes for their current stacking order to re-
gions in the new list-graph. These votes are weighted by the area
of image-space overlap between the regions. (One can imagine us-
ing some sort of pixel-pixel correspondence or motion estimation
to warp these regions; however, since we want to handle arbitrary
changes, we do not.) Next, these local votes are spread between
regions based on consistency. Finally, the new list-graph is ordered
by greedily choosing a consistent set of votes.

At each list L with associated area A(L) in the image, we define
the reward for a given order a < b ∈ L as the sum of areas of
overlap with old lists Lold which have a < b ∈ Lold:

Rlocal(a < b ∈ L) =
X

Lold s.t. a<b∈Lold

Area(A(L) ∩ A(Lold)) (1)

Since choosing a given order a < b ∈ L will force adjacent lists
containing a, b to also adopt that order, we sum the local rewards
over each set of adjacent lists:

Rglobal(a < b ∈ L) =
X

Ladj∈C

Rlocal(a < b ∈ Ladj) (2)

(Where C is all lists Ladj for which, by consistency, a < b ∈ L ⇒
a < b ∈ Ladj; i.e. those Ladj such that a path exists from L to Ladj

with every list in that path containing a, b.)

Finally, we choose facts (i.e. statements of the form a < b ∈ L)
about the ordering in a greedy manner, choosing, at each round, the

(a) (b) (c) (d)

Figure 11: Starting with configuration (a) the user moves the cres-
cent to the left. The votes, (b), are inconsistent in the central region,
(c). Picking a consistent subset will result in popping (one possibil-
ity shown in (d)). Depending on a user toggle, we can instead roll
back the edit.

largest fact that is allowed, given those already chosen:

facti ≡ argmaxallowed a<b∈LRglobal(a < b ∈ L) (3)

(We call an ordering fact “allowed” if it does not contradict a fact
that can be derived from those we have already chosen.)

If any fact with nonzero reward is not allowed, this indicates that we
are unable to perfectly satisfy temporal coherence and some layer
will “pop” through another (as in Figure 11). Since this may not
be desired, we provide the option to halt at this point and roll back
the change; this has the effect of stopping layers from being moved
through each-other and impossible figures from being rotated im-
properly. Otherwise, we proceed as follows.

Once all facts with nonzero rewards are either chosen or not al-
lowed, we order each list L based on those facts that can be in-
ferred from the chosen facts. In cases when neither a < b ∈ L
nor b < a ∈ L can be derived – such as when user actions intro-
duce a new overlap – we choose the relative order of a and b to be
consistent with a global tie-breaking ordering (if we were to chose
locally, we might introduce inconsistencies). This ordering depends
on the application. When moving layers, we place the layer being
moved at the top of the ordering, so it slides ‘on top’ of anything it is
dragged into. When working with depth-peeled 3d models we use
the depth ordering, so any new depth complexity winds up stacked
properly.

4 Extensions

We can extend the notion of local layering beyond simple stacks of
static images. In this section, we demonstrate how to adjust layering
in animations (viewing each layer as a spatio-temporal volume),
and how to use local layering to adjust depth-order in 3d models.

Figure 13: Animation stacking with spatio-temporal overlap regions. Top: Re-ordering of the mouse and wall at the red arrow in frame 22,
left, results in a stacking change in the spatio-temporally local overlap region (right, frames 17, 22, and 27). Bottom: Later in the same
animation, placing one of the mouse’s hands behind the cheese in frame 94, left, changes an overlap region extending to, right, frames 89,
94, and 99. The mouse passes in front of the wall in these frames because the edit at frame 22 is temporally local.

Figure 12: Spatio-temporal volumes corresponding to the four
layers used in the animation editing example in Figure 13.

