
Automatically Scheduling Halide Image Processing Pipelines

Ravi Teja Mullapudi∗ Andrew Adams‡ Dillon Sharlet‡ Jonathan Ragan-Kelley† Kayvon Fatahalian∗

∗Carnegie Mellon University ‡Google †Stanford University

Abstract

The Halide image processing language has proven to be an effec-
tive system for authoring high-performance image processing code.
Halide programmers need only provide a high-level strategy for map-
ping an image processing pipeline to a parallel machine (a schedule),
and the Halide compiler carries out the mechanical task of generating
platform-specific code that implements the schedule. Unfortunately,
designing high-performance schedules for complex image process-
ing pipelines requires substantial knowledge of modern hardware
architecture and code-optimization techniques. In this paper we
provide an algorithm for automatically generating high-performance
schedules for Halide programs. Our solution extends the function
bounds analysis already present in the Halide compiler to automat-
ically perform locality and parallelism-enhancing global program
transformations typical of those employed by expert Halide develop-
ers. The algorithm does not require costly (and often impractical)
auto-tuning, and, in seconds, generates schedules for a broad set
of image processing benchmarks that are performance-competitive
with, and often better than, schedules manually authored by expert
Halide developers on server and mobile CPUs, as well as GPUs.

Keywords: image processing, optimizing compilers, Halide

Concepts: •Computing methodologies→ Graphics systems and
interfaces;

1 Introduction

Image processing pipelines are essential components of a wide range
of applications spanning computer graphics, computer vision, com-
putational photography, medical imaging, and basic science. Trends
such as the increasing sophistication of modern pipelines, growing
resolution of image sensors, and deployment of image processing
applications on resource-constrained devices has created an acute
need for highly efficient image processing pipeline implementations.

In recent years, the Halide image processing language [Ragan-Kelley
et al. 2012; Ragan-Kelley et al. 2013] has proven to be an effective
system for authoring high-performance image processing code, and
it is now used to synthesize production code used in datacenters
and on hundreds of millions of smartphones. The key benefit of
Halide is that it provides abstractions that enable programmers to
rapidly explore the space of code optimizations most relevant to
image processing workloads. Programmers need only provide a
compact, functional description of an image processing algorithm
and a separate, high-level description of how to globally optimize the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org. © 2016 Copyright held by
the owner/author(s). Publication rights licensed to ACM.
SIGGRAPH ’16 Technical Paper, July 24 - 28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925952

algorithm’s execution on a machine (called a schedule). The Halide
compiler then handles the tedious, mechanical task of generating
platform-specific code that implements the schedule (e.g., spawning
threads, managing buffers, generating SIMD instructions).

Although Halide provides high-level abstractions for expressing
schedules, designing schedules that perform well on modern hard-
ware is hard; it requires expertise in modern optimization techniques
and hardware architectures. For example, around 70 software en-
gineers at Google currently write image processing algorithms in
Halide, but they rely on a much smaller cadre of Halide scheduling
experts to produce the most efficient implementations. Further, pro-
duction image processing pipelines are long and complex, and are
difficult to schedule even for the best Halide programmers. Arriving
at a good schedule remains a laborious, iterative process of schedule
tweaking and performance measurement. Also, in large produc-
tion pipelines, software engineering considerations (e.g., modularity,
code reuse) may preclude experts from having the global program
knowledge needed to create optimal schedules.

In this paper we address this problem by providing an algorithm
for automatically generating high-performance schedules for Halide
programs. Our approach is to leverage the function bounds analysis
already present in the Halide compiler to automatically perform
locality enhancing global program transformations similar to those
employed by expert Halide developers. The algorithm does not
require costly (and often impractical) auto-tuning, and, in seconds,
generates schedules that are competitive with, and sometimes better
than, the best manually-created schedules for server and mobile
CPUs, as well as GPUs. Because it is built using Halide’s interval-
based bounds-analysis system, our analyses apply to a broader set of
image processing workloads than recent prior work. We demonstrate
this advantage by presenting automatic scheduling results for a large
set of complex image processing and image analysis benchmarks.

2 Prior Work

There have been a number of recent efforts to automatically generate
efficient image processing pipelines from high-level programs.

Ragan-Kelley et al. [2013] employed auto-tuning guided by genetic
search to automatically generate Halide schedules that were perfor-
mance competitive with hand-tuned implementations. However, the
search was guided by fragile, sometimes benchmark-specific, heuris-
tics (that do not work with the modern formulation of the Halide
language), and required a day or more to find high-quality schedules.
A more general Halide auto-tuner was later implemented within
the OpenTuner framework [Ansel et al. 2014]. This system was
able to find efficient schedules for simpler pipelines (e.g., bilateral
filtering) in about an hour, but fails to converge to good solutions
on more complex pipelines. OpenTuner output for more complex
pipelines such as RAW camera processing, pyramid blending, and
multi-scale interpolation is five to ten times slower than hand-tuned
implementations [Mullapudi et al. 2015].

While auto-tuning may seem like an attractive strategy for optimiz-
ing Halide programs, its use in a production setting is problematic
for several reasons. First, the large size of production image pro-
cessing pipelines presents convergence problems for auto-tuning
systems—the choice space is too large and complex for brute force

http://dx.doi.org/10.1145/2897824.2925952

Var x,y;
Func f,g;
f(x,y) = ...

Halide program
(image processing

algorithm)

f.tile(x,xo,xi..
f.vectorize(xi,8)

Human Expert
(knowledge of code optimization

and hardware architecture)

Halide schedule
(mapping of algorithm)

Autoscheduler

Halide
Code Generator

Function Bounds
Analysis

Platform-optimized
binary

Program Function DAG

Bounds and footprint information
estimated size of
inputs/outputs

Figure 1: Our system automatically generates schedules for Halide programs, a task currently performed by expert Halide programmers.

search. Second, programs can take minutes to compile and must be
deployed to target devices to benchmark (e.g., a cell phone or tablet)
since build machines have different performance characteristics than
deployment targets. This build-deploy-benchmark cycle can make
tuning strategies that rely on measuring the real performance of a
large number of program variants infeasibly slow. While program-
mers must also test the performance of their code on real machines,
experts make judicious choices of which strategies to test, and learn
quickly from each measurement, allowing them to converge to good
solutions from a smaller number of benchmarking samples.

Other recent efforts have achieved high performance by limiting the
space of image processing programs considered. For example, Dark-
room [Hegarty et al. 2014] limits pipelines to contain only fixed-size
stencil operations and no resampling, and adopts a line-buffered
scheduling strategy that is ideal for the performance concerns of
FPGA architectures. These constraints allow pipeline scheduling to
be formulated as an integer linear programming problem that can
be solved in seconds for storage-optimal schedules. This strategy
can be combined with image tiling optimizations to achieve good
performance on multi-core CPUs. However, Darkroom’s analysis
does not extend to data-dependent image processing operations, re-
ductions, or resampling and rate changes. Building upon Darkroom,
Rigel employs the synchronous dataflow model to further extend
pipeline scheduling capabilities to multi-resolution operations and
dynamic filtering [Hegarty et al. 2016], but in doing so it sacrifices
fully automatic scheduling.

PolyMage [Mullapudi et al. 2015] extends polyhedral analysis tech-
niques to schedule image processing pipelines implemented in a
Halide-like dataflow language. Although the space of possible sched-
ules for these programs is large, PolyMage demonstrates that good
solutions lie in a subspace of schedules that consider only pipeline
stage fusion and overlapped tiling of the output image. While Poly-
Mage uses polyhedral analysis to generate efficient loop nests once
stages have been fused, it relies on auto-tuning over a range of tile
sizes to make stage-fusion decisions. Data-dependent operations
(histograms, lookup tables), non-affine programs, and computations
that feature significant input data reuse (deep neural networks, ma-
trix multiplication) fall outside the scope of PolyMage’s polyhedral
overlapped tiling analysis (which is limited to stencils and up/down-
sampling). We adopt PolyMage’s grouping-then-tiling approach, but
use interval analysis, rather than polyhedral techniques, to do so,
yielding completely different, and more practical, compiler internals.
Our solution does not require autotuning, features wider application
scope, and emits human-understandable Halide schedules.

