
Real-Time Gradient-Domain Painting

James McCann∗

Carnegie Mellon University
Nancy S. Pollard†

Carnegie Mellon University

Figure 1: Starting from a blank canvas, an artist draws and colors a portrait using gradient-domain brush strokes.Additive blend mode
used for sketching,directionalandadditivefor coloring. Artist time: 30 minutes.

Abstract

We present an image editing program which allows artists to paint
in the gradient domain with real-time feedback on megapixel-
sized images. Along with a pedestrian, though powerful, gradient-
painting brush and gradient-clone tool, we introduce anedge brush
designed for edge selection and replay. These brushes, coupled with
special blending modes, allow users to accomplish global lighting
and contrast adjustments using only local image manipulations –
e.g. strengthening a given edge or removing a shadow boundary.
Such operations would be tedious in a conventional intensity-based
paint program and hard for users to get right in the gradient domain
without real-time feedback. The core of our paint program is a
simple-to-implement GPU multigrid method which allows integra-
tion of megapixel-sized full-color gradient fields at over 20 frames
per second on modest hardware. By way of evaluation, we present
example images produced with our program and characterize the
iteration time and convergence rate of our integration method.

CR Categories: I.3.4 [Computing Methodologies]: Computer
Graphics—Graphics Utilities;

Keywords: real-time, interactive, gradient, painting, multigrid

1 Introduction

Perceptual experiments suggest that the human visual system works
by measuring local intensity differences rather than intensity it-
self [Werner 1935; Land and McCann 1971], so it seems reason-
able that when creating input for the visual system one may wish to
work directly in the gradient domain.

∗e-mail: jmccann@cs.cmu.edu
†e-mail: nsp@cs.cmu.edu

Figure 2: Before (left) and after (right) editing with the edge
brush. The user captured the smoothness of the left wall and used
it to paint out the edge separating the left and back walls. The user
then selected a segment of downspout and created a more whimsi-
cal variant. Finally, the tile roof-line to the left was captured and
extended. Finishing touches like the second lantern and downspout
cleats were added with the clone brush. The edge was painted out
with over blend mode, while elements were added usingover and
maximummodes. Artist time: 2.5 minutes. (Original by clayjar via
flickr.)

The primary problem with working in the gradient domain is that
once image gradients have been modified, a best-fit intensity im-
age must be reconstructed before the result can be displayed. This
integration process has, until now, required users to wait seconds
or minutes to preview their results1. Our fast, multigrid integra-
tor removes this restriction, allowing for 20fps integration rates on
1 megapixel images. With real-time feedback – and a selection
of brushes and blend modes – we put the user in direct control of
her edits, allowing her to interact with gradient images in the same
direct way she interacts with a conventional intensity-based paint
program.

The workhorse brush in our paint program is theedge brush, which
allows the user to record edges in the image and paint them else-
where (e.g. Figure 2), We also provide a simplegradient brush
which paints oriented edges. This brush is essential when sketch-
ing, as in Figure 1, and with appropriate blend modes is also use-
ful when making adjustments. Finally, we retain theclone brush,
which is a staple of the intensity painting world and has also
appeared in previous gradient manipulation systems [Pérez et al.
2003]. Our brushes are explained in more detail in Section 4.

1Timing for 1 megapixel images – for 256x256 images, common CPU-
based methods allow interactive (1-3fps) integration.

We provide different blend modes in addition to different brushes;
the artist is free to use any brush with any blend mode. Basic blend
modesmaximumandminimumenhance and suppress detail, respec-
tively, whileaddaccumulates the effect of strokes andoverreplaces
the existing gradients. Finally, thedirectionalmode enhances gra-
dients in the same direction as the current stroke, and is quite useful
for shadow and shading editing. We explain these modes in more
detail in Section 5.

2 Background

Perhaps the first instance of edge-focused image editing was the
contour-based image editor of Elder and Goldberg [2001]. Their
high-level edge representation enables users to select, adjust, and
delete image edges. These interactions, however, are far from real-
time; users queue up edits and then wait minutes for the results.
Our paper is presented concurrently with the work of Orzan et
al. [2008]; they present a vector graphics color-filling technique
based on Poisson interpolation of color constraints and blur values
specified along user-controlled splines – a representation similar
in spirit to Elder and Goldberg’s edge description. A GPU-based
multigrid solver (similar to our own) and a fast GPU-based blur
computation enable interactive editing of this representation.

