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Abstract
Two human motions can be linearly interpolated to produce a new motion, giving the animator control over the
length of a jump, the speed of walking, or the height of a kick. Over the past ten years, this simple technique has
been shown to produce surprisingly natural looking results. In this paper, we analyze the motions produced by this
technique for physical correctness and suggest small modifications to the standard interpolation technique that in
some circumstances will produce significantly more natural looking motion.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation

1. Introduction

Over the past ten years, interpolation of motion capture data
has been shown to be a very powerful technique for gen-
erating high quality and natural looking motion. This tech-
nique is successful in part because the naturalness of the
original motions is not destroyed by the relatively small
changes made in the process of interpolation. However,
larger changes may also produce natural looking motion if
interpolation is performed within a well-defined class of be-
haviors such as kicking [KG04] or walking [RCB98] where
significant events such as foot contact can be aligned.

For these larger changes, in particular, it is not immedi-
ately obvious why interpolation should produce such good
results. For example, straightforward linear interpolation
could well introduce visually apparent errors in the physics
of the motion. In this paper, we analyze the physical correct-
ness of motions created by interpolating a few, presumably
physically correct, human motions.

We analyze the interpolated motion in terms of a number
of basic physical properties: (1) linear and angular momen-
tum during flight; (2) foot contact, static balance and friction
with the ground during stance; (3) continuity of position and
velocity between phases. We assume that the motions used
for interpolation are physically correct themselves, have the
same skeleton, can be aligned in time by picking correspond-

ing key events and that linear interpolation is used to inter-
polate parameters of motions between these key events.

Our analysis shows that with a few simple modifications
to the straightforward interpolation technique proposed by
others, we can prove that these physical properties are sat-
isfied for a wide range of different kinds of motions. The
interpolated motion will satisfy these physical properties if
the motions used for interpolation do not include significant
rotation during the flight phase (runs, forward and vertical
jumps, for example), rotate around approximately the same
principal axis by approximately the same amount (jumps
with turns, for example) or have no flight phase (walks or
kicks, for example).

The analysis presented in this paper should at least
partially resolve a concern that has been raised about
interpolation–that it is not a suitable technique for highly dy-
namic motions because the physics of the resulting motion
is incorrect. While the main contribution of the paper lies in
its analysis, the few simple modifications to the interpola-
tion scheme that we describe can also significantly improve
the visual quality of certain classes of interpolated motions
while guaranteeing their physical correctness.

2. Background

Interpolation is a component of many different approaches to
modeling, editing, and synthesizing human motions. In this
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section, however, we focus on research that uses interpola-
tion as a standalone technique as this is when our analysis
should provide insight. The key properties of such interpo-
lation techniques are the amount of data to be interpolated,
the selection method for that data, how the key events in the
motions are aligned in time, and the representation of the
motions used for interpolation.

Perlin [Per95] proposed one of the first systems that
included interpolation. He used blending operations on a
set of base motions to create new motions and transi-
tions between them. Wiley and Hahn [WH97] and Guo
and Roberge [GR96] used linear interpolation on a set of
hand-selected example motions to produce modified mo-
tions within that set. For example, Wiley and Hahn were able
to interpolate among a set of reaching and pointing motions
to have the character point to other places in the space. The
set of example motions was quite small in this work as mo-
tion capture data was not yet easy to obtain.

Rose and his colleagues [RCB98] implemented a very
impressive system that used radial basis functions to repre-
sent motions for interpolation. The motions included a set
of walks and runs of varying speed and emotion. The key
events in the motions were selected by hand so that the mo-
tions could be appropriately aligned in time for interpolation.

Kovar and Gleicher [KG04] added a search technique
for identifying a set of motions with similar time events
that could then be interpolated. They also presented tech-
niques for automatically registering the motions for interpo-
lation [KG03].

Linear interpolation has been used extensively for cre-
ating transitions between motions [WB04, RCB98, Per95].
Transitions are created by blending portions of two motions
with a weight that changes over time. The analysis in this
paper, however, assumes a constant weight function and is
therefore not applicable to transitions.

Abe et al. [ALP04] used optimization to synthesize a fam-
ily of highly dynamic motions based on a given motion cap-
ture clip and then interpolated to create intermediate mo-
tions. They observed that the space of motions does not need
to be sampled very densely for the optimization to produce
good results. The analysis in this paper justifies their empir-
ical observation.

Interpolation has also been used to solve other problems
in animation. For example, Park and his colleagues [PSS02]
used interpolation for on-the-fly generation of locomotion
based on user parameters. Rose et al. [RSC01] used interpo-
lation to perform inverse kinematics efficiently.