3 Representing and Scheduling Programs

The top half of Figure 1 illustrates the current workflow of devel-
oping an efficient Halide program. A programmer first authors a
functional description of an image processing application. Next,
a programmer (potentially a different one, with code optimization
expertise) develops a schedule for the application. Finally the Halide

compiler uses the program definition and schedule to generate effi-
cient multi-threaded, vectorized code for a target machine. While
the Halide compiler is responsible for the mechanical details of code
generation, it is the schedule writer that is responsible for using
global knowledge of the Halide application to perform the most
critical program transformations.

In this section we summarize common global program restructur-
ing decisions made by Halide developers when authoring efficient
schedules. We assume familiarity with the Halide system, and refer
the reader to [Ragan-Kelley et al. 2012; Ragan-Kelley et al. 2013]
for a comprehensive description of the language and its features.

A Halide program is a DAG of computation, where each node in
the DAG corresponds to a function defined on an n-D domain. For
example, the top of Figure 2 shows a simple Halide program which
performs a two-pass image blur, as well as its corresponding DAG.
The program contains two functions (blurx and out), each defined on
a 2-D domain parameterized by variables x and y. Edges in the DAG
correspond to data dependencies between functions. For example,
there is an edge from blurx to out because each value of out is the
sum of three values produced by blurx.

A Halide algorithm only specifies what computations are needed
to evaluate the output function out at points in its domain. It does
not specify the order in which different points in the domain are
computed, or the order of intermediate computations necessary to
produce these points. It is the job of a Halide schedule to specify an
efficient execution order for all points in the output domain.

3.1 Scheduling for Producer-Consumer Locality

One plausible execution order for the blur pipeline is given by Sched-
ule 1 in Figure 2. When applied to a 6 megapixel (3k × 2k) output
image, the implementation computes all required elements of blurx,
stores them in a large buffer, then uses this buffer to compute all
elements of out. This solution is simple, trivially parallelizable, but
suffers from poor producer-consumer locality. All outputs of blurx
are stored to memory before they are subsequently loaded in the com-
putation of blur. The implementation will be memory-bandwidth
bound, and perform poorly on most modern processors.

Schedules 2 and 3 in Figure 2 provide alternative implementations
that place the computation of elements at blurx at different levels in
the loop nest that computes out (see shaded regions). The different
placement decisions reduce the reuse distance (the time between
accesses to the same piece of data) for intermediate values computed
by the program. Placing the computation of blurx at the innermost
loop of out (Schedule 2) maximizes producer-consumer locality:
three elements of blurx are produced, then immediately consumed
(likely out of the processor’s register file) to compute one value
of out. However, the cost of achieving high locality is redundant
computation: each element of blurx is now computed three times
over the course of the entire computation. Schedule 3 achieves a
better locality vs. redundant-compute balance by interleaving com-

Image in(UInt(8), 2);
Var x, y;
Func blurx, out;
blurx(x,y) = (in(x-1,y) + in(x,y) + in(x+1,y)) / 3;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3;

in blurx out
Pipeline Graph

Halide Program (image blur)

Schedule 1: compute blurx at “top level”
(minimal work, minimal locality)

alloc blurx[2048][3072]
for each y in 0..2048:
 for each x in 0..3072:
 blurx[y][x] = (in[y][x-1] + in[y][x] + in[y][x+1]) / 3
alloc out[2046][3072]
for each y in 1..2047:
 for each x in 0..3072:
 out[y][x] = (blurx[y-1][x] + blurx[y][x] + blurx[y+1][x]) / 3

Schedule 2: compute blurx inside x loop of out
(maximal redundant work, maximal locality)

alloc out[2046][3072]
for each y in 1..2047:
 for each x in 0..3072:
 alloc blurx[3]
 for each yi in -1..1:
 blurx[yi+1] = (in[y+yi][x-1]+in[y+yi][x]+in[y+yi][x+1]) / 3
 out[y][x] = (blurx[0] + blurx[1] + blurx[2]) / 3

Schedule 3: compute 2D tile of blurx inside 2D tile of out
alloc out[2046][302]
for each ty in 0..2048/32:
 for each tx in 0..3072/32:
 alloc blurx[34][32]
 for each y in -1..33:
 for each x in 0..33:
 blurx[y+1][x] = (in[ty*32+y][tx*32+xi-1] +
 in[ty*32+y][tx*32+xi] +
 in[ty*32+y][tx*32+xi+1]) / 3
 for each y in 0..32:
 for each x in 0..32:
 out[ty*32+y][tx*32+x] = (blurx[y-1][x] + blurx[y][x] +
 blurx[y+1][x]) / 3

Figure 2: Three loop orderings for a Halide 3×3 blur program each
offer a different balance of producer-consumer locality, redundant
computation (of blurx values), and available parallelism.

putation of blurx and out at the level of 32× 32 tiles. Because the
amount of intermediate data is small, it can remain in the proces-
sor’s cache. Also, redundant computation of elements of blurx is
limited to the border regions of tiles. This strategy of overlapped
tiling (which can be carried out in any number of dimensions) is a
common optimization in image processing pipelines. Programs that
exploit overlapped tiling are typically parallelized across tiles, so
tile sizes are chosen to be large enough to amortize the overhead of
each parallel task, but small enough to expose enough parallel work
and ensure intermediate data remains in a cache.

Even in this simple example, global loop reorderings have substantial
impact on the performance of the program. Real-world image pro-
cessing pipelines may contain hundreds of functions, and scheduling
them efficiently requires negotiating the trade-off between locality,
parallelism, and redundant computation by multi-dimensional tiling
of function loop nests and deciding where to place producers within
the loop nests of consumers.

3.2 Scheduling for Input Reuse

In addition to increasing locality by moving the computation of
values closer in time to their consumption (placing code for pro-
ducer functions inside the loop nest of their consumer), it is also
possible to increase the locality of multiple reads of the same value

Image A(Float(32), 2);
Image B(Float(32), 2);
Var x, y;
RDom r(0, A.width());
Func C;
C(x,y) = sum(A(x,r.x) * B(r.x,y));

Halide Program (dense matrix-matrix multiplication)

Schedule 1: no tiling, minimal locality
alloc out[1024][1024]
for each y in 0..1024:
 for each x in 0..1024:
 for each rx in 0...1024:
 out[y][x] += A[y][rx] * B[rx][x]

Schedule 2: tiled into 32x32 tiles for input locality
alloc out[1024][1024]
for each ty in 0..1024/32:
 for each tx in 0..1024/32:
 for each y in 0..32:
 for each x in 0...32:
 out[ty*32+y][tx*32+x] = 0
 for each trx in 0..1024/32:
 for each y in 0..32:
 for each x in 0..32:
 for each rx in 0..32:
 out[ty*32+y][tx*32+x] += A[ty*32+y][trx*32+rx] *
 B[trx*32+rx][tx*32+x]

Figure 3: Tiling the output and reduction loop dimensions of matrix-
multiplication (Schedule 2) improves locality of access to the inputs
A and B, significantly improving program performance.

by reordering the consumer’s loop nest. This can be the preferred
approach when the locality of data reuse is more important than
producer-consumer locality.

The canonical example of such a workload is dense matrix-matrix
multiplication, illustrated in Figure 3. When this program is executed
on inputs A and B of size N × N , computing C will access each
element of A and B a total of N times. Note that in Schedule 1, an
entire row or column of the input functions is accessed between
accesses to the same input value (the reuse distance is proportional
to the size of the input matrices). For large input matrices, input
values will no longer be resident in the processor’s cache, yielding
low performance. A well-known optimization, shown in Schedule
2, is to tile the program’s loop dimensions to reduce the problem
to a sequence of smaller matrix multiplications whose inputs do
remain cache resident. Loop tiling to maximize input locality is
a key optimization in workloads featuring dense linear algebra or
convolutional neural networks.

