
Automatically Scheduling Halide
Image Processing Pipelines

Ravi Teja Mullapudi (CMU)

Andrew Adams (Google)

Dillon Sharlet (Google)

Jonathan Ragan-Kelley (Stanford)

Kayvon Fatahalian (CMU)

High demand for efficient image processing

Scheduling image processing algorithms

Algorithm
description

Var x, y;
Func f, g;
g(x,y) = f(x,y) + …
h(x) = g(x,y) + …

Scheduling image processing algorithms

Implementation
Schedule

(machine mapping)

Algorithm
description

Var x, y;
Func f, g;
g(x,y) = f(x,y) + …
h(x) = g(x,y) + …

parallelize y loop
tile output dims
vectorize y loop

Scheduling image processing algorithms

Implementation
Schedule

(machine mapping)

Algorithm
description

Var x, y;
Func f, g;
g(x,y) = f(x,y) + …
h(x) = g(x,y) + …

parallelize y loop
tile output dims
vectorize y loop

Image processing
algorithm developers

Algorithm
description

Schedule
(machine mapping)

Var x, y;
Func f, g;
g(x,y) = f(x,y) + …
h(x) = g(x,y) + …

parallelize y loop
tile output dims
vectorize y loop

Image processing
algorithm developers

Few developers have the skill set to author
highly optimized schedules

> 10x Faster
Implementation

Algorithm
description

Var x, y;
Func f, g;
g(x,y) = f(x,y) + …
h(x) = g(x,y) + …

Image processing
algorithm developers

Contribution: automatic scheduling of image
processing pipelines

> 10x Faster
Implementation

Scheduling
Algorithm

Image processing
algorithm developers

Generates expert-quality
schedules in seconds

Why is it challenging to schedule
image processing pipelines?

in

Algorithm: 3x3 box blur

in bx

bx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3

Algorithm: 3x3 box blur

in bx out

bx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y)) / 3
out(x, y) = (bx(x, y-1) + bx(x, y) + bx(x, y+1)) / 3

Algorithm: 3x3 box blur

in

A basic (slow) schedule

x

y

compute all pixels of bx, in parallel
compute all pixels of by, in parallel

in

A basic (slow) schedule

x

y

compute all pixels of bx, in parallel
compute all pixels of by, in parallel

x

y

in bx

A basic (slow) schedule
compute all pixels of bx, in parallel
compute all pixels of by, in parallel

x

y

Intermediate buffer

in bx

A basic (slow) schedule
compute all pixels of bx, in parallel
compute all pixels of by, in parallel

out

x

y

Intermediate buffer

in bx out

A basic (slow) schedule
compute all pixels of bx, in parallel
compute all pixels of by, in parallel

x

y

Intermediate buffer

in bx out

A basic (slow) schedule
compute all pixels of bx, in parallel
compute all pixels of by, in parallel

Low performance: bandwidth bound

x

y

in bx out

Large in-memory buffer

x

y

Tiling to improve data locality

in bx out

3x3 tile

for each 3x3 tile, in parallel
 compute required pixels of bx
 compute pixels of out in tile

x

y

in bx out

3x3 tile
Required pixels of bx

Tiling to improve data locality
for each 3x3 tile, in parallel
 compute required pixels of bx
 compute pixels of out in tile

x

y

Required pixels of bx
3x3 tile

in bx out

Tiling to improve data locality
for each 3x3 tile, in parallel
 compute required pixels of bx
 compute pixels of out in tile

x

y

Intermediate buffer:
fits in fast on-chip storage

in bx out

Tiling to improve data locality
for each 3x3 tile, in parallel
 compute required pixels of bx
 compute pixels of out in tile

x

y

in bx out

Tiling to improve data locality
for each 3x3 tile, in parallel
 compute required pixels of bx
 compute pixels of out in tile

x

y

in bx out

Tiling to improve data locality
for each 3x3 tile, in parallel
 compute required pixels of bx
 compute pixels of out in tile

x

y

in bx out

Tiling to improve data locality
for each 3x3 tile, in parallel
 compute required pixels of bx
 compute pixels of out in tile

x

y

in bx out

Tiling to improve data locality
for each 3x3 tile, in parallel
 compute required pixels of bx
 compute pixels of out in tile

x

y

Tiling introduces redundant work

in bx out

x

y

in bx out

Pixels computed twice

Tiling introduces redundant work

x

y

Pixels computed twice

in bx out

Tiling introduces redundant work

Larger tiles reduce redundant work

x

y

in bx out

for each 3x6 tile, in parallel
 compute required pixels of bx
 compute pixels in tile of out