Postprocessing is often used to remove unwanted results
of interpolation such as foot sliding [LS99, RCB98]. This
additional editing would be hard to analyze. We instead pro-
pose an alternative, easy to analyze, technique that removes
foot sliding by interpolating only non-redundant degrees of
freedom.

3. Problem Description

The interpolation problem is defined as follows: Given k hu-
man motions M1, M2,...,Mk compute motion M by interpo-
lating the parameters of these example motions. Each motion
is defined as a sequence of frames M(t) = {Proot(t),Q(t)},
where Proot(t) is the position of the root segment of the char-
acter, Q(t) = {q1(t)...qn(t)} is the orientation of the root and
the relative angles of the character’s joints and t = 0..T is the
time of a particular frame. In this work we use Euler angles
to represent rotations although most of the analysis is inde-
pendent of the rotation representation.

Using a technique proposed by a number of other re-
searchers including [RCB98], we compute motion M by in-
terpolating the root positions and all the joint angles of the
example motions. The example motions must be scaled in
time, or time-warped, to align key events such as foot con-
tacts. We use a time-warping scheme similar to the one pro-
posed by Rose et al. [RCB98]. We assume that a set of
matching key frames for the input motions is provided (ei-
ther by the user or computed automatically) and that the mo-
tion segments between these key frames can be scaled uni-
formly.

In our work, as in most other approaches to interpola-
tion, we automatically locate these key frames at changes
in the contact with the environment because the physical
laws governing the motion change with contact. Motions
M1, M2,...,Mk are split into phases based on these key frames
and the corresponding phases are interpolated. For exam-
ple, a jumping motion would consist of three phases: lift-off,
flight and landing. Additional key frames can be added dur-
ing long contact phases to better align the motions without
violating the assumptions behind our analysis.

We compute each phase of motion M by interpolating cor-
responding phases of motions M1, M2,...,Mk with a constant
set of weights, w1, w2,...,wk:

M = w1M1 +w2M2 + ...+wkMk (1)

where ∑k
i=1 wi = 1. The analysis in this paper assumes that

the weights sum to one so our results are limited to interpo-
lation and do not generalize to extrapolation. The analysis
is presented for interpolation of only two motions, M1 and
M2 but generalizes to the interpolation of k motions because
equation 1 can be recursively computed by interpolating two
motions at a time. The weights for each interpolation sum
to 1 and the final interpolation produces a motion with the
weighting given in equation 1.

Consider a particular phase F . At each time t of that phase
we compute motion M(t,w) as follows:

M(t,w) =

{

Proot (t) = wP1root (t1)+(1−w)P2root(t2)
Qi = wQ1i(t1)+(1−w)Q2i(t2), for i = 1..n

(2)

where w = 0..1 is the interpolation weight, T1, T2 and T are
the time of phase F in motions M1, M2 and M respectively,
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and t1 = tT1/T and t2 = tT2/T are time indices into motions
M1 and M2.

We use a right-handed coordinate system for all motions:
the positive X axis points right, the Y axis points up, and the
negative Z axis points forward. Positive rotation is counter-
clockwise about the axis of rotation.

We analyze the physical correctness of motions computed
by linear interpolation of two motions with a constant weight
w. This analysis includes: (1) the flight phases of the mo-
tion, (2) the contact phases and (3) the transitions between
the flight and contact phases. During flight the only force
acting on the character is gravity. During contact the feet of
the character should not slide, contact forces should not re-
quire an unreasonably high coefficient of friction, and when
the character is in static balance, the center of mass of the
character should fall within the support polygon of the feet.
The transition between contact and flight phases must main-
tain continuity (for example, the velocity and position at the
end of the flight phase should match that at the beginning
of the contact phase). In the next three sections, we present
our analysis and suggest some improvements over existing
interpolation schemes.

4. Analysis of the flight phase

In the next two sections, we analyze the linear and angular
momentum of the interpolated motion during flight. We ver-
ify that during flight the net external force acting on the char-
acter is gravity and that for a restricted model of the charac-
ter angular momentum is conserved.

4.1. Linear momentum during flight

Because the net external force acting on the character during
flight is gravity, the trajectory of the center of mass should
be a parabola:

Rcom(t) = R0com +V0comt +0.5Gt2 (3)

where R0com and V0com are position and velocity of the center
of mass of the character at the start of the flight phase and
G = (0,−9.8,0) is the acceleration due to gravity.

Figure 1 shows the Z component of the trajectory of the
center of mass when a forward jump with no turn and a
forward jump with a 360 degree turn are interpolated us-
ing equation 2. Because gravity only acts in the vertical, Y ,
direction, the Z component should be a straight line during
flight but it is not. The trajectory appears to contain addi-
tional forces that act on the character during flight.