Classic gradient-domain methods include dynamic range compres-
sion [Fattal et al. 2002], shadow removal [Finlayson et al. 2002],
and image compositing [Levin et al. 2003; Pérez et al. 2003]. (One
key to seamless image stitching is smoothness preservation [Burt
and Adelson 1983], which gradient methods address directly.) In-
deed, there are simply far too many interesting gradient-domain
techniques to list here; readers wishing to learn more about this rich
field would be well served by the recent ICCV course of Agrawal
and Raskar [2007].

Broadly, current gradient-domain techniques would appear in the
“filters” menu of an image editing program, performing a global
operation automatically (range compression [Fattal et al. 2002],
shadow removal [Finlayson et al. 2002]), or in a way that can
be guided by a few strokes (color editing [Pérez et al. 2003]) or
clicks (compositing [Levin et al. 2003; Pérez et al. 2003]). For the
seconds-long integration processes used in these techniques, it is
important to have such sparse input, as the feedback loop is rela-
tively slow.

Recently, interactive performance was demonstrated for tone-
mapping operations on 0.25 megapixel images [Lischinski et al.
2006]; this performance was obtained through preconditioning,
which – due to the high calculation cost – is only suitable for ed-
its that keep most of the image the same so that the preconditioner
may be reused. A different preconditioning approach is presented
in Szeliski [2006].

Agarwala [2007] addressed the scaling behavior of gradient com-
positing by using quadtrees to substantially reduce both memory
and computational requirements. While his method is not real-time,
it does scale to integrating substantially larger gradient fields than
were feasible in the past – with the restriction that the answer be
smooth everywhere except at a few seams.

Perhaps surprisingly, no great breakthrough in technology was re-
quired to provide the real-time integration rates at the core of our
program. Rather, we simply applied the multigrid method [Press
et al. 1992], a general framework for solving systems of equations
using coarse-to-fine approximation. We use a relatively straight-
forward version, overlooking a faster-converging variant [Roberts
2001] which is less suitable to hardware implementation. Our
solver is similar in spirit to the generalized GPU multigrid meth-
ods presented by Bolz et al. [2003], and Goodnight et al. [2003]

Figure 4: Before (left) and after (right) editing with the edge
brush. The user extended the crack network using a segment of
existing crack and added her own orange stripe to the image with
just three strokes – one to select the original edge as an example,
and two to draw the top and bottom of the new stripe. All strokes
useadditiveblend mode. Artist time: 3 minutes. (Original by Tal
Bright via flickr.)

though some domain-specific customizations (e.g. not handling
complicated boundary shapes) make ours both simpler and some-
what faster.

3 Overview

This paper presents a system which enables artists to paint in the
gradient domain much like they are accustomed to painting in the
intensity domain. We explain how this system works by first de-
scribing the brushes which artists use to draw gradients; then the
blending modes by which these new gradients are combined with
the existing gradients; and, finally, the integrator that allows us to
display the result of this process to the artist in real-time.

4 Brushes

In this work, we are interested in tools analogous to those used in
intensity paint programs, allowing the user to draw on the image
and receive real-time feedback. A quirk of gradient-domain editing
is that instead of editing a single intensity image, one must work
with two gradient images – one for thex-gradient and one for the
y-gradient; thus, our brushes rely on both mouse position and stroke
direction to generate gradients. Examples of each brush’s operation
are provided in Figure 3.

Thegradient brush is our simplest gradient-domain paint tool. As
a user paints a stroke with the gradient brush, the brush emits gra-
dients of the current color and perpendicular to the stroke direction.
Sketching with the gradient brush, an artist is able to define volume
and shading as she defines edges, without ever touching the inte-
rior of shapes. An example portrait created with gradient-domain
sketching is shown in Figure 1.