3.3 Function Bounds Analysis

Halide’s scheduling primitives (compute_at, reorder, and tile) en-
able programmers to specify a wide range of locality-increasing
program transformations such as the ones described above. In order
to implement these strategies, the compiler must be able to determine
the appropriate loop bounds and intermediate buffer sizes. For exam-
ple, in Figure 2, Schedule 1, three values of blurx from the interval
(x,y-1..y+1) must be computed and stored prior to computing the
value of out at domain point (x,y) .

The Halide compiler infers symbolic function bounds via interval
analysis on expressions used to define functions. For example, in
the case of Figure 2, given the bounds (xmin..xmax,ymin..ymax) for
the function out, Halide computes the following symbolic bounds
expressions for the required values from blurx and in:

blurx: (xmin..xmax, ymin-1..ymax+1)
in: (xmin-1..xmax+1, ymin-1..ymax+1)

A B C

D

E
Group 1 (tiled 32x32)

Group 2
(tiled 16x64)

alloc B[][]
for each B_ty
 for each B_tx
 alloc A[34][32]
 for each A_y in -1..33
 for each A_x in 0..32
 A[A_y+1][A_x] = ...
 for each B_y in 0..32
 for each B_x in 0..32
 B[B_ty*32+B_y][B_tx*32+B_x] = expr of A...

alloc E[1024][1024]
for each E_ty in [0..1026/16]
 for each E_tx in [0..1024/64]
 alloc C[18][64]
 for each C_y in -1..17
 for each C_x in 0..64
 C[C_y+1][C_x] = ...
 alloc D[18][64]
 for each D_y in -1..17
 for each D_x in 0..64
 D[D_y+1][D_x] = ...
 for each E_y in 0..16
 for each E_x in 0..64
 E[E_ty*16+E_y][E_tx*64+E_x] = expr of C and D...

Auto-scheduled Loop Nest

Halide Program (after partitioning into groups)

Figure 4: The auto-scheduling algorithm partitions a Halide pro-
gram into groups of functions and determines an efficient (potentially
different) tiling for each group. Communication between groups is
performed through in-memory buffers.

If the bounds on the output domain are made concrete, i.e., as-
signed values such as (5..10,10..20) , then the required bounds for
upstream functions can be concretely determined as well:

blurx: (5..10, 9..21)
in: (4..11, 9..21)

Starting from the output function, bounds inference propagates up
the function dependency chain, ascribing bounds to all functions
in the program DAG. When the Halide compiler cannot infer tight
bounds for a function (e.g., due to data-dependent access by a con-
sumer), the programmer can explicitly provide bounds to assist the
compiler in generating efficient code (e.g., the programmer may
have static knowledge that all accesses to a lookup table will be in
the range 0..8). Our automatic scheduling algorithm relies heavily
on the results of bounds analysis to make decisions about how and
when to employ the program restructuring optimizations described
in this section.

4 Algorithm

In this section we describe an algorithm for automatically generating
efficient schedules for Halide programs. The main idea is to partition
the functions in a large Halide program into groups (subprograms),
and independently perform producer-consumer locality and input
reuse locality transformations on these groups.

As an overview of the method, Figure 4 illustrates a Halide program
DAG containing five functions, organized into two groups. While
Halide allows many possible computation orderings for a group, to
make exploration of the optimization space tractable, our system
follows Mullapudi et al. [2015] and only considers a narrower space
schedules that tile the loop nest corresponding to the group’s output
function. The computation of all other functions in the group is

Traverse out in x direction:
no reuse of blurx values

Traverse out in y direction:
significant reuse of blurx values

reuse

Figure 5: Domain iteration order impacts the locality of data access.
The shaded regions indicate values of blurx required to compute two
sequential columns (left) or rows (right) of out (note region overlap
on the right). The auto-scheduler uses estimates of data reuse from
different domain orderings to generate candidate tile sizes and to
reorder loops.

placed within this tiled loop (a single placement decision is made
for all producers). As we demonstrate in Section 5, we are able to
find high-performance schedules in this subspace.

The bottom of Figure 4 shows one possible schedule that results from
applying these rules to the illustrated groups. (Loop bounds are writ-
ten assuming functions are simple vertical stencils with support 3.)
Notice that all functions are computed within the loop nest of the
group’s output function (gray regions), and that producer-consumer
relationships in a group are managed through small intermediate
buffers (A,C,D) that will likely remain resident in cache. Depen-
dencies between groups are implemented via communication (via
buffer B) through main memory.

Our auto-scheduler can analyze all programs expressible in the
current version of the Halide language, with one exception: input
programs are constrained to use only one update rule per function.
Thus far we have not found this restriction to be too limiting, as our
system is able to process a superset of the programs studied in all
prior Halide publications.

In addition to an unmodified Halide program, the auto-scheduler
requires as input an estimate of concrete bounds for the domain of
the program’s output function (e.g., the size of the outputs) as well
as concrete bounds for any inputs that cannot be directly inferred
from the output bounds. This extra requirement is reasonable for
image processing workloads: it is common to know the approxi-
mate size of images a program will process as well as the size of
inputs such as lookup tables whose bounds cannot be inferred due to
data-dependent access. Also, when manually scheduling programs,
programmers typically must estimate such sizes when making op-
timization decisions. The supplied concrete bounds need only be
estimates: if the size of inputs supplied at runtime differ widely from
the statically estimated bounds, generated schedules may be less
efficient, but the compiled program will still be functionally correct.

4.1 Function Preprocessing

The first step in our analysis is to precompute properties of each
function in the input program that will be useful when making
scheduling decisions. For each function f we:

Estimate arithmetic cost. We estimate the arithmetic cost of com-
puting one value of the function, given values for all required inputs.
For example, the function out consists of three additions. We assign
unit cost to most arithmetic operations and higher costs to more
complex operations such as division and transcendentals.

Compute concrete bounds. We use Halide’s bounds analysis to
compute concrete bounds for all functions. This is possible since
the programmer has supplied concrete bounds for the program’s
output function, as well as for all functions whose bounds cannot be
inferred from the output.

Compute per-direction input reuse. To make scheduling deci-
sions, it is helpful to know, for each function, which domain-iteration
order yields the highest amount of input data reuse. For example,
consider computing elements of out in row-major order as is the
case in Figure 5-left. Since computing each output only requires
inputs from the same column of values of blurx, each element of
out requires a new set of inputs. There is no input data reuse, as
evidenced by the non-overlapping yellow and blue bars in the figure.
In contrast, if out was computed in column-major order, then suc-
cessful computations would reuse two or three required inputs from
blurx (Figure 5-right).

We estimate average input reuse of values from producer function g
due to domain-traversal along a particular axis of consumer function
f by computing input bounds on g for two adjacent strips of f . We
compute the intersection of these two input regions as an estimate of
input reuse. For example, to compute reuse due to domain-traversal
in the x direction:

mid = c_xmin + (c_xmin + c_xmax) / 2
b1 = bounds(f, g, mid..mid+1, c_ymin..c_ymax, ...)
b2 = bounds(f, g, mid+1..mid+2, c_ymin..c_ymax, ...)
b_reuse = intersect(b1, b2)

The function bounds above returns a concrete bound on elements of
g needed to compute elements within the specified bound on f . The
preprocessing step computes reuse bounds for all f ’s ancestors, for
all domain directions. It is sufficient to sample reuse along a single
strip of the domain since Halide’s loops iterate over rectangular
domains (the overlap estimate will apply throughout the domain).

4.2 Function Grouping and Tiling

Following preprocessing, the algorithm begins the process of func-
tion grouping. Grouping seeks to identify points in the program
where it is beneficial to restructure computation ordering to improve
producer-consumer locality. This requires determining if and how
to tile consumer loop nests and where to place the computation of
producer functions within these loop nests.