As the example in figure 1 shows, linear interpolation of
the root position and the joint angles of the character can re-
sult in a non-linear trajectory for the center of mass. A sim-
ple fix is to interpolate the center of mass trajectories instead
of the root positions. The root position can then be computed

Figure 1: The Z component of the trajectory of the center
of mass for: (a) forward jump with no turn (motion M1);
(b) forward jump with 360 degree turn (motion M2); (c) the
motion that results from interpolating motions M1 and M2.
Vertical bars are used to indicate the beginning and ending
of the flight phase for each motion. The trajectory of the cen-
ter of mass of the interpolated motion during flight is not a
straight line as it should be.

from the new center of mass position and joint angles (see
Appendix A). The interpolation equation is now:

M(t,w) =







Pcom(t) = wP1com(t1)+(1−w)P2com(t2)
Qi(t) = wQ1i(t1)+(1−w)Q2i(t2), for i = 1..n
Proot (t) = F(Pcom(t),Q(t))

(4)

where F is the function that computes the root position from
the center of mass and the joint angles. With this small
change, we can now prove that the net external force act-
ing on the character during flight is gravity. According to
Newton’s second law:

dP
dt

= Fnet = m̄G (5)

where P is the total linear momentum of the character, Fnet
is the net external force acting on the character, m̄ is the total
mass of the character and G = (0,−9.8,0) is the acceleration
due to gravity.

Proof: Linear momentum of the articulated character P =
m̄Vcom. Taking the derivative of P with respect to time:

dP(t)
dt = m̄Acom(t)

= m̄(wA1com(t1)(
T1
T )2 +(1−w)A2com(t2)(

T2
T )2)

= w( T1
T )2m̄A1com(t1)+(1−w)( T2

T )2m̄A2com(t2)

= w( T1
T )2m̄G+(1−w)( T2

T )2m̄G

= m̄G(w( T1
T )2 +(1−w)( T2

T )2)

= m̄G
(6)

The transition from the first to the second line is obtained
by taking second derivative of the position of the center
of mass in equation 4 with respect to time (see Appendix
B). The transition from the second to the third line is ob-
tained by rearranging terms in the equation. The transition
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Figure 2: Example from figure 1 but with the flight phase of
the interpolated motion computed by interpolating the center
of mass positions of the input motions instead of the root
positions and with the time of the flight phase computed as

T =
√

T 2
1 w+T 2

2 (1−w).

from the third to the fourth line is obtained by substituting
m̄A1com(t1) = m̄G and m̄A2com(t2) = m̄G. This substitution is
valid because we assume that motions M1 and M2 are physi-
cally correct. The transition from the fourth to the fifth line is
obtained by rearranging terms in the equation. The transition
from the fifth to the sixth line is obtained by substituting:

T =
√

T 2
1 w+T 2

2 (1−w) (7)

This equation defines the choice of the time, T , which will
ensure that gravity is correct during flight.

In the literature, the time of an interpolated motion has
generally been computed as: T = wT1 +(1−w)T2. But set-
ting time in this way results in scaling gravity by:

wT 2
1 +(1−w)T 2

2
(wT1 +(1−w)T2)2 (8)

In many cases this error will be small and will not be notice-
able. Reitsma and Pollard [RP03] determined that if gravity
is between −9.0 and −12.7 the error is not visible to the
human observer.

Figure 2 shows the example from figure 1 with the inter-
polated motion during the flight phase computed according

to equation 4 and with time T =
√

T 2
1 w+T 2

2 (1−w). The
Z component of the trajectory of the center of mass during
flight is now a straight line.

The difference between the interpolation schemes in equa-
tion 4 and equation 2 becomes most apparent when interpo-
lating dissimilar motions (as in example 1) or motions that
involve significant movement of the root of the character
with respect to the center of mass during flight. In our exper-
iments, we found that for many motions linear interpolation
of the root resulted in an almost linear interpolation of the
center of mass. See Figure 3 for an example.

The pelvis is often chosen as the root of the character. Be-
cause it is generally very close to the center of mass of the

Figure 3: Interpolating a very small forward jump, 0.4 me-
ters, (motion M1) and a very large forward jump, 2.5 me-
ters, (motion M2). The Z component of the center of mass is
shown for motion M1, motion M2 and two interpolated mo-
tions, one computed by interpolating root positions and one
computed by interpolating the center of mass positions. The
two trajectories for the Z component of the center of mass
are very similar.

entire body, it often moves similarly. Figure 4 compares the
position of the center of mass to the position of the root for
the three motions used in figures 1 and 3. For the forward
jumps, the root moves similarly to the center of mass but for
the jump with a 360 degree turn, the root moves along a dif-
ferent trajectory. As a result, interpolating the root positions
of two forward jumps produces a natural looking motion and
interpolating the root positions of a forward jump and a for-
ward jump with a turn produces an unnatural looking result.