The trouble with edges produced by the gradient brush is that they
don’t have the subtle texture and impact of natural edges found in
real images. Theedge brush is our simple and direct solution to
this problem. The user first paints an edge selection stroke along a
segment of an edge she fancies. The system captures the gradients
around this stoke and represents them in local (stroke-relative) coor-
dinates. Now, as the user paints with the edge brush, these captured
gradients are “played back” – transformed to the local coordinate
system of the current stroke and emitted. We loop edge playback so
the user can paint long strokes. Images whose production depended
on edge capture and playback are shown in Figure 2 and Figure 4.

Because image compositing is a classical and effective gradient-
domain application [Ṕerez et al. 2003; Levin et al. 2003], we in-
clude it in our program. By replacing copy-and-paste or cumber-

Gradient Brush Edge Brush Clone Brush

Figure 3: The operation of our brushes illustrated by original image and stroke(s), produced gradients, and final image. Our system provides
real-time feedback during stroke drawing. Thegradient brush paints intensity differences. Theedge brush allows selection (A) and playback
(B) of an edge; the edge is looped and re-oriented to allow long strokes. Theclone brush copies gradients relative to a source location (A)
onto a destination stroke (B).

Figure 5: Before (top) and after (bottom) swapping wrinkles.
Crow’s foot wrinkles were copied to the left face with the edge
brush. Skin textures were exchanged using the clone tool. Paint-
ing with directional blending was used to enhance shading on the
right face lost during the cloning.Maximum and over blending
used when copying wrinkles and skin texture;minimum blending
used to smooth the eye to the right; anddirectionaland additive
blending used to adjust shading. Artist Time: 15 minutes. (Orig-
inal images by iamsalad,left, and burnt out Impurities,right, via
flickr.)

some draw-wait cycles with a directclone brush, we give the user
more freedom, granularity, and feedback in the cloning process.
In fact, because our integrator is global, the user may drag entire
cloned regions to, say, better align a panorama – all in real-time.
Cloning can be used to move objects, as in Figure 11 and Figure 13.
Cloning with multiple blend modes allows copying an object and its
lighting effects as in Figure 10. A more subtle clone effect is the
skin texture adjustment in Figure 5.

5 Blend Modes

Depending on the situation, the artist may change how her new
strokes are blended with the background. Below, we describe the
blending modes our paint program supports. Blending is a per-pixel
operation; in the following equations, we denote the current back-

Figure 6: Before (left) and after (right) contrast enhancement.
The user applied the gradient brush withdirectionaland additive
blends. Strokes along the sides of the face enhance the shading,
while strokes along the nose and eyebrows give the features more
depth. Artist time: 3 minutes. (Original by babasteve via flickr.)

ground gradient2 (gx, gy) and the current gradient from the brush
(bx, by). The same equation is applied across all color channels.

Additive blending sums the gradients of the brush and background:

(gx
, g

y)← (bx
, b

y) + (gx
, g

y) (1)

It is useful when sketching, allowing one to build up lines over time,
and for simple color and shadow adjustments. It is also useful when
building up texture over multiple cloning passes.

Maximum blending selects the larger of the brush and background
gradients:

(gx
, g

y)←

{

(gx, gy) if |(gx, gy)| > |(bx, by)|
(bx, by) otherwise (2)

This blend is useful when cloning or copying edges, as it provides a
primitive sort of automatic matting [Ṕerez et al. 2003]. We also sup-
port minimum blending, the logical opposite of maximum blend-
ing, which is occasionally useful when cloning smooth areas over
noisy ones (e.g. removing wrinkles; see Figure 5).

2We use the term “gradient” to indicate the intended use, as these vector
fields are often non-conservative and thus not the gradient of any real image.

Figure 7: Before (left) and after (right) shadow adjustments. The
middle shadow was darkened usingdirectionalblending; the bot-
tom shadow was removed by cloning over its top and left edges
usingoverblending , then repainted as a more diffuse shadow us-
ing the gradient brush withadditive; the top shadow remains un-
modified, though the balcony has been tinted by applying colored
strokes withdirectionalblending to its edges. Artist time: 2.5 min-
utes. (Original by arbyreed via flickr.)

Over blending simply replaces the background with the brush:

(gx
, g

y)← (bx
, b

y) (3)

It is useful when cloning; or, with the gradient brush, to erase tex-
ture.

