
Automatically Scheduling Halide 
Image Processing Pipelines

Ravi Teja Mullapudi (CMU)

Andrew Adams (Google)

Dillon Sharlet (Google)


Jonathan Ragan-Kelley (Stanford)

Kayvon Fatahalian (CMU)



High demand for efficient image processing
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Algorithm 
description

Var x, y; 
Func f, g; 
g(x,y) = f(x,y) + … 
h(x) = g(x,y) + …

Image processing 
algorithm developers 

Contribution: automatic scheduling of image 
processing pipelines

> 10x Faster 
Implementation

Scheduling 
Algorithm

Image processing 
algorithm developers 

Generates expert-quality 
schedules in seconds



Why is it challenging to schedule 
image processing pipelines?
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Algorithm: 3x3 box blur



in bx

bx(x, y)  = (in(x-1, y) + in(x, y) + in(x+1, y))/3

Algorithm: 3x3 box blur



in bx out

bx(x, y)  = (in(x-1, y) + in(x, y) + in(x+1, y)) / 3
out(x, y) = (bx(x, y-1) + bx(x, y) + bx(x, y+1)) / 3

Algorithm: 3x3 box blur
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Low performance: bandwidth bound
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Large in-memory buffer
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Intermediate buffer:
fits in fast on-chip storage
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Larger tiles reduce redundant work
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in bx out

for each 3x6 tile, in parallel
    compute required pixels of bx
    compute pixels in tile of out
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Represent image processing pipelines as graphs

in bx out

DAG representation of the two-stage blur pipeline



Real world pipelines are complex graphs

Local Laplacian filters 
[Paris et al. 2010, Aubry et al. 2011]

Google Nexus HDR+ mode: over 2000 stages!

100 stages
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Key aspects of scheduling 
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in out
Deciding which stages to 
interleave for better data 
locality

Key aspects of scheduling 

Picking tiles sizes to trade-off 
locality and re-computation

Maintain ability to execute in 
parallel



An Algorithm for 
Scheduling Image Processing Pipelines 
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Algorithm
Input: DAG of pipeline stages 

Output: Optimized schedule

A
C

B

D

Ein

for each 8x128 tile in parallel
    compute required pixels of A
    compute pixels in tile of B

for each 8x8 tile in parallel
    compute required pixels of C 
    compute required pixels of D
    compute pixels in tile of E

A,B C,D,Ein

Tile size: 8 x 128 Tile size: 8 x 8



Scheduling the DAG for better locality
Determine which stages to group together?

How to tile stages in each group?



When to group stages?

Grouping A and B together can either improve or degrade 
performance

C

A,B

D

Ein
Tile size: 3 x 3

for each 3x3 tile in parallel
    compute required pixels of A
    compute pixels in tile of B

compute all pixels of C, in parallel
compute all pixels of D, in parallel
compute all pixels of E, in parallel

?



Quantifying the cost of a group 
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Cost = Cost of arithmetic  +  Cost of memory
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Estimating cost using interval analysis

A,Bin
Tile size: 3 x 3

Cost = Number of tiles  x  Cost per tile
           

A Bin



Search for best tile sizes 

A,Bin
Tile size: 1 x 6
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Search for best tile sizes 

A,Bin
Tile size: 6 x 1

A Bin



Search for best tile sizes 

A,Bin
Tile size: 2 x 2

A Bin



When to group stages?

C

A,B

D

Ein

= A,BCost(          ) Benefit(          ) A,B ACost(        ) Cost(        ) B+ -
Tile size: best

Tile size: best



Exhaustive search is infeasible 

Exponential number of possible groupings

A,B,C,D,Ein B,C,D,Ein A

A,Bin C,D,E

C

A,B

D

Ein



Greedy grouping algorithm
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Greedy grouping algorithm

A B

D

C,Ein

10
40

Tile size: 8 x 8
2

5
compute all pixels of A, in parallel
compute all pixels of B, in parallel
compute all pixels of D, in parallel

for each 8x8 tile in parallel
    compute required pixels of C
    compute pixels in tile of E



Greedy grouping algorithm

A,B

D

C,Ein

4

Tile size: 8 x 8
-1

5

Tile size: 8 x 128

for each 8x128 tile in parallel
    compute required pixels of A
    compute pixels in tile of B

compute all pixels of D, in parallel

for each 8x8 tile in parallel
    compute required pixels of C
    compute pixels in tile of E



Greedy grouping algorithm

C,D,Ein

Tile size: 8 x 8
-5

for each 8x128 tile in parallel
    compute required pixels of A

   compute pixels in tile of B

for each 8x8 tile in parallel
    compute required pixels of C

 compute required pixels of 
    compute pixels in tile of E

A,B

Tile size: 8 x 128



Auto scheduler implementation details 

for each 8x128 tile in parallel
    vectorize compute required pixels of A unroll x by 4

 vectorize compute required pixels of B
    vectorize compute pixels in tile of D

for each 8x8 tile in parallel
    vectorize compute required pixels of C unroll y by 2
    vectorize compute pixels in tile of E

• Multi-core parallelism, vectorization, loop reordering, and 
unrolling 



Evaluation



Benchmarks of varying complexity and structure 

Blur 
Unsharp mask 
Harris corner detection 
Camera RAW processing 
Non-local means denoising 
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Multi-scale interpolation 
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Bilateral filter 
Histogram equalization 
VGG-16 deep network eval
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Auto scheduler generates schedules in seconds
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VGG-16 evaluation

Auto scheduler performs comparably to experts
0.5 1 1.5

On 8 of the 14 benchmarks 
performance within 10% of 
experts or better

Baseline schedules exploit 
multi-core and vector 
parallelism but no grouping

Auto scheduler
Baseline

Performance relative to experts (6 core Xeon CPU)
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Optimizing Halide via auto-tuning and stochastic search
[Ragan-Kelley 13, Ansel 14]:
• Compilation time: hours to days
• Output up to 5-10x slower than hand-tuned implementations

Darkroom [Hegarty 14]: 
• Auto-scheduling assuming applications restricted to fixed-size stencils

PolyMage [Mullapudi 15]: polyhedral-based optimization
• Greedy group-and-tile algorithm was inspired by PolyMage
• Polyhedral approach cannot analyze non-affine and data-dependent 

computations

Prior work



Limitations
Restricted space of schedules 
• Does not consider sliding windows and multi-level tiling

No human interaction with the auto scheduler 
• Enable experts to guide the scheduling process



Summary
Algorithm that generates Halide schedules 
• Competitive with experts 
• Generated in seconds
• Pratical implementation

In the process of being merged into mainline Halide
https://github.com/halide/Halide/tree/auto_scheduler



Generalizing the auto scheduler for other DSLs

Tensor Flow Halide Opt

Abstract analysis and scheduling techniques into 
components that can be used across languages



Thank you
https://github.com/halide/Halide/tree/auto_scheduler