4.2. Angular momentum during flight

Because the only force acting on the system during flight is
gravity, and gravity acts at the center of mass, the angular
momentum of the system about the center of mass should be
constant during flight. In general, angular momentum will
not be constant for a motion computed by interpolating two
arbitrary motions. For example, the upper row in figure 5
shows an interpolation between a forward jump and a verti-
cal jump with a 360 degree turn. The angular momentum of
the interpolated motion is not constant during flight.

However, even relatively large fluctuations in angular mo-
mentum are often unnoticed by the viewer if they do not
create large changes in angular velocities. Because angular
momentum, H, is equal to the product between inertia of
the body and angular velocity (H = IΩ), large changes in
angular momentum result in small changes in angular veloc-
ity if the corresponding inertia is also large. For example,
in figure 5 (upper row, rightmost image) angular momentum
changes significantly around the X axis but the motion still
appears natural. The change in angular momentum is hard to
detect because the inertia around the X axis is large (because
the longitudinal axis of the body is perpendicular to the X
axis) and the resulting change in angular velocity is small.
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Figure 4: Comparing the center of mass trajectory to the root trajectory for 3 different jumps. Z components are shown. Left:
small forward jump, middle: large forward jump, right: forward jump with 360 degree turn. These jumps were used to compute
the interpolated motions in figures 1 and 3.

Although the angular momentum is not necessarily pre-
served when interpolating two arbitrary motions it is possi-
ble to show that for a single rigid body, angular momentum
is conserved during flight if both motions rotate around the
same principal axis or one or both contain no rotation. In
many common motions, visible rotation (with large angular
velocity) during flight is either absent (for example, a short
forward jump or run) or happens around only one principal
axis (for example, a longer forward jump, a flip or a ver-
tical jump with a turn). Approximating the character with a
rigid body is not an accurate model for most motions but this
proof still provides some insight into when angular momen-
tum will be preserved.

Proof: If a rigid body rotates around a principal axis then
the angular momentum, H, is equal to the product of inertia
of the body I, and the angular velocity of the body, Ω around
the axis of rotation. Let H1 = I1Ω1 and H2 = I2Ω2 be the
angular momentum for the first and second motions respec-
tively. If we interpolate the center of mass positions and the
rotation angles, the angular momentum of the interpolated
motion is

H = I3Ω = I3(wΩ1
T1

T
+(1−w)Ω2

T2

T
) = constant (9)

The angular momentum H is constant because I3, Ω1 and Ω2
are constant during flight.

The bottom row of figure 5 shows the angular momentum
for a motion computed by interpolating two forward jumps.
Because both jumps involve a rotation around the same axis
the angular momentum in the resulting motion remains rela-
tively constant during flight.

5. Analysis of the contact phase

In this section, we analyze the physical correctness of the
motion while one or both feet are in contact with the environ-
ment. The following conditions should hold for the motion
to be physically valid: (1) the feet of the character should
not slide; (2) when the character is in static balance its cen-
ter of mass should fall within the support polygon of the feet;
(3) the contact forces that correspond to the motion should

Figure 6: (a)Two poses of a simplified character that have
the same contact are interpolated with weight w = 0.5. The
resulting pose penetrates the ground. (b) The redundant de-
grees of freedom of each leg can be intuitively parameterized
by one parameter, Φ, that represents the “knee circle” of the
leg.

not require an unreasonably high coefficient of friction. We
now analyze each of these requirements.

5.1. Non-sliding Foot Contact

We assume that when one or both feet of the character are
in contact with the ground, the position of the feet should
not move (the character does not slip). This condition, how-
ever, does not hold for either the center of mass or root in-
terpolation schemes presented above. Consider the example
in figure 6(a): two poses of a simplified character that have
the same contact point are interpolated with weight w = 0.5
resulting in a foot position below the ground.

Other researchers have addressed this problem by root-
ing the character at a foot that is in contact. This solution
works well when there is only one foot in contact but may
result in sliding of the other foot if that other foot is also in
contact. In general, preserving the contact positions of both
feet and computing joint angles via interpolation is not pos-
sible because the system is over-constrained. A common so-
lution is to to eliminate foot sliding in the interpolated mo-
tion with a post processing step (see, for example [LS99]
and [RCB98]). This additional editing would be hard to an-
alyze for physical validity.