The algorithm makes these decisions using a greedy, agglomerative
process that iteratively assigns functions in the Halide program into
groups. The scheduling of each group is performed independently,
and different ordering/tiling decisions are made per group. All
groups containing multiple functions are constrained to have only
a single output function (all dependency edges leaving the group
are from the same function), and all other functions in the group
will be computed within the loop nest of the output function. The
iterative grouping process is similar to that employed by Mullapudi
et al. [2015]. However, while their work makes grouping decisions
given a predetermined loop tiling structure, our solution jointly
makes grouping and loop tiling decisions.

Function grouping begins by placing each function in the program
in its own group. Each of these singleton groups is initially tiled
to maximize input data reuse (if reuse opportunities exist). Then,
each iteration attempts to increase producer-consumer locality by
merging two existing groups. The process terminates when the auto-
scheduler estimates there is no performance benefit to merging any
of the remaining groups. Each iteration of the function grouping
process involves the following steps:

• Enumerate all remaining group merging opportunities.

• For each merging opportunity, estimate the performance bene-
fit of merging the two groups. The act of evaluating the benefit
of a merge requires determining a tiled loop-nest structure for
the potential merged group.

1 def tile_singleton_group(g):
2 if is_pure(g):
3 return SINGLE_ELEMENT_TILE
4

5 cbounds = concrete_bounds(output_func(g))
6 tiles = generate_tile_sizes(output_func(g))
7 best_tile_size = SINGLE_ELEMENT_TILE
8 best_benefit = 0
9

10 for each tile_size in tiles:
11 tile_cbounds = tile_bounds(output_func(g),
12 tile_size)
13 total_tiles = num_tiles(cbounds, tile_size)
14 footprint = group_tile_footprint(g, tile_cbounds)
15

16 # tile size too big
17 if (num_tiles < PARALLELISM_THRESHOLD ||
18 footprint > CACHE_SIZE):
19 continue
20

21 no_tile_loads = total_load_ops(g, cbounds)
22 tile_loads = num_tiles * footprint
23 tile_benefit = no_tile_loads - tile_loads
24

25 if (tile_benefit > best_tile_benefit):
26 best_tile_benefit = tile_benefit
27 best_tile_size = tile_size
28

29 return best_tile_size

Listing 1: tile_singleton_group selects a loop tiling that minimizes
the estimated number of cache misses when accessing input data.

• Select the merge that yields the greatest performance benefit
(provided at least one merge that provides benefit does exist)
and merge the two groups.

We now describe the process of determing an initial tiling for all
functions, and key steps in each merging iteration in more detail.

4.2.1 Initialization: Tiling for Input Data Reuse

Before grouping functions to improve the program’s producer-
consumer locality, the auto-scheduler attempts to find loop tilings
that improve locality of input data accesses by each non-pure func-
tion. (Pure functions—functions that do not contain Halide update
definitions or reduction domains, such as small stencils—exhibit
high input locality without tiling.) Pseudocode for this decision
process is given in Listing 1. The analysis adopts a simple model
of a single-level memory hierarchy with a cache size given by the
parameter CACHE_SIZE.

The method makes the simplifying assumption that when a non-
pure function is not tiled, all its input data accesses are cache
misses (counted in total_load_ops), and that when tiling the
function all input data needed to compute one tile of output
(group_tile_footprint) fits in cache (they are loaded exactly once
per tile). The algorithm then seeks to find a tile size that minimizes
the number of loads required to compute the final output. To accel-
erate the search over tile sizes, tile size selection is biased toward
sizes that are elongated in the directions of most input reuse. (We
defer description of the auto-scheduler’s tile size selection process to
Section 4.2.3.) The auto-scheduler also rejects tile sizes that result
in too few tiles to adequately parallelize computation across all the
target machine’s cores.

1 # number of loads needed to compute region of output
2 def group_loads(g, cbounds):
3 total_tiles = num_tiles(cbounds, g.tile_size)
4 tile_cbounds = tile_bounds(group, g.tile_size)
5 return total_tiles * group_tile_loads(g, tile_cbounds)
6

7 # determine whether to merge groups prod and cons
8 def evaluate_group_merge(prod, cons):
9 merged = prod + cons # potential merged group

10 prod_out = output_func(prod)
11 merged_out = output_func(merged)
12 prod_cbounds = concrete_bounds(prod_out)
13 cons_cbounds = concrete_bounds(merged_out)
14

15 prod_cost = arith_cost(prod, prod_cbounds) +
16 LOAD_COST * group_loads(prod, prod_cbounds)
17 cons_cost = arith_cost(cons, cons_cbounds) +
18 LOAD_COST * group_loads(cons, cons_cbounds)
19 no_merge_cost = prod_cost + cons_cost
20

21 tiles = generate_tile_sizes(merged_out)
22 best_benefit = -1
23 best_tile_size = SINGLE_ELEMENT_TILE
24

25 for each tile_size in tiles:
26 tile_cbounds = tile_bounds(merged_out, tile_size)
27 total_tiles = num_tiles(cons_cbounds, tile_size)
28 footprint = group_tile_footprint(merged, tile_cbounds)
29

30 if (num_tiles < PARALLELISM_THRESHOLD ||
31 footprint > CACHE_SIZE):
32 continue
33

34 tile_cost = arith_cost(merged, tile_cbounds) +
35 LOAD_COST * group_tile_loads(merged, tile_cbounds)
36 merge_cost = num_tiles * tile_cost
37 merge_benefit = no_merge_cost - merge_cost
38

39 if (merge_benefit > best_benefit):
40 best_benefit = merge_benefit
41 best_tile_size = tile_size
42

43 return (best_benefit, best_tile_size)

Listing 2: evaluate_group_merge estimates the performance benefit
of merging producer group prod into consumer group cons. It selects
a consumer loop tiling that balances increased producer-consumer
locality with redundant computation.

4.2.2 Enumerating Merging Opportunities

The purpose of grouping functions is to increase producer-consumer
locality between functions in the group. Therefore, two groups
g1 and g2 are candidates for merging if the output of group g1 is
consumed by a function in g2.

Since computing a function within two different loop nests would
require duplicating its evaluation, grouping only attempts to merge
groups where the output of g1 is consumed by functions in exactly
one group. For example, in Figure 4, function pairs A-B, C-E, and D-E
are potential merging opportunities, but B-C and B-D are not. This
condition ensures that all groups containing multiple functions have
exactly one output function.

4.2.3 Evaluating Potential Merges

A merge is likely to benefit overall program performance if the
performance benefit of reducing memory traffic outweighs the cost

of introducing additional redundant computation. This trade-off
is evaluated by the function evaluate_group_merge in Listing 2,
which accepts as input two function groups (a producer group
and a consumer group that depends on the output of the producer).
evaluate_group_merge determines the best schedule for the merged
group (a loop tiling of the output function and loop nest placement
of all other functions) and returns an estimate of the performance
benefit of performing the merge.

Generating tile sizes. Different tilings of the output loop nest yield
different locality-redundant-compute trade-offs, so it is important
for the auto-scheduler to establish the best tile size when estimating
the benefit of a merge. It is cost-prohibitive for the auto-scheduler to
evaluate the cost of all possible tilings (high-dimensional domains,
such as the 5-D domains present in convolutional neural network
layers, quickly explode the space of possible tile sizes), so we bias
the set of tile dimensions using knowledge of the group output
function’s directional input reuse (Section 4.1). Specifically, we
constrain tile sizes to be n-D hypercubes or n-D volumes elongated
in the dimensions of greatest output function reuse. Redundant
computation introduced by tiling is reduced when tiles have large
extents in these dimensions. We further require tile sizes to have a
minimum extent in the output functions innermost dimension (it’s
innermost loop). This minimum is set to a small multiple of the
target machine vector width to avoid tile sizes that produce loop
nests that cannot be efficiently vectorized. Tile sizes that are too
large: they either result in a group’s intermediate storage overflowing
the cache, or yield too few tiles to enable parallel execution on the
target machine, are immediately discarded. Note that evaluating
the function group_tile_footprint (line 27) requires the compiler
to determine the size of required temporary buffer allocations by
scheduling the merged group’s loop nest according to the candidate
tile size.

