Automatically Scheduling Halide Image Processing Pipelines

Ravi Teja Mullapudi (CMU) Andrew Adams (Google) Dillon Sharlet (Google) Jonathan Ragan-Kelley (Stanford) Kayvon Fatahalian (CMU)

High demand for efficient image processing

Scheduling image processing algorithms

Var x, y; Func f, g;

Algorithm description

 $g(x,y) = f(x,y) + \dots$ h(x) = g(x,y) + ...

Scheduling image processing algorithms

Var x, y; Func f, g;

parallelize y loop tile output dims vectorize y loop

Algorithm description

g(x,y) = f(x,y) + ...h(x) = g(x,y) + ...

Schedule (machine mapping)

Implementation

Scheduling image processing algorithms

Image processing algorithm developers

Var x, y; Func f, g;

parallelize y loop tile output dims vectorize y loop

Algorithm description

g(x,y) = f(x,y) + ...h(x) = g(x,y) + ...

Schedule (machine mapping)

Implementation

Few developers have the skill set to author highly optimized schedules

Image processing algorithm developers

Var x, y; Func f, g;

parallelize y loop tile output dims vectorize y loop

Algorithm description

g(x,y) = f(x,y) + ...h(x) = g(x,y) + ...

Schedule (machine mapping)

> 10x Faster Implementation

Contribution: automatic scheduling of image processing pipelines

Image processing algorithm developers

Var x, y; Func f, g;

Scheduling Algorithm

Algorithm description

g(x,y) = f(x,y) + ...h(x) = g(x,y) + ...

Generates expert-quality schedules in seconds

> 10x Faster Implementation

Why is it challenging to schedule image processing pipelines?

Algorithm: 3x3 box blur

in

Algorithm: 3x3 box blur

in bx(x, y)

bx

= (in(x-1, y) + in(x, y) + in(x+1, y))/3

Algorithm: 3x3 box blur

in

bx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y)) / 3out(x, y) = (bx(x, y-1) + bx(x, y) + bx(x, y+1)) / 3

bx

in

compute all pixels of bx, in parallel compute all pixels of by, in parallel

in

compute all pixels of bx, in parallel compute all pixels of by, in parallel

in

compute all pixels of bx, in parallel compute all pixels of by, in parallel

bx

in

compute all pixels of bx, in parallel compute all pixels of by, in parallel

in

compute all pixels of bx, in parallel compute all pixels of by, in parallel

in

compute all pixels of bx, in parallel compute all pixels of by, in parallel

Low performance: bandwidth bound

in

in

in

Intermediate buffer: fits in fast on-chip storage

in

in

in

in

in

Tiling introduces redundant work

in

Tiling introduces redundant work

in

Pixels computed twice

Tiling introduces redundant work

in

Pixels computed twice

Larger tiles reduce redundant work

in

Goal: balance parallelism, locality, work

in

Goal: balance parallelism, locality, work

in

Represent image processing pipelines as graphs

in

DAG representation of the two-stage blur pipeline

Real world pipelines are complex graphs

Local Laplacian filters [Paris et al. 2010, Aubry et al. 2011]

100 stages

Google Nexus HDR+ mode: over 2000 stages!

out

out

Deciding which stages to interleave for better data locality

out

Deciding which stages to interleave for better data locality

Picking tiles sizes to trade-off locality and re-computation

out

Deciding which stages to interleave for better data locality

Picking tiles sizes to trade-off locality and re-computation

Maintain ability to execute in parallel

An Algorithm for Scheduling Image Processing Pipelines

Input: DAG of pipeline stages

Input: DAG of pipeline stages

Output: Optimized schedule

for each 8x128 tile in parallel compute required pixels of A compute pixels in tile of B

for each 8x8 tile in parallel compute required pixels of C compute required pixels of D compute pixels in tile of E

Input: DAG of pipeline stages

Output: Optimized schedule

for each 8x128 tile in parallel compute required pixels of A compute pixels in tile of B

for each 8x8 tile in parallel compute required pixels of C compute required pixels of D compute pixels in tile of E

Input: DAG of pipeline stages

Output: Optimized schedule

for each 8x128 tile in parallel compute required pixels of A compute pixels in tile of B

for each 8x8 tile in parallel compute required pixels of C compute required pixels of D compute pixels in tile of E

Input: DAG of pipeline stages

Output: Optimized schedule

for each 8x128 tile in parallel compute required pixels of A compute pixels in tile of B

for each 8x8 tile in parallel compute required pixels of C compute required pixels of D compute pixels in tile of E

Scheduling the DAG for better locality Determine which stages to group together? How to tile stages in each group?