4.1 Animation

We can adjust the spatio-temporally local stacking of animated lay-
ers by extending the notion of adjacency across time. That is,
we view the entire animation as a stack of overlapping volumes
(e.g. Figure 12) and build a list-graph over space-time regions of
similar overlap within that volume. Working with space-time vol-
umes means that consistency guarantees layers do not ‘pop’ through
each-other over time. Temporally local stacking is useful in anima-
tions when one element starts behind another then passes in front
of it; for instance, a character walking through a door (Figure 13).

4.2 Impossible Figures

Our method of local stacking can also be used to create impossible
figures, or correct unwanted interpenetration of 3d objects. In this
case, a 3d model is decomposed into layers using GPU-based depth
peeling [Everitt 2001], and the user can change the stacking order of
these layers using our system. This process is illustrated in Figure
14; another example is given in Figure 15. Frame-to-frame stacking
coherency is maintained using the method of Section 3.3.

5 Implementation Details

Our prototype represents each layer as an image-sized set of pixels
with alpha values. The layer is considered to exist wherever it has
non-zero alpha. Regions of overlap are calculated by first splatting
all the layers into a bitfield image (e.g. a pixel overlapped by lay-

(a) (b)

(c) (d)

Figure 14: Constructing an impossible cube. (a) Before ma-
nipulation. (b) Depth-peeled layers. (c) After local layer re-
arrangement. (d) Rotated (stacking preserved using our temporal
coherence method).

ers 2, 5, and 7 would have bits 2, 5, and 7 set), then by extracting
the connected components of this bitfield. We consider pixels to be
adjacent in the up, down, left, and right directions (that is, diago-
nal adjacency is not considered). When working with animations,
pixels immediately before and after a given pixel are considered
adjacent as well. A tag image is created that stores the index – in
the list-graph – of the stacking order for each pixel. Final com-
positing proceeds by looking up the stacking order at each pixel
(using the tag image) and combining the layers in this order. When
working with 3d models, depth-peeling is performed on the GPU
and the layers read back into main memory; all other operations are
performed on the CPU. While we expect that pushing composit-
ing onto the GPU would accelerate the process significantly, our
present CPU version runs fast enough to allow interactive editing
of 1-5 megapixel images.

Figure 15: Another impossible figure. Left, before editing. Mid-
dle, after editing. Right, another view.

6 Future Work

At present, we cannot handle layers that overlap themselves. To do
so we would need to change the list-graph structure to allow a layer
to appear multiple times in a given area of overlap. We would also
need to add connectivity information to tell us which instances of
layers connect over each edge. However, such list-graphs may not,
in general, have any consistent stacking, which makes designing
algorithms and the associated proofs challenging future work.

While our method of creating impossible figures does allow for a
neat demo, generating layers with depth peeling is not particularly
intuitive. Consider the difficulty a user would encounter in trying to
insert a 2d illustration of a curl of smoke rising through the center of
the cube in Figure 14. Some connected polygons are spread across
multiple layers, while other disconnected polygons end up adjacent
in the same peel of depth complexity. Splitting the depth-peeled
layers at occluding contours and adding connectivity information,
as proposed above for self-overlaps, could help address these diffi-
culties.

At present, our notion of consistency is founded on layers either be-
ing present (α > 0) in a overlap or absent (α = 0); this works well
for layers that represent solid objects, but is not terribly satisfying
for objects that are partially transparent everywhere (e.g. fog). To
address this, one could envision relaxing our notion of consistency
to allow layers to pass through each-other smoothly and at a rate
proportional to their transparency.

While the strength of our approach lies in its locality, this local-
ity can sometimes also be troublesome for users. Consider, for in-
stance, a layer consisting of a cloud of fine particles. To move it
in front of another layer requires the user to select each particle in-
dividually – a tedious task. To abjure this tedium we could allow
multiple regions of overlap to be selected at once (e.g. by painting
a stroke or dragging a box). Local layers dialog operations would
then result in invocation of Flip-Up or Flip-Down at all se-
lected regions. Some care, however, is required if the user selects
regions with inconsistent stacking orders – both to convey this in-
consistency to the user, and to figure out the “right thing” to do with
stacking manipulations.