An alternative solution that preserves physics is to inter-
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Figure 5: Upper row, from left to right: Angular momentum curves for a forward jump, a vertical jump with a 360 degree turn
about the vertical axis and a motion computed by interpolating those motions. Lower row, from left to right: Angular momentum
curves for a small forward jump, a very large forward jump and a motion computed by interpolating those motions. X, Y and Z
components of angular momentum are shown for each graph. The shaded area represents the flight phase.

polate only the non-redundant degrees of freedom (dofs) of
the character and the constraints. Each constraint reduces the
number of available dofs. Therefore, if the character origi-
nally had n + 3 dofs (n rotational and 3 translational), then
when both feet are in contact, the number of degrees of free-
dom is reduced by 12. Korein and Badler [KB82] and later
Lee and Shin [LS99] showed that the degrees of freedom of
a leg in contact with the ground can be controlled by just one
parameter, Φ, assuming that the hip position of the leg is also
known. Intuitively, that parameter represents the “knee cir-
cle” of the leg (figure 6(b)). Thus, when both legs are in con-
tact the non-redundant degrees of freedom of the character
are (1) root position; (2) all the joint angles of the character
except the legs; and (3) two “knee circle” parameters, one
for each leg. We can now interpolate these non-redundant
degrees of freedom and the constraints that include the posi-
tions and orientations of both feet and the feet will not slide.

Because there is no real advantage in interpolating the root
as opposed to interpolating the center of mass on the ground,
we can interpolate the center of mass as we did for the flight
phase:

M(t,w) =















Pcom(t) = wP1com(t1)+(1−w)P2com(t2)
Qnri(t) = wQnr1i(t1)+(1−w)Qnr2i(t2)
C j(t) = wC1 j(t1)+(1−w)C2 j(t2)
Proot (t) = F2(Pcom(t),Qnr(t),C(t))

(10)

where Qnri are the non-redundant dofs of the character not
including the root, C j are constraints such as feet positions
and orientations, and F2 is the function that computes the
root position of the character from the center of mass posi-

tion, non-redundant dofs and the constraints (see Appendix
C for details). To preserve continuity of the motion, we use
equation 10 independent of whether one foot or both feet
are in contact. With this interpolation scheme, the feet will
not slide during contact and we can prove that the static bal-
ance condition holds and that the ground reaction forces are
within the friction cone.

5.2. Static Balance

Static balance exists when the projection of the center of
mass of the character onto the ground is within the support
polygon of the feet. We do not assume that input motions are
statically balanced but we show that if they are, the interpo-
lated motion is as well. We assume that M1 and M2 have the
same support polygon.

The position of the center of mass of the interpolated mo-
tion at time t is equal to the interpolation of the center of
mass of motion M1 at time t1 and of center of mass of motion
M2 at time t2 (equation 10). Therefore, the center of mass of
the interpolated motion, Pcom, will lie on a segment connect-
ing points P1com and P2com. The projection of Pcom onto a
plane of contact will also lie on a segment connecting the
projections of P1com and P2com. Let us call these projections
Pg

com, Pg
1com and Pg

2com, then:

Pg
com(t) = wPg

1com(t1)+(1−w)Pg
2com(t2) (11)

Because Pg
1com and Pg

2com lie within the support polygon of
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Figure 7: (a) The ground reaction force must fall within
a friction cone oriented along the contact normal. (b) The
tangential, Fgr f

t , and the normal, Fgr f
n , components of the

ground reaction force.

the feet, Pg
com will also lie within the support polygon assum-

ing the support polygon is convex and 0 ≤ w ≤ 1.

5.3. Friction cone

For the motion to be physically valid, ground contact should
not require an unreasonably high coefficient of friction. We
use a Coulomb friction model to analyze the ground contact.
If contacting surfaces do not move with respect to each other
(static friction) the ratio of the absolute values of the tan-
gential component of the ground reaction force, Fgr f

t , and
the normal component of the ground reaction force, Fgr f

n ,
should be smaller than the coefficient of static friction:

Fgr f
t (t)

Fgr f
n (t)

< µs (12)

Geometrically this constraint means that the ground reaction
force must fall within a friction cone oriented along the con-
tact normal (figure 7).