Directional blending, a new mode, enhances background gradi-
ents that point in the same direction as the brush gradients and sup-
presses gradients that point in the opposite direction:

(gx
, g

y)← (gx
, g

y) ·

(

1 +
bx · gx + by · gy

gx · gx + gy · gy

)

(4)

Directional blending is useful for lighting and contrast enhance-
ment, as the artist may “conceal” her edits in existing edges, as in
Figures 6 and 7.

6 Integration

Finding the imageu with gradients close, in the least-squares sense,
to given – potentially non-conservative – edited gradient images
Gx, Gy is equivalent to solving a Poisson equation:

∇2
u = f (5)

Wheref is computed from the edited gradients:

fx,y = G
x
x,y −G

x
x−1,y + G

y
x,y −G

y
x,y−1

(6)

We solve this equation iteratively using the multigrid method. For
a general overview, the reader may refer to Numerical Recipes in
C [Press et al. 1992], whose variable-naming conventions we fol-
low. We describe our specific implementation in this section as an
aid to those wishing to write similar solvers; our solver is a spe-
cial case, customized for our specific domain and boundary con-
ditions, of existing GPU multigrid solvers [Goodnight et al. 2003;
Bolz et al. 2003].

u1

u2

u64

u128

u256

f1

f2

f64

f128

f256

Figure 8: Left: illustration of a single call toVCycle, with f1

set to the gradient field of a 257x257 test image. Arrows show data
flow. Right: The approximation is not perfect, but improves with
subsequent iterations.

VCycle(fh):
if (size(fh) == 1x1)return [0]
f2h ←Rfh ;Restrictf to coarser grid
u2h ←VCycle(f2h) ;Approximate coarse solution
uh ← Pu2h ;Interpolate coarse solution
uh ←Relax(uh, fh, xh0) ;Refine solution
uh ←Relax(uh, fh, xh1) ;Refine solution (again)
return uh

Relax(uh, fh, x):
return 1

mh−x
(fh − (Lh − (mh − x)I)uh) ;Jacobi

Figure 9: Pseudo-code implementing our multigrid-based inte-
gration algorithm. Each frame,VCycle is called on the resid-
ual error, f1 − L1u1, to estimate a correction to the current solu-
tion. The variablemh refers to them associated withLh (Equation
8). We setxh0 = −2.1532 + 1.5070 · h−1 + 0.5882 · h−2 and
xh1 = 0.1138 + 0.9529 · h−1 + 1.5065 · h−2.

In one iteration of our multigrid solver (in the jargon, a V-cycle with
no pre-smoothing and two post-smoothing steps), we estimate the
solution to the linear systemLhuh = fh by recursively estimating
the solution to a coarser3 version of the systemL2hu2h = f2h, and
then refining that solution using two Jacobi iterations. We provide
an illustration in Figure 8, and give pseudo-code in Figure 9.

To effect these changes in grid resolution, we require two operators
R andP. The restriction operator,R, takes a finerfh to a coarser
f2h. The interpolation operator,P, expands a coarseu2h to a finer
uh. Our interpolation and restriction operators are both defined by
the same stencil:

P = R =

[

1

4

1

2

1

4
1

2
1 1

2
1

4

1

2

1

4

]

(7)

In other words,P inserts values and performs bilinear interpolation
whileR smooths via convolution with the above, then subsamples.
The astute will notice thatR is four times larger than the standard;

3The subscripth denotes the spacing of grid points – so,u2h contains
one-quarter the pixels ofuh.

Figure 10: Cloning with multiple blend modes. The candy (middle
right) is cloned onto two different backgrounds (top, bottom) with
overblending, while its shadow and reflected light are cloned with
additiveblending. Artist time: 4 minutes. (Bottom background by
Stewart via flickr.)

this tends to keepfh of a consistent magnitude – important, given
the 16-bit floating point format of our target hardware.

The operatorLh we solve for at spacingh is given by a more com-
plicated stencil:

Lh =

[

c e c
e m e
c e c

]

, with

[

m
e
c

]

=
1

3h2

[

−8h2 − 4
h2 + 2
h2 − 1

]

(8)
NoticeL1 = ∇2. These coefficients have been constructed so that
the solution at each level, if linearly interpolated to the full image
size, would be close as possible, in the least-squares sense, to the
target gradients. This choice is consistent with Bolz et al.[2003],
though they do not provide an explicit formula and use a different
justification.