Comparing costs. For each candidate tile size, the auto-scheduler
estimates and compares the cost of performing a group merge (com-
puting input group functions within the tile loop of the group’s output
function) with the cost of not merging the groups. The cost of not
merging is given by the arithmetic cost of the producer and consumer
groups (arith_cost, Listing 2, lines 14,16), plus the cost incurred by
these groups to loads their inputs from memory (group_loads). The
total number of loads (over the entire program’s execution) is given
by the concrete bounds of their output function (lines 11-12) and the
chosen tiling of the groups. Loads from main memory are assumed
to incur a cost specified by the auto-scheduler parameter LOAD_COST.

Assuming that all merged group intermediates are stored in cache
resident buffers (footprint check in line 30), the cost of producing a
tile of merged output (line 35) is the arithmetic cost of the operation,
plus the size of the inputs needed to compute a single tile of the
merged group (group_tile_loads). The total cost of the merged
group is obtained by multiplying this estimate by the total number
of tiles. evaluate_group_merge returns the estimated performance
benefit of the best tiling found (if any benefit due to merging the
groups exists).

4.3 Function Inlining

In addition to grouping functions (placing producers in the loop nests
of consumers), it can be advantageous to inline producer functions
into their consumers (a manually written Halide schedule requests
this optimization using the inline directive). Although inlining is
conceptually similar to choosing a tile size of one element when
merging two groups, inlining in Halide results in more efficient gen-
erated code since intermediates are communicated through registers
rather than via loads and stores to cached intermediate buffers.

Although described after grouping in this paper for the purposes of
exposition, the compiler performs function inlining optimizations
immediately after precomputation, and prior to grouping. Function
inlining decisions are made using the same greedy, iterative approach
used to make grouping decisions, with the following modifications:

• Since inlining duplicates the producer function’s expression
into the consumer, inlining can be applied to functions with
multiple consumers. For simplicity, the auto-scheduler makes
inlining decisions on a per-function basis. Either a function
is inlined into all of its consumers (essentially removing the
function from the program DAG), or to none of its consumers
(it remains in the DAG and is subsequently considered for
grouping as described in Section 4.2).

• When evaluating the performance benefit of inlining, the auto-
scheduler must consider the cost of inlining a function into all
consumers (not just a single consumer as was the case during
group merging decisions).

• The auto-scheduler does not use bounds analysis to estimate
the arithmetic cost of the results of an inlining transformation.
Instead it substitutes the producer function expression into
the consumer function and reevaluates the arithmetic cost of
the new expression. This is a more accurate measure of cost
because bounds analysis can overestimate the actual number
of values required by a consumer.

4.4 Final Schedule Generation

After inlining and merging function groups the auto-scheduler is
left with a list of groups, each with a specified loop tiling. The final
step of scheduling is to perform final optimizations and to generate
a complete Halide schedule for each of these groups.

The first step is to reorder each group output function’s loops in
order of maximal input locality. This is a general optimization that
helps to reduce the reuse distance of accesses to group inputs. To
maintain spatial locality of data access and the ability to synthesize
efficient vectorized code, loop reordering is constrained to never
move the innermost dimension of the output function’s loop nest
out of its starting position. Next, the auto-scheduler unrolls the
innermost loop if it contains only a small number of iterations. It
then vectorizes this loop. Finally, the auto-scheduler parallelizes as
many outermost dimensions of the loop nest as necessary to obtain
sufficient multi-core parallelism for the target machine.

After these operations, each group has complete, optimized schedule.
The Halide compiler then generates machine code for this schedule
using its standard compilation process.

5 Evaluation
We evaluated our auto-scheduling algorithm on the 14 Halide
pipelines listed in Table 1. These benchmarks span a range of
computational photography, image processing, and computer vision
workloads. Eight of the benchmarks are drawn from public liter-
ature [Ragan-Kelley et al. 2012; Ragan-Kelley et al. 2013; Ragan-
Kelley et al. 2015] and the Halide open source community. We also
added six new Halide benchmarks:

• Three computational photography pipelines (LENSBLUR,
NLMEANS, and MAXFILTER) written and manually-scheduled
by professional Halide developers.

• Dense matrix-matrix multiplication (MATMUL).

• Two deep neural network (DNN) workloads: CONV (a sin-
gle convolutional layer) and VGG (a full implementation of
forward pass of the VGG-16 object detection network).

BLUR
2 functions
6400×4800
compile time: 1 ms

The simple two-pass 3×3 image blur described in Figure 2.

UNSHARP
9 functions
7×7 filter
1536×2560×3
compile time: 20 ms

Enhances local contrast by smoothing an image with a small
support gaussian and subtracting it from the original to isolate
the high-frequency content, which is then combined with the
original image.

HARRIS
13 functions
1530×2554×3
compile time: 21 ms

Implementation of the popular harris corner detection algo-
rithm [Harris and Stephens 1988] which combines multiple
stencils and point-wise operations.

CAMERA
30 functions
2560×1920×3
compile time:
650 ms

The Frankencamera pipeline for processing raw data from an
image sensor into a color image [Adams et al. 2010]. The
pipeline performs hot-pixel suppression, demosaicing, color
correction, gamma correction, and contrast.

NLMEANS
13 functions
192×320×3
compile time: 49 ms

Fast non-local means image denoising using the method of
Darbon et al. [2008]. Computes a 7x7 image blur with weights
determined by 7×7 patch similarity.

MAXFILTER
9 functions
filter radius 26
1536×2560×3
compile time: 15 ms

Computes the maximum-brightness pixel within a circular re-
gion around each target pixel. Uses a precomputed table of
differently-sized vertical max filters to reduce complexity from
O(radius2) per output pixel to O(radius).

INTERP
52 functions
10 pyramid levels
1536×2560×3
compile time: 2.6 sec

Interpolation of image pixel values using an image pyramid
for seamless compositing, based on the newest healing brush
in Photoshop. Pyramid construction deals with image data at
multiple resolutions and creates chains of stages with complex
dependencies.

LOCAL_LAP
103 functions
8 pyramid levels
1536×2560×3
compile time: 3.9 sec

A local Laplacian filter: an edge-aware, multi-scale approach
for enhancing local contrast [Paris et al. 2011]. The pipeline
builds multiple image pyramids with complex dependencies
and performs data-dependent sampling.

LENSBLUR
74 functions
992×1024×3
compile time: 55 sec

Given a rectified stereo pair of images, produces a synthetic
shallow-depth-of-field image. It first solves for depth by con-
structing and filtering a cost volume [Rhemann et al. 2011]
using a convolution pyramid [Farbman et al. 2011], then ren-
ders the synthetically defocused image by randomly sampling
the source image over a virtual aperture.

BILATERAL
8 functions
1536×2560
compile time: 26 ms

Fast bilateral filter using the bilateral grid [Chen et al. 2007].
Constructs the grid using a histogram reduction, followed by
stencil and sampling operations.

HIST_EQ
7 functions
1536×2560×3
compile time: 2 ms

Normalizes the histogram of an image’s luminance channel and
performs back projection using the normalized histogram. Uses
reductions to compute the histogram and point-wise operations
to perform color-scale conversion and back projection.

CONV
4 functions
128×128×64×4
compile time: 9 ms

Typical convolutional layer in a deep neural net-
work [Krizhevsky et al. 2012] (DNN). The layer evaluates a
large filter bank at each spatial location of the input feature
map followed by a rectified linear unit. Convolutional layers
dominate the cost of evaluating and training DNNs.

VGG
64 functions
224×224×3×4
compile time: 6.9 sec

Evaluation of the VGG-16 object detection network [Simonyan
and Zisserman 2014]. The network has 22 layers. 9 of the
network’s 13 convolutional layers operate on filter banks and
input feature maps of different sizes.

MATMUL
2 functions
2048×2048
compile time: 1 ms

Dense matrix-matrix multiplication written as a straight-
forward reduction, as in Figure 3.