Grouping A and B together can either improve or degrade performance

E

for each 3x3 tile in parallel compute required pixels of A compute pixels in tile of B

compute all pixels of C, in parallel compute all pixels of D, in parallel compute all pixels of E, in parallel

Quantifying the cost of a group

Cost = Cost of arithmetic + Cost of memory

for each 3x3 tile in parallel compute required pixels of A compute pixels in tile of B

compute all pixels of C, in parallel compute all pixels of D, in parallel compute all pixels of E, in parallel

E

Quantifying the cost of a group

Cost = (Number of arithmetic operations) + (Number of memory accesses) x (LOAD COST)

E

for each 3x3 tile in parallel compute required pixels of A compute pixels in tile of B

compute all pixels of C, in parallel compute all pixels of D, in parallel compute all pixels of E, in parallel

Quantifying the cost of a group

Cost = (Number of arithmetic operations) + (Number of memory accesses) x (LOAD COST)

for each 3x3 tile in parallel compute required pixels of A compute pixels in tile of B

(Number of memory accesses) x (LOAD COST)

A

Cost = (Number of arithmetic operations) + (Number of memory accesses) x (LOAD COST)

B

Cost = (Number of arithmetic operations) + (Number of memory accesses) x (LOAD COST)

Cost = (Number of arithmetic operations) + (Number of memory accesses) x (LOAD COST)

A

Cost = (Number of arithmetic operations) + (Number of memory accesses) x (LOAD COST)

in

B

Cost = Number of tiles x Cost per tile

Search for best tile sizes

in

Search for best tile sizes

in

B

Search for best tile sizes

in

When to group stages? D in A,B **Tile size: best** C

Benefit(A,B) = Cost(A) + Cost(B) - Cost(A,B)

Tile size: best

Exhaustive search is infeasible

Exponential number of possible groupings

Greedy grouping algorithm D in B E A C

compute all pixels of A, in parallel compute all pixels of B, in parallel compute all pixels of C, in parallel compute all pixels of D, in parallel compute all pixels of E, in parallel

Greedy grouping algorithm

20 > E 50

compute all pixels of A, in parallel compute all pixels of B, in parallel compute all pixels of C, in parallel compute all pixels of D, in parallel compute all pixels of E, in parallel

Greedy grouping algorithm

20 > E 50

compute all pixels of A, in parallel compute all pixels of B, in parallel compute all pixels of C, in parallel compute all pixels of D, in parallel compute all pixels of E, in parallel

Greedy grouping algorithm 10 5 D 40 in B C,E A 2

compute all pixels of A, in parallel compute all pixels of B, in parallel compute all pixels of D, in parallel

for each 8x8 tile in parallel compute required pixels of C compute pixels in tile of E

for each 8x128 tile in parallel compute required pixels of A compute pixels in tile of B

compute all pixels of D, in parallel

for each 8x8 tile in parallel compute required pixels of C compute pixels in tile of E

Greedy grouping algorithm

for each 8x128 tile in parallel compute required pixels of A compute pixels in tile of B

C, D, E

Tile size: 8 x 8

for each 8x8 tile in parallel compute required pixels of C compute required pixels of compute pixels in tile of E

Auto scheduler implementation details Multi-core parallelism, vectorization, loop reordering, and •

unrolling

for each 8x128 tile in parallel vectorize compute required pixels of B vectorize compute pixels in tile of D

for each 8x8 tile in parallel vectorize compute pixels in tile of E

vectorize compute required pixels of A unroll x by 4

vectorize compute required pixels of C unroll y by 2

Evaluation

Benchmarks of varying complexity and structure Benchmark Stages Blur 3 Unsharp mask 9 Harris corner detection 13 Camera RAW processing 30 Non-local means denoising 13 Max-brightness filter 9 Multi-scale interpolation 52 Local-laplacian filter 103 Synthetic depth-of-field 74 **Bilateral filter** 8 Histogram equalization VGG-16 deep network eval 64