In our GPU implementation we store all data matrices as 16-bit
floating-point textures, and integrate the three color channels in par-
allel. We use 0-derivative (i.e. Neumann with value zero) boundary
conditions, since these seem more natural for editing; however, this
implies that the solution is only defined up to an additive constant.
We resolve this ambiguity by white-balancing the image. As inter-
active and consistent performance is important for our application,
we run oneVCycle every frame instead of imposing a termination
criterion.

7 Evaluation

We evaluated our integrator on gradient fields taken from images
of various sizes and aspect ratios. Our test set included a high-
resolution full scan of the “Lenna” image and 24 creative-commons
licensed images drawn from the “recently added” list on flickr. To
characterize how quickly our integrator converges to the right so-
lution, we modeled a worst-case scenario by settingu to a random
initial guess, then calculated the root-mean-square of the residual,
∇2u − f , and of the difference between thex-gradient ofu and
Gx; both are plotted in Figure 12 (left). In practice, images are rec-
ognizable after the first integration step (i.e. call toVCycle) and

Figure 11: Before (top) and after (bottom). The left window is
a clone of right (withoverblend mode), with the outer edge of the
surround omitted. Color adjustment (gradient brush withdirec-
tional blend mode) was used to make the inside of the left window
the same shade as the right. Two shadows were removed by cloning
out edges. Artist time: 1.5 minutes. (Original by P Doodle via
flickr.)

nearly perfect after the second – Figure 12 (center).

We also performed an eigenvalue analysis of a 65x65 problem, sim-
ilar to that used by Roberts to analyze his method [2001]. We
achieve a convergence rate,p̄0 = 0.34, indicating that we remove
more than 65% of the remaining error each iteration. This is on
par with Roberts’ reported value for conventional multigrid. The
constantsxh0 andxh1 appearing in our algorithm (Figure 9) were
selected by numerical optimization of thisp̄0.

Timing for a single integrator cycle (the bulk of the work we do
each frame) is recorded in Figure 12. Because integration time is
not content-dependent, we augmented our test set with 37 blank
images to check integration speeds over a wider range of sizes and
aspect ratios. The two computers used for testing were a several-
year-old desktop with an Athlon64 3400 CPU, 1 GB of RAM, and a
GeForce 6800 GT GPU, running Gentoo Linux – the sort of system
that many users have on/under their desks today – and a moderately
priced ($1500) workstation with a Core2 Quad Q6600 CPU, 4 GB
of RAM, and a GeForce 8600 GTS GPU, running Windows Vista.
Even on the more modest hardware, our software comfortably edits
1 megapixel images at around 20fps. Algorithmic scaling is theo-
retically linear in the number of pixels, and this tendency is very
pronounced as long as all textures are resident in video memory.

8 Other Applications

Because our integrator is so fast, it might be useful for real-time
gradient-domain compositing of video streams – for instance, of a
computer generated object into a real scene for augmented reality,
or of a blue-screened actor into a virtual set. Care would have to

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10

R
M

S
 I

n
te

n
si

ty

Iteration

Integrator Convergence

RMS ofGx − ∂
∂x

u

RMS of∇2u− f

 0

 50

 100

 150

 200

 250

 300

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

M
ill

is
ec

on
ds

Megapixels

Integrator Iteration Time

 GeForce 6800 GT
 GeForce 8600 GTS

(flickr)
(Lenna)

Figure 12: Left: Root-mean-square (over all pixels) error after a given number of V-cycles. Results for all test images are overplotted.
Image intensities are represented in the[0, 1] range. The increase in error around the fourth iteration is due to approximations made when
handling boundary conditions of certain image sizes.Center: Integrator convergence on an example image – initial condition (top row) and
result of one (middle row) or two (bottom row) V-cycles.Right: Milliseconds per integrator cycle; performance is linear until data exceeds
video memory – about 2.5 megapixels on modest hardware, 3.5 on thenewer hardware. Un-boxed points are synthetic examples.

be taken with frame-to-frame brightness and color continuity, both
of the scene and of the pasted object, either by adding a data term
to the integration or by introducing more complex boundary condi-
tions.