7 Conclusion

We have proposed a local ordering method for graphical objects
that can replicate the complex stacking possible with real art mate-
rials (e.g. cut paper), instead of being fixed to the global-ordering
paradigm inherited from film compositing. In our prototype, users
are given a layers dialog which operates locally. Our method stores
a local ordering for each region of overlap in a list-graph struc-
ture. We defined, as consistent, the subset of these graphs with the
desirable property that layers do not pass through each-other, and
demonstrated two operators Flip-Up and Flip-Down, which
we proved sufficient to navigate this subset. Finally, we showed
how to extend this notion beyond static images by demonstrating
its applicability to animation editing and the creation of impossible
figures. We hope that makers of image editing software find the

case for local stacking compelling enough to consider including it
in their applications.

References

ADELSON, E. H., AND WANG, J. Y. A. 1994. Representing mov-
ing images with layers. IEEE Transactions on Image Processing
3, 625–638.

APPLE, 1999–2009. Final Cut Pro.
http://www.apple.com/finalcutstudio/finalcutpro/.

ASENTE, P., SCHUSTER, M., AND PETTIT, T. 2007. Dynamic
planar map illustration. ACM Transactions on Graphics 26, 3,
30.

BAUDELAIRE, P., AND GANGNET, M. 1989. Planar maps: an
interaction paradigm for graphic design. SIGCHI Bull. 20, SI,
313–318.

CORDIER, F., AND SEO, H. 2007. Free-form sketching of self-
occluding objects. IEEE Comput. Graph. Appl. 27, 1, 50–59.

DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. 1996. Mod-
eling and rendering architecture from photographs: a hybrid
geometry- and image-based approach. In Proceedings of SIG-
GRAPH 96, ACM, New York, NY, USA, 11–20.

DUFF, T. 1985. Compositing 3-d rendered images. Computer
Graphics (Proceedings of SIGGRAPH 85) 19, 3, 41–44.

EVERITT, C. 2001. Introduction to interactive order-independent
transparency. Tech. rep., NVIDIA.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005.
As-rigid-as-possible shape manipulation. ACM Transactions on
Graphics 24, 3, 1134–1141.

KARPENKO, O. A., AND HUGHES, J. F. 2006. Smoothsketch: 3d
free-form shapes from complex sketches. ACM Transactions on
Graphics 25, 3 (July), 589–598.

KIMBALL, S., AND MATTIS, P., 1995–2009. The GNU Image
Manipulation Program. http://www.gimp.org.

MEDIACHANCE, 2001–2009. Real-Draw PRO push-back tool.
http://www.mediachance.com/realdraw/help/pushback.htm.

NITZBERG, M., AND MUMFORD, D. 1990. The 2.1-d sketch.
Computer Vision, 1990. Proceedings, Third International Con-
ference on (Dec), 138–144.

PORTER, T., AND DUFF, T. 1984. Compositing digital images.
Computer Graphics (Proceedings of SIGGRAPH 84) 18, 3, 253–
259.

SMITH, A. R. 1995. Alpha and the history of digital compositing.
In Microsoft Technical Memo #7.

SNYDER, J., AND LENGYEL, J. 1998. Visibility sorting and
compositing without splitting for image layer decompositions.
In Proceedings of SIGGRAPH 98, ACM, New York, NY, USA,
219–230.

SVG WORKING GROUP, 2003. Scalable Vector Graphics (SVG)
1.1 Specification. http://www.w3.org/TR/SVG11/.

WILEY, K. 2006. Druid: Representation of Interwoven Surfaces
in 2 1/2 D Drawing. PhD thesis, University of New Mexico.

WILLIAMS, L. R. 1997. Topological reconstruction of a smooth
manifold-solid from its occludingcontour. Int. J. Comput. Vision
23, 1, 93–108.