Auto scheduler generat

Benchmark	Sta
Blur	
Unsharp mask	Ç
Harris corner detection	13
Camera RAW processing	30
Non-local means denoising	13
Max-brightness filter	Ç
Multi-scale interpolation	52
Local-laplacian filter	103
Synthetic depth-of-field	74
Bilateral filter	8
Histogram equalization	
VGG-16 deep network eval	64

tes schedules in seconds	
ges	Compile time (s)
3	
9	<1
3	<1
)	<1
3	
9	<1
2	2.6
3	3.9
4	55
3	<1
7	<1
4	6.9

Auto scheduler performs comparably to experts

Bilateral grid Blur Camera pipe **Convolution layer** Harris corner Histogram equal Mscale interpolate Lens blur Local laplacian Matrix multiply Max filter Non-local means Unsharp mask VGG-16 evaluation

0.5

Performance relative to experts (6 core Xeon CPU)

1.5

Auto scheduler

Auto scheduler performs comparably to experts

Bilateral grid Blur Camera pipe **Convolution layer** Harris corner Histogram equal Mscale interpolate Lens blur Local laplacian Matrix multiply Max filter Non-local means Unsharp mask VGG-16 evaluation

0.5

Performance relative to experts (6 core Xeon CPU)

1.5

On 8 of the 14 benchmarks performance within 10% of experts or better

Auto scheduler

Auto scheduler performs comparably to experts

Bilateral grid Blur Camera pipe **Convolution layer** Harris corner Histogram equal Mscale interpolate Lens blur Local laplacian Matrix multiply Max filter Non-local means Unsharp mask VGG-16 evaluation

Performance relative to experts (6 core Xeon CPU)

1.5

On 8 of the 14 benchmarks performance within 10% of experts or better

Baseline schedules exploit multi-core and vector parallelism but no grouping

Auto scheduler Baseline

Auto scheduler can save time for experts

Non-local means

Lens blur

Auto scheduler can save time for experts

Exploring cost model parameters

Bilateral grid Blur Camera pipe **Convolution layer** Harris corner Histogram equal Mscale interpolate Lens blur Local laplacian Matrix multiply Max filter Non-local means Unsharp mask VGG-16 evaluation

0.5

Performance relative to experts (6 core Xeon CPU)

Exploring cost model parameters

Bilateral grid Blur Camera pipe **Convolution layer** Harris corner Histogram equal Mscale interpolate Lens blur Local laplacian Matrix multiply Max filter Non-local means Unsharp mask VGG-16 evaluation

0.5

Performance relative to experts (6 core Xeon CPU)

Quad core ARM performance 0.5

Bilateral grid Blur Camera pipe **Convolution layer** Harris corner Histogram equal Mscale interpolate Lens blur Local laplacian Matrix multiply Max filter Non-local means Unsharp mask VGG-16 evaluation

Performance relative to experts (ARM CPU)

K40 GPU performance

Bilateral grid Blur Camera pipe **Convolution layer** Harris corner Histogram equal Mscale interpolate Lens blur Local laplacian Matrix multiply Max filter Non-local means Unsharp mask VGG-16 evaluation

0.5

Performance relative to experts (K40)

1.5

K40 GPU performance

Bilateral grid Blur Camera pipe **Convolution layer** Harris corner Histogram equal Mscale interpolate Lens blur Local laplacian Matrix multiply Max filter Non-local means Unsharp mask VGG-16 evaluation

0.5

Performance relative to experts (K40)

1.5

Prior work

Optimizing Halide via auto-tuning and stochastic search [Ragan-Kelley 13, Ansel 14]:

- Compilation time: hours to days
- Output up to 5-10x slower than hand-tuned implementations •

Darkroom [Hegarty 14]:

PolyMage [Mullapudi 15]: polyhedral-based optimization

- Greedy group-and-tile algorithm was inspired by PolyMage •
- computations

• Auto-scheduling assuming applications restricted to fixed-size stencils

Polyhedral approach cannot analyze non-affine and data-dependent

Limitations

Restricted space of schedules

Does not consider sliding windows and multi-level tiling •

No human interaction with the auto scheduler • Enable experts to guide the scheduling process

Summary

Algorithm that generates Halide schedules

- Competitive with experts
- Generated in seconds
- Pratical implementation

In the process of being merged into mainline Halide https://github.com/halide/Halide/tree/auto_scheduler

Generalizing the auto scheduler for other DSLs

Tensor Flow

Abstract analysis and scheduling techniques into components that can be used across languages

Thank you

https://github.com/halide/Halide/tree/auto_scheduler