With a DSP implementation, our integrator could serve as the core
of a viewfinder for a gradient camera [Tumblin et al. 2005]. A
gradient camera measures the gradients of a light field instead of
its intensity, allowing HDR capture and improving noise-resilience.
However, one drawback is the lack of a live image preview abil-
ity. Some computational savings would come from only having to
compute a final image at a coarser level, say, a 256x256 preview of
a 1024x1024 image. Our choice ofLh andR guarantees that this
coarser version of the image is still a good approximation of the
gradients in a least-squares sense.

Our method may also be applicable to terrain height-field editing.
Users could specify where they wanted cliffs and gullies instead of
having to specify explicit heights.

9 Discussion

With a real-time integrator, gradient editing can be brought from the
realm of edit-and-wait filters into the realm of directly-controlled
brushes. Our simple multigrid algorithm, implemented on the GPU,
can handle 1 megapixel images at 20fps on a modest computer.
Our editor allows users to paint with three brushes, a simple gradi-
ent brush useful for sketching and editing shading and shadows, an
edge brush specifically designed to capture and replay edges from
the image, and a clone brush. Each brush may be used with dif-
ferent blending modes, including directional blending mode which
“hides” edits in already existing edges.

However, our approach has limitations. More memory is required
than in a conventional image editor;Gx andGy must be stored, as
well as multi-scale versions of bothf andu, not to mention tem-
porary space for computations – this requires about5.6 times more
memory than just storingu; for good performance, this memory
must be GPU-local. Conventional image editors handle large im-
ages by tiling them into smaller pieces, then only loading those tiles
involved in the current operation into memory. Such an approach
could also work with our integrator, as all memory operations in

our algorithm are local. Alternatively, we might be able to min-
imize main-memory to GPU transfers by adapting the streaming
multigrid presented by Kazhdan and Hoppe [2008].

One of the main speed-ups of our integrator is that its primitive
operations map well onto graphics hardware. A matlab CPU im-
plementation ran only a single iteration on a 1024x1024 image in
the time it took for a direct FFT-based method – see Agrawal and
Raskar [2007] – to produce an exact solution (about one second).
Thus, for general CPU use we recommend using such a direct solu-
tion. This result also suggests that GPU-based FFTs may be worth
future investigation; presently, library support for such methods on
older graphics cards is poor.

The interface features of our current gradient paint system are
somewhat primitive. The looping of the edge brush could
be made more intelligent, either using a video-textures-like ap-
proach [Scḧodl et al. 2000], or by performing a search to find good
cut points given the specific properties of the current stroke. Edge
selection might be easier if the user were provided with control over
the frequency content of the copied edge (e.g. to separate a soft
shadow edge from high-frequency grass). And tools to limit the ef-
fect of edits, through either modified boundary conditions or a data
term in the integrator, would be convenient. Like any image editing
system, our paint tools can produce artifacts – one can over-smooth
an image, or introduce dynamic range differences or odd textures.
However, also like any image editing system, these can be edited-
out again or the offending strokes undone.

We have informally tested our system with a number of users (in-
cluding computer graphics students and faculty, art students, and
experienced artists). Users generally had trouble with three aspects
of our system:

• Stroke Directionality – artists are accustomed to drawing
strokes in whatever direction feels natural, so strokes in dif-
ferent directions having different meanings was a stumbling
block at first.

• Relative Color – both technical users and artists are used to
specifying color in an absolute way. Users reported that it was
hard to intuit what effect a color choice would have, as edges
implicitly specify both a color (on one side) and its comple-
ment (on the other).

Figure 13: Before (left) and two altered versions (middle, right). Shadow adjustments and removal, cloning, and edge capture all comeinto
play. Overblending used for erasing;maximum, over, andadditiveblending used for re-painting. (Original by jurek d via flickr.)

• Dynamic Range – it is easy to build up large range differ-
ences by drawing many parallel strokes. Users were often
caught by this in an early drawing.

The interactivity of the system, however, largely mitigated these
concerns – users could simply try something and, if it didn’t look
good, undo it. Additionally, some simple interface changes may
help to address these problems; namely: automatic direction de-
termination for strokes, or at least a direction-switch key; a dual-
eyedropper color chooser to make the relative nature of color more
accessible; and an automatic range-compression/adjustment tool to
recover from high-dynamic range problems.