Table 1: Fourteen Halide benchmarks spanning a range of com-
putational photography, image processing, and computer vision
workloads were used to evaluate the auto-scheduler. The number
of functions per benchmark, the size of program inputs (concrete
bounds), and auto-scheduler compilation times are given.

The number of Halide functions in each of these pipelines, the size of
pipeline inputs (given as concrete bounds to the auto-scheduler), and
the compile time for all benchmarks is given in Table 1. In nearly all
cases, the auto-scheduler generates a schedule within a few seconds
(LENSBLUR’s 55 second compile time is the only exception).

5.1 Server CPU Performance

We first analyzed the performance of auto-scheduled pipelines on
a server-class, Intel Xeon E5-2620 v3 CPU (six 2.4 Ghz Haswell
cores). For this machine, we set the auto-scheduler’s parameters as
follows:

• VECTOR_WIDTH: 16, twice the native vector width of AVX vector
instructions for 32-bit data.

• PARALLELISM_THRESHOLD: 12, a small multiple of core count.
• CACHE_SIZE: 256 KB, the per-core L2 cache size.
• LOAD_COST: 10, a rough estimate of the relative cost of DRAM

load vs. compute on modern multi-core machines.

We compare the performance of the auto-scheduler’s output against
that of several alternative scheduling approaches:

Baseline. An automatically generated schedule that employs the
code analyses described in Section 4, but never groups functions or
reorders loops: it only inlines functions (when inlining introduces
no redundant computation), parallelizes each outermost loop, and
vectorizes each innermost loop. This baseline is representative of
the most complex schedule many new Halide programmers are able
to write, or the first schedule a skilled Halide programmer designs
when starting to optimize.

Manual. Hand-optimized schedules created by expert Halide de-
velopers. Hand-optimized CPU schedules for these pipelines match
or significantly outperform the best manually-optimized C or as-
sembly implementations generally available and, in some cases,
proprietary commercial implementations (e.g., Photoshop’s local
Laplacian filters).

Auto-tune. Since prior work showed that stochastic auto-tuning
systems struggled to converge quickly (or at all) on complex
pipelines [Mullapudi et al. 2015], we implemented a simple, brute-
force auto-tuning system that searched the low-dimensional space
of auto-scheduler parameters, rather than the space of Halide sched-
ules. The auto-tuner uses the auto-scheduler to generate schedules
for each point in the parameter space, runs the resulting programs
to measure real performance on the target machine, and picks the
best performing schedule. The auto-tuner searched over 1152 total
parameter configurations:

• PARALLELISM_THRESHOLD={6,12,18,24}

• LOAD_COST={5,10,15,...,80}

• VECTOR_WIDTH={4,8,16}

• CACHE_SIZE={16,32,64,...,512}.

This parameter sweep can take hours to days for our more complex
benchmarks.

PolyMage. We approximate the scheduling behavior of Poly-
Mage [Mullapudi et al. 2015] by restricting the auto-scheduler to tile
only two spatial dimensions and to consider only a single tile size.
Also following PolyMage, we then auto-tune over seven tile sizes
in each spatial dimension and three LOAD_COST factors (10,20,40),
then pick the best performing schedule. Functions with dependence
patterns that cannot be analyzed by PolyMage are scheduled using
the baseline scheduler.

Figure 6, which plots the performance of pipelines generated by each
scheduling approach (relative to the throughput of the best sched-
ule for each benchmark), shows that the auto-scheduled pipelines
(orange bars) consistently deliver performance competitive with
expert-tuned schedules (yellow bars). Absolute running times for all
the bechmarks are shown in Table 2. Auto-scheduled performance
is within 12% of, or better than, that of the manual schedules for
eight of the 14 benchmarks. Auto-scheduled performance is never

NL MEANS MSCALE INTERP LOCAL LAP

BLUR UNSHARP HARRIS

LENSBLUR

MAXFILTER BILATERAL HIST EQ

CAMERA

Throughput: 6-core Intel Xeon CPU
(relative to fastest 6-core implementation)

1.0

0.5

0

= Baseline
= Manual expert-tuned
= Auto-scheduler
= Auto-tune (6 config)
= Auto-tune (full)
= Polymage

CONVLAYER

VGG MATMUL

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

Re
la

tiv
e

th
ro

ug
hp

ut
Figure 6: Performance (in throughput: 1/sec) of auto-scheduled
Halide programs relative to baseline, expert manually-optimized,
auto-tuned, and PolyMage-like schedules. For each benchmark,
performance is normalized to the fastest implementation.

slower than a factor of two (UNSHARP). The reference schedule uses
a much smaller tiling granularity hence fitting in L1 and achieving
better locality, this performance gap is completely bridged when
the auto-scheduler uses the L1 cache size to generate a schedule.
Comparison of the resulting schedules indicates that the manually au-
thored schedule for CAMERA benefits from loop unrolling decisions
that simplify conditional logic in inner loops of the pipeline (it may
be possible for the auto-scheduler to consider hoisting conditionals
in the future) and that in the case of BILATERAL, the expert program-
mer chose to fuse the grid computation with sampling operation that
uses the grid whereas the auto-scheduler did not.

In addition to comparing auto-scheduled output against other Halide
schedules, we also compared the performance of auto-scheduled
VGG pipeline to that of Caffe [Jia et al. 2014], a widely used DNN
framework. (We configure Caffe to use the Intel Math Kernel library
11.2.4.) The auto-scheduled implementation of VGG outperforms
Caffe/MKL by 1.5× on a 12-core, two-socket server with a Intel
Xeon E5-2620 v3 CPU in each socket.

Comparison to auto-tuning. Although the auto-scheduler gener-
ates schedules significantly faster than the auto-tuning alternatives
(seconds as opposed to minutes or hours) and avoids the need to
run code on a target machine, the auto-tuning experiments pro-
vide a high watermark that provides insight into the quality of
resulting schedules and the importance of various auto-scheduler
parameters. Although auto-tuning based on actual performance
measurement does find better schedules in many situations (light-
blue bar, Figure 6), the auto-scheduler’s generated code always
remains within a factor of two for all benchmarks, and is within
25% of the best auto-tuned schedule in nine of 14. Analysis of
auto-tuning results indicates that the auto-scheduler’s output is
largely invariant to PARALLELISM_THRESHOLD (provided sufficient par-
allelism exists), but can be sensitive to choice of CACHE_SIZE (some
benchmarks are best tuned for L1, others L2) and LOAD_COST. We

Re
la

tiv
e

Th
ro

ug
hp

ut
2

1

0

VGG-16 conv layers

L1 L2 L3 L4 L5 L6 L7 L8

Re
la

tiv
e

Th
ro

ug
hp

ut

1000 2000 4000500 8000

Re
la

tiv
e

Th
ro

ug
hp

ut

Image size (N x N)

8 16 3242

Throughput: Input-Specialized Schedules
(relative to best-on-average schedule)

L9

Num bins

LOCAL LAP

HARRIS

1.5

1

0.5

0

1.5

1

0.5

0

Figure 7: Specializing schedules to specific problem sizes of indi-
vidual VGG-16 network layers yields up to 1.8× benefit (compared
to the schedule that performs best on average across all layers).
Gains from image-size specialization (on HARRIS) and bin count
specialization (LOCAL_LAP) are modest.

find that a reduced auto-tuning search that varies only CACHE_SIZE
(32,128,256 KB) and LOAD_COST (10,20) completes in under ten min-
utes for our benchmarks, but yields results comparable to the full
brute search taking hours to days (dark blue bar in Figure 6). When
auto-tuning to achieve greater performance is acceptable, this sim-
ple six-configuration auto-tuning scheme may serve as a practical
and effective alternative to prior work utilizing advanced stochastic
search techniques to explore the full space of Halide schedules.