Assuming a single support polygon, Newton’s second law
says that the ground reaction force, Fgr f (t) is

Fgr f (t) = m̄Acom(t)− m̄G (13)

where m̄ is the total mass of the system, Acom(t) is the ac-
celeration of the center of mass of the system and G =
(0,−9.8,0) is the acceleration due to gravity. The ground
reaction force of the interpolated motion computed accord-
ing to equation 10 is an interpolation of the ground reaction
forces of motions M1 and M2 (see Appendix D for the proof):

Fgr f (t) = wFgr f
1 (t1)

(

T1

T

)2

+(1−w)Fgr f
2 (t2)

(

T2

T

)2

(14)

The proof requires that we set the time T of the contact

phase as T =
√

T 2
1 w+T 2

2 (1−w), which is the same for-
mula we used for the flight phase. Now we need to show that
equation 12 holds for the interpolated motion. From equa-
tion 14, we know that the tangential and normal components
of the ground reaction force can be computed by interpolat-

Figure 8: Interpolation between a long forward jump and
a forward jump with a 360 degree turn (weight w = 0.75).
Motions are shown schematically: the center of mass is pro-
jected onto the ground; the arrows represent the facing di-
rection of the character.

ing the corresponding components of motions M1 and M2:

Fgr f
t (t)

Fgr f
n (t)

=
wFgr f

t1 (t1)(
T1
T )2 +(1−w)Fgr f

t2 (t2)(
T2
T )2

wFgr f
n1 (t1)(

T1
T )2 +(1−w)Fgr f

n2 (t2)(
T2
T )2

(15)

To show that equation 12 holds for the interpolated mo-
tion we first show that for any positive numbers a,b,c and
d, if a

b < µ and c
d < µ then a+c

b+d < µ (see Appendix E for
the proof). From this result, and because we know that equa-
tion 12 holds for motions M1 and M2 we can conclude that
equation 12 holds for the interpolated motion.

6. Transition between phases

We have analyzed the motion of the character during flight
and contact phases independently so we also need to analyze
the continuity of the motion across the transition between
phases. The continuity of the position of the center of mass
follows trivially from the fact that it is computed by inter-
polating the center of mass of motions M1 and M2 which
are themselves assumed to be continuous. The velocity of
the center of mass may be discontinuous during the transi-
tion because different time scalings are applied to adjacent
phases. We have found, however, that this discontinuity is
not noticeable in practice.

Motions with rotation during the flight phase, however,
may have significant discontinuities at the transition between
flight and stance phases because the orientation of the inter-
polated motion may not match that of the original motions
after the flight phase. For example, consider the interpola-
tion of a long forward jump with a forward jump with a 360
degree turn (schematically shown in figure 8). In the original
motions the character lands facing the positive Z axis but in
the interpolated motion, the character lands facing the pos-
itive X axis (rotated 90 degrees clockwise about vertical).
Both the original interpolation scheme (equation 2) and the
modified scheme (equation 10) will have problems with this
transition. The resulting motion will have either significant
foot sliding because the motion of the root does not match
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the motion of the joint angles or a discontinuity in the joint
angles.

To reduce these problems, the subsequent motion of the
root (or center of mass) in the original motions can be ro-
tated to align them with the interpolated motion at the end
of the flight phase. This operation brings the root motion
into alignment with the character’s facing direction and joint
movements but it may introduce a discontinuity in the veloc-
ity of the center of mass. For example, in figure 8, the landing
velocity of the center of mass for the interpolated motion will
be rotated instantaneously by 90 degrees in the transition to
the stance phase. The discontinuity will be small when the
required rotations are small or the ground plane components
of the velocity at landing, Vlanding, are small. The problem
will be worse for motions with more complicated rotations
such as forward or twisting flips.

7. Summary of Analysis

We have made three changes to the interpolation scheme of
equation 2: (1) during flight we interpolate the center of mass
positions instead of the root positions; (2) during ground
contact we interpolate the positions of the feet, the center
of mass positions and all non-redundant degrees of freedom
to prevent the feet from sliding on the ground; (3) the timing

of each phase is computed as T =
√

T 2
1 w+T 2

2 (1−w). With
these changes, we can prove the following properties about
the physical correctness of the interpolated motion:

• The net force acting on the character during flight will be
equal to gravity.

• During contact, the feet of the character will not slide.
• If the character is balanced in the original motions, it will

also be balanced in the interpolated motion.
• If the ground reaction force in both original motions is

within the friction cone, it will also be within the friction
cone for the interpolated motion.

• If we interpolate two motions that do not have visible ro-
tation during the flight phases (for example, runs, short
forward jumps and vertical jumps) or motions that rotate
about approximately the same principal axis (for example,
flips and longer forward jumps), the angular momentum
in the interpolated motion will be close to constant during
flight. This analysis of angular momentum holds when the
character can be reasonably approximated by a rigid body
during flight.