In the future, we would like to see gradient-domain brushes along-
side classic intensity brushes in image editing applications. This
paper has taken an important step toward that goal, demonstrating
an easy-to-implement real-time integration system coupled to an
interface with different brush types and blending modes. Painting
in the gradient domain gives users the ability to create and mod-
ify edges without specifying an associated region – something that
makes many tasks, like the adjustment of shadows and shading,
much easier to perform.

Acknowledgments

The authors wish to thank: Moshe Mahler for his “skills of an
artist” (teaser image; skateboard fellow in video); NVIDIA for the
GeForce 8600 used in testing; all those, including the anonymous
reviewers, who helped in editing the paper; and everyone who tried
our system.

References

AGARWALA , A. 2007. Efficient gradient-domain compositing us-
ing quadtrees.ACM Transactions on Graphics 26, 3.

AGRAWAL , A., AND RASKAR, R., 2007. Gradient domain manip-
ulation techniques in vision and graphics. ICCV 2007 Course.

BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖODER, P.
2003. Sparse matrix solvers on the GPU: conjugate gradients
and multigrid.ACM Transactions on Graphics 22, 3, 917–924.

BURT, P. J.,AND ADELSON, E. H. 1983. A multiresolution spline
with application to image mosaics.ACM Transactions on Graph-
ics 2, 4, 217–236.

ELDER, J. H., AND GOLDBERG, R. M. 2001. Image editing in
the contour domain.IEEE Transactions on Pattern Analysis and
Machine Intelligence 23, 3, 291–296.

FATTAL , R., LISCHINSKI, D., AND WERMAN, M. 2002. Gradient
domain high dynamic range compression.ACM Transactions on
Graphics 21, 3, 249–256.

FINLAYSON , G., HORDLEY, S.,AND DREW, M. 2002. Removing
shadows from images. InECCV 2002.

GOODNIGHT, N., WOOLLEY, C., LEWIN, G., LUEBKE, D., AND
HUMPHREYS, G. 2003. A multigrid solver for boundary value
problems using programmable graphics hardware. InHWWS
’03, 102–111.

KAZHDAN , M., AND HOPPE, H. 2008. Streaming multigrid for
gradient-domain operations on large images.ACM Transactions
on Graphics 27, 3.

LAND , E. H., AND MCCANN , J. J. 1971. Lightness and retinex
theory. Journal of the Optical Society of America (1917-1983)
61 (Jan.), 1–11.

LEVIN , A., ZOMET, A., PELEG, S.,AND WEISS, Y., 2003. Seam-
less image stitching in the gradient domain. Hebrew University
Tech Report 2003-82.

L ISCHINSKI, D., FARBMAN , Z., UYTTENDAELE, M., AND
SZELISKI , R. 2006. Interactive local adjustment of tonal val-
ues.ACM Transactions on Graphics 25, 3, 646–653.

ORZAN, A., BOUSSEAU, A., WINNEMOELLER, H., BARLA , P.,
JOËLLE, AND SALESIN, D. 2008. Diffusion curves: A vector
representation for smooth shaded images.ACM Transactions on
Graphics 27, 3.

PÉREZ, P., GANGNET, M., AND BLAKE , A. 2003. Poisson image
editing. ACM Transactions on Graphics 22, 3, 313–318.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1992. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press, New York,
NY, USA, ch. 19.6, 871–888.

ROBERTS, A. J. 2001. Simple and fast multigrid solution of Pois-
son’s equation using diagonally oriented grids.ANZIAM J. 43,
E (July), E1–E36.

SCHÖDL, A., SZELISKI , R., SALESIN, D. H., AND ESSA, I.
2000. Video textures. InProceedings of ACM SIGGRAPH
2000, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 489–498.

SZELISKI , R. 2006. Locally adapted hierarchical basis precondi-
tioning. ACM Transactions on Graphics 25, 3, 1135–1143.

TUMBLIN , J., AGRAWAL , A., AND RASKAR, R. 2005. Why I
want a gradient camera. InProceedings of IEEE CVPR 2005,
vol. 1, 103–110.

WERNER, H. 1935. Studies on contour: I. qualitative analyses.
The American Journal of Psychology 47, 1 (Jan.), 40–64.