Goal: balance parallelism, locality, work

x

y

in bx out

for each 3x6 tile, in parallel
 compute required pixels of bx
 compute pixels in tile of out

Goal: balance parallelism, locality, work

x

y

in bx out

for each 3x6 tile, in parallel
 compute required pixels of bx
 compute pixels in tile of out

Represent image processing pipelines as graphs

in bx out

DAG representation of the two-stage blur pipeline

Real world pipelines are complex graphs

Local Laplacian filters
[Paris et al. 2010, Aubry et al. 2011]

Google Nexus HDR+ mode: over 2000 stages!

100 stages

in out

Key aspects of scheduling

in out
Deciding which stages to
interleave for better data
locality

Key aspects of scheduling

in out
Deciding which stages to
interleave for better data
locality

Key aspects of scheduling

Picking tiles sizes to trade-off
locality and re-computation

in out
Deciding which stages to
interleave for better data
locality

Key aspects of scheduling

Picking tiles sizes to trade-off
locality and re-computation

Maintain ability to execute in
parallel

An Algorithm for
Scheduling Image Processing Pipelines

Algorithm
Input: DAG of pipeline stages A

C
B

D

Ein

Algorithm
Input: DAG of pipeline stages

Output: Optimized schedule

A
C

B

D

Ein

for each 8x128 tile in parallel
 compute required pixels of A
 compute pixels in tile of B

for each 8x8 tile in parallel
 compute required pixels of C
 compute required pixels of D
 compute pixels in tile of E

Algorithm
Input: DAG of pipeline stages

Output: Optimized schedule

A
C

B

D

Ein

for each 8x128 tile in parallel
 compute required pixels of A
 compute pixels in tile of B

for each 8x8 tile in parallel
 compute required pixels of C
 compute required pixels of D
 compute pixels in tile of E

Algorithm
Input: DAG of pipeline stages

Output: Optimized schedule

A
C

B

D

Ein

for each 8x128 tile in parallel
 compute required pixels of A
 compute pixels in tile of B

for each 8x8 tile in parallel
 compute required pixels of C
 compute required pixels of D
 compute pixels in tile of E

A,B C,D,Ein

Algorithm
Input: DAG of pipeline stages

Output: Optimized schedule

A
C

B

D

Ein

for each 8x128 tile in parallel
 compute required pixels of A
 compute pixels in tile of B

for each 8x8 tile in parallel
 compute required pixels of C
 compute required pixels of D
 compute pixels in tile of E

A,B C,D,Ein

Tile size: 8 x 128 Tile size: 8 x 8

Scheduling the DAG for better locality
Determine which stages to group together?

How to tile stages in each group?

When to group stages?

Grouping A and B together can either improve or degrade
performance

C

A,B

D

Ein
Tile size: 3 x 3

for each 3x3 tile in parallel
 compute required pixels of A
 compute pixels in tile of B

compute all pixels of C, in parallel
compute all pixels of D, in parallel
compute all pixels of E, in parallel

?

Quantifying the cost of a group

C

A,B

D

Ein
Tile size: 3 x 3

for each 3x3 tile in parallel
 compute required pixels of A
 compute pixels in tile of B

compute all pixels of C, in parallel
compute all pixels of D, in parallel
compute all pixels of E, in parallel

Cost = Cost of arithmetic + Cost of memory

Quantifying the cost of a group

C

A,B

D

Ein
Tile size: 3 x 3

for each 3x3 tile in parallel
 compute required pixels of A
 compute pixels in tile of B

compute all pixels of C, in parallel
compute all pixels of D, in parallel
compute all pixels of E, in parallel

Cost = (Number of arithmetic operations) +
 (Number of memory accesses) x (LOAD COST)

Quantifying the cost of a group

C

A,B

D

Ein
Tile size: 3 x 3

for each 3x3 tile in parallel
 compute required pixels of A
 compute pixels in tile of B