• If we interpolate two motions that either (1) do not have
visible rotation during their flight phases or (2) rotate by
approximately the same angle about the vertical axis in
both original motions or (3) occur mostly in the vertical
direction (for example, a vertical jump), then the conti-
nuity of the velocity of the center of mass will be pre-
served during the transition from flight to contact (ignor-
ing the discontinuity due to differences in time scaling of
two phases).

8. Experimental results

Our experimental results consist of two parts. We first
demonstrate that a variety of dynamical and non-dynamical
motions can be successfully interpolated to generate realistic
looking motions. The motions are generated by interpolating
the trajectories of the center of mass and joint angles during
the flight phases and during the stance phases placing the
root at one of the feet in contact and interpolating the root
and joint angles. The motions are also aligned as described
in section 6. The motions are all included in the accompany-
ing video.

We performed the following experiments: (1) the interpo-
lation of two forward jumps of very different lengths with
no rotation; (2) the interpolation of two forward jumps of
different lengths, each with a 90 degree turn; (3) the interpo-
lation of two vertical jumps of different heights and different
amounts of rotation; (4) the interpolation of two motions in
which the actor stepped over obstacles of different heights;
(5) the interpolation of running and a running jump. In each
of these experiments, the original motions had the properties
required to guarantee the physical correctness of the inter-
polated motions according to our analysis. The interpolated
motions did indeed look visually realistic.

We also compare linear interpolation using root positions
during a flight with interpolation using the position of the
center of mass. We interpolated root and center of mass for
a forward jump with no turn and forward jump with 360 de-
gree turn (the example in figure 1). This interpolation results
in unnatural motion during the flight phase if the root is in-
terpolated and natural looking motion if the center of mass
is interpolated.

Interpolation of either the center of mass position or of
the root position may cause the feet to slide or penetrate the
ground. We demonstrated this by interpolating motions of a
person sitting down on two seats of different heights. Inter-
polating root position results in significant sliding of the feet.
Even simply placing the root at one foot of the character sig-
nificantly reduces the problem although the second foot still
moves slightly with respect to the ground.

Our last experiment demonstrated that if two motions with
different amounts of rotation are interpolated there may be
a visible discontinuity in the velocity of center of mass at
landing (section 6). This phenomena is demonstrated on the
interpolation of a forward jump and a vertical jump with a
360 degrees turn. The resulting motion is quite unnatural.

9. Discussion

We, like others who have experimented with interpolation,
have observed that the matching of key events is crucial for
good results. Some key events such as foot contact are rel-
atively easy to detect automatically. Others such as oscilla-
tions in arm swing, are more difficult to detect and match
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accurately. However, if two jumps are interpolated, one with
a double arm swing during the landing phase and one with
a single arm swing, the resulting motion will not be natu-
ral. Problems such as this will have to be addressed in an
automatic fashion to make interpolation useful in situations
where the details of the original motions are not a good
match.

The analysis presented here only looked at physical cor-
rectness. It will not catch unnatural motions like the ones
described in the previous paragraph or intersections of the
segments of the body that will sometimes arise when two
natural motions are interpolated. Those errors will have to
be detected and fixed using editing techniques which may
themselves introduce errors in the physical correctness of the
motion.

In our analysis we assumed a time warping based on a set
of matching keys. A method for performing dynamic time
warping is presented in [KG03]. Our analysis cannot be di-
rectly applied to this approach but it might be possible to
extend the analysis.

This paper analyzes a number of physical properties of the
interpolated motion. Another physical property that should
be satisfied during contact is that the center of pressure
should fall within the support polygon of the feet.

The results presented here lead to a number of interesting
further questions. First, in situations in which the interpo-
lated motion is not going to be physically correct, we need
better guidelines on how much error is acceptable. Reitsma
and Pollard took a step in that direction [RP03] and observed
that errors in horizontal velocity were easier to detect than
errors in vertical velocity but we need a much more com-
plete understanding of what errors will be perceptible and
which will not be noticed.

For example, the angular momentum of the interpolated
motion is not conserved during flight in the general case.
From our experiments, however, even relatively large fluctu-
ations in angular momentum are not noticed by the viewer
if they do not result in large changes in angular velocities.
A deeper understanding of this observation might be useful
in developing better guidelines for interpolation. Similarly,
it would be useful to have a guideline for when the disconti-
nuity in the transitions from flight to stance will be visible.
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Appendix A: Given the position of the center of mass of the

character, Pcom, and the values of all joint angles, Qi, i = 1..n,
we compute the position of the root of the character, Proot as
follows: (1) for the given Qi compute the center of mass of
the character, P0

com assuming that the root is at the origin; this
calculation gives us the relative position of the root of the
character with respect to the center of mass of the character;
(2) compute root position: Proot = Pcom −P0

com.