5.2 Specializing Schedules to Problem Size

Automatic scheduling presents the opportunity to aggressively spe-
cialize schedules to specific dataset sizes. For example, nine of the
13 convolutional layers in the VGG-16 network operate on datasets
of different size (the first convolutional layer’s input is 224×224×3,
while the last layer’s input is 14 × 14 × 512). To understand the
value of specializing schedules to different input configurations, we
compared the performance of schedules generated specifically for
each layer’s input size, with the performance of a single fixed sched-
ule. (The single fixed schedule was chosen to be the schedule that
performed best on average when run on all layers.) Figure 7-top
shows that several layers do benefit from schedule specialization.
The maximum performance benefit of a specialized schedule was
1.8×. We observe the auto-scheduler makes different global opti-
mization decisions (exploiting reuse of layer weights or input feature
maps) based on problem size.

We further explored the sensitivity of schedule performance to prob-
lem size by performing similar experiments that varied image size
in HARRIS (the single, fixed schedule was created for 2000×2000
images) and the number of bins in LOCAL_LAP (fixed scheduled
assumes 8 bins). In both cases, modest benefits (but no more than
40% on HARRIS, 20% on LOCAL_LAP) are observed by providing
the auto-scheduler accurate estimates of the problem size used at
runtime. In general we find that while it is possible to gain additional
performance by auto-scheduling for various input sizes, for many
image processing pipelines the performance of an auto-scheduled
pipeline generated for a reasonable estimate of average problem
dimensions is robust across a range of sizes.

NL MEANS

LENSBLUR

MAXFILTER

Optimization of Manually Authored Schedules

Schedule development time (minutes)
0 5010 20 30 40

0

15 30 450
0

40 80 1200
0

Th
ro

ug
hp

ut
 (1

/m
s)

Th
ro

ug
hp

ut
 (1

/m
s)

Th
ro

ug
hp

ut
 (1

/m
s)

= Auto-scheduler= Programmer 2= Programmer 1

Figure 8: Two professional Halide developers were tasked with
developing schedules for new programs. In two of three cases,
even after nearly an hour of work, the manually-authored schedules
perform worse than auto-scheduled results (generated in seconds).

5.3 Comparison with Manual Scheduling Effort

The previous subsections demonstrated that the auto-scheduler pro-
duces schedules yielding performance on par with the best known
manually-optimized schedules. To better understand how long it
would take for an expert Halide developer to match the performance
of the auto-scheduler when starting from scratch, we recruited two
professional Halide developers to “race” the auto-scheduler. (These
developers are authors on the paper.)

The experts selected three benchmarks (LENSBLUR, NLMEANS, and
MAXFILTER) they had never scheduled before, and implemented the
original Halide algorithm for these programs. For each benchmark,
each expert programmer independently developed a schedule in a
single programming session. The programmer stopped optimizing
after converging on a solution they considered their best. While
developing the schedules the developers documented their progress
by measuring the performance of their current schedule at various
points of time in each session. We then compared the auto-scheduled
code’s performance to that of the manually authored schedules.

Results of the comparison, are shown in Figure 8. The X-axis in
each of the graphs indicates development time (in minutes) for the
manually developed schedules. The Y-axis shows the performance
of the benchmark (measured as pixel throughput, so higher is better).
The horizontal line corresponds to the performance of the schedule
generated by the auto-scheduler (produced in seconds). The yellow
and gray lines each correspond to the progress of a programmer. The
races were conducted using four cores of an Intel E5-2690 Xeon
CPU owned by the developers, not the 6-core Xeon CPU used in our
prior results.

On both the LENSBLUR and NLMEANS pipelines, the auto-scheduler
outperforms the experts (by nearly a factor of two on NLMEANS).
The experts outperform the auto-scheduler on MAXFILTER. (One
of the experts found a solution nearly three times faster on their
machine, but the performance difference between this schedule and
the auto-scheduler’s result is narrower on the 6-core machine used to

= Baseline = Manual expert-tuned = Auto-scheduler

BLUR UNSHARP HARRIS NL MEANS MSCALE INTERP LOCAL LAP

LENSBLUR MAXFILTER BILATERAL HIST EQ CONVLAYER VGG MATMUL

CAMERA
Throughput: 4-core ARM mobile CPU and NVIDIA K40 GPU (relative to fastest per-platform implementation)

ARM GPURe
la

tiv
e

th
ro

ug
hp

ut

1.0

0.5

0 ARM GPU ARM GPU ARM GPU ARM GPU ARM GPU ARM GPU

ARM GPU ARM GPU ARM GPU ARM GPU ARM GPU ARM GPU ARM GPU

1.0

0.5

0

Figure 9: Performance (in throughput: 1/sec) of auto-scheduled Halide programs relative to baseline and expert manually-optimized schedules
for quad-core ARM mobile CPU and K40 GPU platforms.

generate Figure 6). The expert schedule reduces memory footprint
by fusing a function with high input data reuse with its consumer,
and then choosing a tile size that simultaneously achieved both input
reuse and producer-consumer locality. The auto-scheduler does not
perform this fusion since the cost model deems exploiting reuse on
both the functions individually to be the better choice.

As shown in Figure 8, arriving at a good schedule requires sig-
nificant optimization effort, even for experts. Even in the case of
MAXFILTER, where the experts devise schedules that outperform the
auto-scheduler, they only reach this point after 25 minutes of opti-
mization. In the other examples, the experts optimized for nearly an
hour or two without matching the performance of the auto-scheduler.

5.4 Portability to Different Architectures

We also evaluated the ability of the auto-scheduler to target the quad-
core ARM Cortex-A57 CPU (1.9 GHz, shared 2MB L2 cache) in
the NVIDIA Tegra X1 and an NVIDIA K40 discrete GPU.

ARM CPU performance. To generate pipelines for the X1’s ARM
Cortex CPU, we made no changes to the auto-scheduler other than
adjusting its parameters to match the processor as follows:

• VECTOR_WIDTH: 8, twice the native vector width of NEON vector
instructions for 32-bit data.

• PARALLELISM_THRESHOLD: 8, a small multiple of core count.
• CACHE_SIZE: 512 KB, the per-core fraction of the L2 cache.
• LOAD_COST: 10, the same value as used for Xeon CPUs.

Figure 9 shows that the auto-scheduled pipelines for ARM execute
faster than manually tuned schedules for all benchmarks but CAM-
ERA and BLUR. (Manual schedules are the same schedules used in
the prior Xeon CPU experiments.) Although we do not provide per-
benchmark results in this paper, the benefits of auto-tuning schedules
for ARM follows similar trends as those reported for Xeon.

GPU Performance. Figure 9 also provides results of using
the auto-scheduler to generate schedules for a NVIDIA K40
GPU. We configure the auto-scheduler to target the GPU by set-
ting the PARALLELISM_THRESHOLD to 128, VECTOR_WIDTH to 32, and
CACHE_SIZE to 48 KB. Additionally, we add two new parameters
TARGET_THREADS_PER_BLOCK and MAX_THREADS_PER_BLOCK whose val-
ues are set to 128 and 2048 respectively. These parameters enable the
auto-scheduler to avoid tiling configurations that generate too few
or too many threads per GPU thread block. The inlining, tiling, and
grouping processes are otherwise similar to the CPU case. Groups
resulting from merging are mapped to CUDA kernels by designating
the outer tile loops as GPU block grid dimensions and the inner tile
loops as GPU thread block dimensions. All intermediate buffers
within a group are allocated in GPU shared memory.

We compared the performance of the auto-scheduled pipelines
against that of a set of manually created GPU schedules. (We manu-
ally authored a new set schedules for the K40 GPU.) Auto-scheduled
performance is nearly as good as, or better than, manually sched-
uled pipelines on eight of the 14 benchmarks. The faster manual
schedules for UNSHARP and MATMUL reduce the total number of
loads performed by unrolling inner loops in cases where multiple
loop iterations reload the same values. This unrolling serves as
a another form of tiling for locality, and we believe that a future
auto-scheduler could be modified to perform such optimizations by
treating registers as an additional level of the memory hierarchy.