Cost = (Number of arithmetic operations) +
 (Number of memory accesses) x (LOAD COST)

Estimating cost using interval analysis

A,Bin
Tile size: 3 x 3

A Bin

Cost = (Number of arithmetic operations) +
 (Number of memory accesses) x (LOAD COST)

Estimating cost using interval analysis

A,Bin
Tile size: 3 x 3

A Bin

Cost = (Number of arithmetic operations) +
 (Number of memory accesses) x (LOAD COST)

Estimating cost using interval analysis

A,Bin
Tile size: 3 x 3

A Bin

Cost = (Number of arithmetic operations) +
 (Number of memory accesses) x (LOAD COST)

Estimating cost using interval analysis

A,Bin
Tile size: 3 x 3

A Bin

Cost = (Number of arithmetic operations) +
 (Number of memory accesses) x (LOAD COST)

Estimating cost using interval analysis

A,Bin
Tile size: 3 x 3

A Bin

Cost = (Number of arithmetic operations) +
 (Number of memory accesses) x (LOAD COST)

Estimating cost using interval analysis

A,Bin
Tile size: 3 x 3

Cost = Number of tiles x Cost per tile

A Bin

Search for best tile sizes

A,Bin
Tile size: 1 x 6

A Bin

Search for best tile sizes

A,Bin
Tile size: 6 x 1

A Bin

Search for best tile sizes

A,Bin
Tile size: 2 x 2

A Bin

When to group stages?

C

A,B

D

Ein

= A,BCost() Benefit() A,B ACost() Cost() B+ -
Tile size: best

Tile size: best

Exhaustive search is infeasible

Exponential number of possible groupings

A,B,C,D,Ein B,C,D,Ein A

A,Bin C,D,E

C

A,B

D

Ein

Greedy grouping algorithm

compute all pixels of A, in parallel
compute all pixels of B, in parallel
compute all pixels of C, in parallel
compute all pixels of D, in parallel
compute all pixels of E, in parallel

A

C

B

D

Ein

Greedy grouping algorithm

compute all pixels of A, in parallel
compute all pixels of B, in parallel
compute all pixels of C, in parallel
compute all pixels of D, in parallel
compute all pixels of E, in parallel

A

C

B

D

Ein

10 20

5 50

40

Greedy grouping algorithm

compute all pixels of A, in parallel
compute all pixels of B, in parallel
compute all pixels of C, in parallel
compute all pixels of D, in parallel
compute all pixels of E, in parallel

A

C

B

D

Ein

10 20

5 50

40

Greedy grouping algorithm

A B

D

C,Ein

10
40

Tile size: 8 x 8
2

5
compute all pixels of A, in parallel
compute all pixels of B, in parallel
compute all pixels of D, in parallel

for each 8x8 tile in parallel
 compute required pixels of C
 compute pixels in tile of E

Greedy grouping algorithm

A,B

D

C,Ein

4

Tile size: 8 x 8
-1

5

Tile size: 8 x 128

for each 8x128 tile in parallel
 compute required pixels of A
 compute pixels in tile of B

compute all pixels of D, in parallel

for each 8x8 tile in parallel
 compute required pixels of C
 compute pixels in tile of E

Greedy grouping algorithm

C,D,Ein

Tile size: 8 x 8
-5

for each 8x128 tile in parallel
 compute required pixels of A

 compute pixels in tile of B

for each 8x8 tile in parallel
 compute required pixels of C

 compute required pixels of
 compute pixels in tile of E

A,B

Tile size: 8 x 128

Auto scheduler implementation details

for each 8x128 tile in parallel
 vectorize compute required pixels of A unroll x by 4

 vectorize compute required pixels of B
 vectorize compute pixels in tile of D

for each 8x8 tile in parallel
 vectorize compute required pixels of C unroll y by 2
 vectorize compute pixels in tile of E

• Multi-core parallelism, vectorization, loop reordering, and
unrolling

Evaluation

Benchmarks of varying complexity and structure

Blur
Unsharp mask
Harris corner detection
Camera RAW processing
Non-local means denoising
Max-brightness filter
Multi-scale interpolation
Local-laplacian filter
Synthetic depth-of-field
Bilateral filter
Histogram equalization
VGG-16 deep network eval