Appendix B: The velocity of center of mass is computed
by taking the derivative of the position of the center of mass
in equation 4 with respect to time. Similarly, acceleration of
center of mass is computed by taking the derivative of the
velocity:

Vcom(t) = dPcom(t)
dt

= d(wP1com(t1)+(1−w)P2com(t2))
dt

= wV1com(t1)
T1
T +(1−w)V2com(t2)

T2
T

(16)

Acom(t) = dVcom(t)
dt

=
d(wV1com(t1)

T1
T +(1−w)V2com(t2)

T2
T )

dt

= wA1com(t1)(
T1
T )2 +(1−w)V2com(t2)(

T2
T )2

(17)

where w = 0..1 is the interpolation weight, T1, T2 and T are
the overall time of phase F in motions M1, M2 and M. t1 =
tT1/T and t2 = tT2/T are scaled time indices into motions
M1 and M2.

Appendix C: To obtain the root position given the center of
mass position, the values of all non-redundant dofs and the
values of constraints, such as feet position and orientation,
we first note that the center of mass of the character can be
decomposed into the summation of three quantities: the cen-
ter of mass for the upper body, Pupcom, for the left leg, Pllcom
and for the right leg, Prlcom. The center of mass of the entire
body, Pcom, is then Pcom = PupcomMupcom + PllcomMllcom +
PrlcomMrlcom. In this derivation we assume both legs are in
contact but when only one leg is in contact the derivation is
very similar. The position of the center of mass of the upper
body can be re-expressed in terms of the root position (an
unknown) and the center of mass of the upper body assum-
ing the root is at the origin (see Appendix A):

Pcom = (Proot +P0
upcom)Mupcom +PllcomMllcom +PrlcomMrlcom (18)

The position of the center of mass for a leg can be ex-
pressed in terms of the position of the root, the position of a
knee joint and the position of the foot joint. For example, for
the left leg

Pllcom = 2Proot +2/3(Plknee −Proot)+1/2(Pl f oot −Plknee)+Pl f com
(19)

where Plknee is the position of the left knee joint, Pl f oot is
the position of the left foot joint and Pl f com is the position
of the center of mass of the left foot. Plknee in its turn can
re-expressed as a function Proot as was shown in [KB82],
leaving us with Proot as the only unknown in equation 18.
Solving the equation for Proot (either analytically if possible
or numerically if not) will give us the desired result.
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Appendix D: It can be shown that ground reaction force of
an interpolated motion computed according to equation 10
is a time-scaled interpolation of the ground reaction forces
of motions M1 and M2 if we compute time T for that contact

phase as T =
√

T 2
1 w+T 2

2 (1−w):

Fgr f (t) = Fgr f
1 (t1)(

T1

T
)2w+Fgr f

2 (t2)(
T2

T
)2(1−w) (20)

Proof: Assuming a single support polygon, by Newton’s
second law the ground reaction force, Fgr f (t) is

Fgr f (t) = m̄Acom(t)− m̄G (21)

where m̄ is the total mass of the system, Acom(t) is the ac-
celeration of the center of mass of the system and G =
(0,−9.8,0) is an acceleration due to gravity. Substituting
equation 17 into 21 yields:

Fgr f (t) = m̄A1com(t1)(
T1

T
)2w+ m̄A2com(t2)(

T2

T
)2(1−w)− m̄G

(22)

From Newton’s second law m̄A1com(t1) = Fgr f
1 (t1)+ m̄G

and m̄A2com(t2) = Fgr f
2 (t2)+ m̄G. Substituting this into the

equation above:

Fgr f (t) = (Fgr f
1 (t1)+ m̄G)( T1

T )2w+

(Fgr f
2 (t2)+ m̄G)( T2

T )2(1−w)− m̄G
(23)

Rearranging the terms we have:

Fgr f (t) = Fgr f
1 (t1)(

T1
T )2w+Fgr f

2 (t2)(
T2
T )2(1−w)+

m̄G(
T 2

1 w+T 2
2 (1−w)

T 2 )− m̄G
(24)

Because T =
√

T 2
1 w+T 2

2 (1−w), the ground reaction
force for the interpolated motion is the interpolation of
ground reaction forces from first and second motions:

Fgr f (t) = Fgr f
1 (t1)(

T1

T
)2w+Fgr f

2 (t2)(
T2

T
)2(1−w) (25)

Appendix E It is easy to show that for any positive numbers
a,b,c and d, if a

b < µ and c
d < µ then a+c

b+d < µ .

Adding equations a < µb and c < µd together we have:
(a+ c) < µ(b+d). Now rearranging terms yields: a+c

b+d < µ
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