6 Discussion

In this paper we have demonstrated the ability to automatically
schedule Halide programs, obtaining results competitive with those
obtained by the world’s best Halide developers. We are excited
that users of Halide may no longer require expert code-optimization
knowledge in order to obtain the benefits of highly optimized code.
We believe that by generating compiled solutions in seconds, avoid-
ing the need for auto-tuning, and operating entirely within the Halide
compiler, our solution is an attractive for use in production environ-
ments. We also believe our system will be valuable to expert Halide
developers. In the process of evaluating our generated schedules pro-
fessional developers remarked that the auto-scheduler was making
decisions they had not thought of before.

Of course, this work constitutes only an initial attempt at efficiently
scheduling Halide programs. Extending our approach to hierarchical
levels of tiling and reasoning about the effects of data layout on
vector code generation are all areas of immediate future system
improvement. We predict these improvements would allow auto-
scheduling to meet or surpass manually authored schedules in most
of our benchmarks.

The design philosophy of Halide has always involved mixed respon-
sibilities between the compiler and a human programmer to achieve
efficient code. While our auto-scheduling algorithm makes it pos-
sible for the system to take on the full responsibility of schedule
generation, a developer (particularly an expert) may still wish to
intervene if necessary. We are interested in exploring interfaces for
the auto-scheduler to accept partially written schedules by experts,
and then fill in the missing details.

7 Acknowledgements

This research was supported by the National Science Foundation
(IIS-1253530, IIS-1539069), the Intel Corporation, a Google Faculty
Research Award, DARPA agreement FA8750-14-2-0009, the Stan-
ford Pervasive Parallelism Lab (supported by Oracle, AMD, Intel,
and NVIDIA), and by equipment donations from NVIDIA.

Xeon CPU GPU ARM Cortex A57
Benchmark 1 core 6 cores 12 cores K40 4 cores

Manual Auto Manual Auto Manual Auto Manual Auto Manual Auto

BLUR 28.6 26.4 7.6 7.9 7.5 8.5 2.0 2.0 18.1 21.5
UNSHARP 29.2 37.3 6.6 11.4 6.8 7.4 0.9 1.8 57.8 43.8
HARRIS 43.3 36.5 9.7 10.3 5.9 6.7 1.1 1.1 51.1 44.0
CAMERA 52.0 41.3 7.8 10.1 6.1 6.0 2.3 2.0 26.8 31.0
NLMEANS 16.1 10.3 5.2 4.3 3.0 2.31 1.4 2.0 51.4 49.7
INTERP 58.2 70.5 28.3 18.2 46.5 15.6 25.6 14.2 114.6 110.0
LOCAL_LAP 331.4 361.2 77.8 106.7 60.6 120.1 11.5 9.6 734.3 670.3
LENSBLUR 1027.1 818.8 232.8 227.6 201.0 224.0 31.9 46.5 1260.2 1867.1
MAXFILTER 359.7 593.1 146.2 198.4 193.2 179.6 42.7 45.0 598.5 716.3
BILATERAL 66.0 70.8 14.1 15.9 10.5 11.4 2.0 4.3 173.5 145.1
HIST_EQ 22.3 28.1 8.8 11.4 4.8 7.0 5.5 5.0 85.6 86.2
CONV 259.9 212.6 82.0 48.3 44.9 33.7 35.8 39.7 395.3 356.6
VGG 31833.3 23111.4 7539.5 6449.4 5128.7 2945.8 4986.9 3756.8 43007.8 38501.8
MATMUL 2100.8 1363.5 317.6 293.6 214.8 193.5 20.3 152.4 5810.0 1891.5

Table 2: Execution time (in ms) for the auto-scheduled (auto) and manually created (manual) schedules for all benchmarks. Auto-scheduling
for the Xeon CPU was performed with the settings given in Section 5.1 (targeting a 6-core CPU). The 1- and 12-core (dual socket Xeon) results
are provided to illustrate the multi-core scaling of this schedule.

References

ADAMS, A., TALVALA, E.-V., PARK, S. H., JACOBS, D. E.,
AJDIN, B., GELFAND, N., DOLSON, J., VAQUERO, D., BAEK,
J., TICO, M., LENSCH, H. P. A., MATUSIK, W., PULLI, K.,
HOROWITZ, M., AND LEVOY, M. 2010. The frankencamera:
An experimental platform for computational photography. ACM
Transactions on Graphics 29, 4 (July), 29:1–29:12.

ANSEL, J., KAMIL, S., VEERAMACHANENI, K., RAGAN-KELLEY,
J., BOSBOOM, J., O’REILLY, U.-M., AND AMARASINGHE,
S. 2014. OpenTuner: An extensible framework for program
autotuning. In Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation, ACM, 303–316.

CHEN, J., PARIS, S., AND DURAND, F. 2007. Real-time edge-
aware image processing with the bilateral grid. ACM Transactions
on Graphics 26, 3 (July), 103:1–103:9.

DARBON, J., CUNHA, A., CHAN, T. F., OSHER, S., AND JENSEN,
G. J. 2008. Fast nonlocal filtering applied to electron cryomi-
croscopy. In Biomedical Imaging: From Nano to Macro, 2008.
ISBI 2008. 5th IEEE International Symposium on, IEEE, 1331–
1334.

FARBMAN, Z., FATTAL, R., AND LISCHINSKI, D. 2011. Convo-
lution pyramids. ACM Transactions on Graphics 30, 6 (Dec.),
175:1–175:8.

HARRIS, C., AND STEPHENS, M. 1988. A combined corner and
edge detector. In In Proc. of Fourth Alvey Vision Conference,
147–151.

HEGARTY, J., BRUNHAVER, J., DEVITO, Z., RAGAN-KELLEY, J.,
COHEN, N., BELL, S., VASILYEV, A., HOROWITZ, M., AND
HANRAHAN, P. 2014. Darkroom: compiling high-level image
processing code into hardware pipelines. ACM Transactions on
Graphics 33, 4 (July), 144:1–144:11.

HEGARTY, J., DALY, R., DEVITO, Z., RAGAN-KELLEY, J.,
HOROWITZ, M., AND HANRAHAN, P. 2016. Rigel: Flexi-
ble multi-rate image processing hardware. ACM Transactions on
Graphics 36, 4 (July).

JIA, Y., SHELHAMER, E., DONAHUE, J., KARAYEV, S., LONG, J.,
GIRSHICK, R., GUADARRAMA, S., AND DARRELL, T. 2014.

Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093.

KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. 2012.
Imagenet classification with deep convolutional neural networks.
In Advances in neural information processing systems, 1097–
1105.

MULLAPUDI, R. T., VASISTA, V., AND BONDHUGULA, U.
2015. PolyMage: Automatic optimization for image processing
pipelines. In Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems, 429–443.

PARIS, S., HASINOFF, S. W., AND KAUTZ, J. 2011. Local
Laplacian filters: edge-aware image processing with a Laplacian
pyramid. ACM Transactions on Graphics 30, 4 (July), 68:1–
68:12.

RAGAN-KELLEY, J., ADAMS, A., PARIS, S., LEVOY, M., AMA-
RASINGHE, S., AND DURAND, F. 2012. Decoupling algo-
rithms from schedules for easy optimization of image processing
pipelines. ACM Transactions on Graphics 31, 4 (July), 32:1–
32:12.

RAGAN-KELLEY, J., BARNES, C., ADAMS, A., PARIS, S., DU-
RAND, F., AND AMARASINGHE, S. 2013. Halide: A language
and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design
and Implementation, 519–530.

RAGAN-KELLEY, J., ADAMS, A., AND SHARLET, D. 2015. An
introduction to Halide. In ACM SIGGRAPH 2015 Courses, ACM,
3:1–3:160.

RHEMANN, C., HOSNI, A., BLEYER, M., ROTHER, C., AND
GELAUTZ, M. 2011. Fast cost-volume filtering for visual corre-
spondence and beyond. In Proceedings of the 2011 IEEE Confer-
ence on Computer Vision and Pattern Recognition, 3017–3024.

SIMONYAN, K., AND ZISSERMAN, A. 2014. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