Benchmark
3
9

13
30
13
9

52
103

74
8
7

64

Stages

Auto scheduler generates schedules in seconds

<1
<1
<1
<1
<1
<1
2.6
3.9
55
<1
<1
6.9

Compile time (s)
Blur
Unsharp mask
Harris corner detection
Camera RAW processing
Non-local means denoising
Max-brightness filter
Multi-scale interpolation
Local-laplacian filter
Synthetic depth-of-field
Bilateral filter
Histogram equalization
VGG-16 deep network eval

Benchmark
3
9

13
30
13
9

52
103

74
8
7

64

Stages

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

Auto scheduler performs comparably to experts
0.5 1 1.5

Auto scheduler

Performance relative to experts (6 core Xeon CPU)

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

Auto scheduler performs comparably to experts
0.5 1 1.5

On 8 of the 14 benchmarks
performance within 10% of
experts or better

Auto scheduler

Performance relative to experts (6 core Xeon CPU)

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

Auto scheduler performs comparably to experts
0.5 1 1.5

On 8 of the 14 benchmarks
performance within 10% of
experts or better

Baseline schedules exploit
multi-core and vector
parallelism but no grouping

Auto scheduler
Baseline

Performance relative to experts (6 core Xeon CPU)

0 10 20 30 40 500 10 20 30 40 500 30 60 90 120

0 10 20 30 40 500 10 20 30 40 50

Auto scheduler can save time for experts

Dillon
Andrew

Time (min)

Th
ro

ug
hp

ut

Th
ro

ug
hp

ut

Time (min)

Time (min)

Th
ro

ug
hp

ut

Max filter

Non-local means Lens blur

0 30 60 90 120

Auto scheduler can save time for experts

0 10 20 30 40 500 10 20 30 40 50

0 10 20 30 40 500 10 20 30 40 50

Auto scheduler
Dillon
Andrew

Time (min)

Th
ro

ug
hp

ut

0 30 60 90 1200 30 60 90 120

Th
ro

ug
hp

ut

Time (min)

Time (min)

Th
ro

ug
hp

ut

Max filter

Non-local means Lens blur

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

Performance relative to experts (6 core Xeon CPU)

0.5 1 1.5

Exploring cost model parameters

Auto scheduler
3-day auto tuning

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

Performance relative to experts (6 core Xeon CPU)

0.5 1 1.5

Exploring cost model parameters

Auto scheduler
3-day auto tuning
Quick auto tuning

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

Quad core ARM performance
0.5 1

Performance relative to experts (ARM CPU)

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

K40 GPU performance
0.5 1 1.5

Performance relative to experts (K40)

Bilateral grid
Blur

Camera pipe
Convolution layer

Harris corner
Histogram equal

Mscale interpolate
Lens blur

Local laplacian
Matrix multiply

Max filter
Non-local means

Unsharp mask
VGG-16 evaluation

K40 GPU performance
0.5 1 1.5

Performance relative to experts (K40)

Optimizing Halide via auto-tuning and stochastic search
[Ragan-Kelley 13, Ansel 14]:
• Compilation time: hours to days
• Output up to 5-10x slower than hand-tuned implementations

Darkroom [Hegarty 14]:
• Auto-scheduling assuming applications restricted to fixed-size stencils

PolyMage [Mullapudi 15]: polyhedral-based optimization
• Greedy group-and-tile algorithm was inspired by PolyMage
• Polyhedral approach cannot analyze non-affine and data-dependent

computations

Prior work

Limitations
Restricted space of schedules
• Does not consider sliding windows and multi-level tiling

No human interaction with the auto scheduler
• Enable experts to guide the scheduling process

Summary
Algorithm that generates Halide schedules
• Competitive with experts
• Generated in seconds
• Pratical implementation

In the process of being merged into mainline Halide
https://github.com/halide/Halide/tree/auto_scheduler

Generalizing the auto scheduler for other DSLs

Tensor Flow Halide Opt

Abstract analysis and scheduling techniques into
components that can be used across languages

Thank you
https://github.com/halide/Halide/tree/auto_scheduler

