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Discriminative Part-based Models 

Heuristic initialization, e.g., gradient 
magnitudes. 

[Felzenszwalb et al. 2009] 

[Pepik et al. 2012] 

Unsupervised Parts Supervised Parts 
Key-point/part annotation, e.g., 

anatomical. 

[Endres et al. 2012] 

[Azizpour et al. 2012] 

What is the right way to select parts? 

Advantages: 
a) Better optimization and learning 

§  Leverage large-scale RGBD data for constraints 
b) 3D Scene Understanding 

Geometry-driven Parts (gDPM) 
Parts based on consistent underlying 3D geometry 

Experimental Results 

Quantitative Results 

Geometry-driven Dictionary of 3D Elements 
Desired properties: 
§  Representative: frequent among objects 
§  Spatially consistent w.r.t the object 

3. Overview

As input to the system, at training, we use RGB images
of object instances along with their underlying geometry in
terms of depth data. We convert the depth data into surface
normals using the standard procedure from [25]. Our goal
is to learn a deformable part-based model where the parts
are defined based on their appearance and underlying ge-
ometry. We argue that using a geometric representation in
conjunction with appearance based deformable parts model
not only allows us to have a better initialization but also pro-
vides additional constraints during the latent update steps.
Specifically, our learning procedure ensures not only that
the latent updates are consistent in the appearance space but
also that the geometry predicted by underlying parts is con-
sistent with the ground truth geometry. Hence, the depth
data is not used as an extra feature, but instead provides
weak supervision during the latent update steps.

In this paper, we present a proof-of-concept system for
building gDPM. We limit our focus on man-made indoor
rigid objects, such as bed, sofa etc., for three reasons: (1)
These classes are primarily defined based on their phys-
ical properties, and therefore learning a geometric model
for these categories makes intuitive sense; (2) These classes
have high intra-class variation and are challenging for any
deformable parts model. We would like to demonstrate that
a joint geometric and appearance based representation gives
us a powerful tool to model intra-class variations; (3) Fi-
nally, due to the availability of Kinect, data collection for
these categories has become simpler and efficient. In our
case, we use the NYU v2 dataset [25], which has 1449
RGBD images.

4. Technical Approach

Given a large set of training object instances in the form
of RGBD data, our goal is to discover a set of candi-
date parts based on consistent underlying geometry, and
use these parts to learn a geometry-driven deformable part-
based model (gDPM). To obtain such a set of candidate
parts, we first discover a dictionary of geometric elements
based on their depth information (section 4.1) in a category-
free manner (pooling the data from all categories). A
category-free dictionary allows us to share the elements
across multiple object categories.

We use this dictionary to choose a set of parts for every
object category based on frequency of occurrence and con-
sistency in the relative location with respect to the object
bounding-boxes. Finally, we use these parts to initialize and
learn our gDPM using latent updates and hard mining. We
exploit the geometric nature of our parts and use them to en-
force additional geometrical constraints at the latent update
steps (section 4.3).

Figure 2. A few elements from the dictionary after the initialization
step. They are ordered to highlight the over-completeness of our
initial dictionary.

Figure 3. A few examples of resulting elements in dictionary after
the refinement procedure.

4.1. Geometry-driven Dictionary of 3D Elements
Given a set of labeled training images and their corre-

sponding surface normal data, our goal is to discover a dic-
tionary of elements capturing 3D information that can act
as parts in DPM. Our elements should be: 1) representa-
tive: frequent among the object categories in question; 2)
spatially consistent with respect to the object. (e.g., a hori-
zontal surface always occurs on the top of a table and bed,
while it occurs at center of a chair and a sofa). To obtain a
dictionary of candidate elements which satisfy these prop-
erties, we use a two step process: first we initialize our dic-
tionary by an over-complete set of elements, each satisfying
the representativeness property; and then we refine the dic-
tionary elements based on their relative spatial location with
respect to the object.
Initializing the dictionary: We sample hundreds of thou-
sands of patches, in 3 different aspect-ratios (AR), from the
object bounding boxes in the training images (100 − 500
patches per object bounding box). We represent these
patches in terms of their raw surface normal maps. To ex-
tract a representative set of elements for each AR, we per-
form clustering using simple k-means (with k ∼ 1000), in
raw surface normal space. This clustering process leads to
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Figure 7. Learned gDPM models for classes bed, sofa and table. The first visualization in each template represents the learned appearance
root filter, the second visualization contains learned part filters super-imposed on the root filter, the third visualization is the surface normal
map corresponding to each part and the fourth visualization is of the learned deformation penalty.

the latent update step on positives uses fβ from (5) to esti-
mate the latent variables; then we apply SGD to solve for β
by using standard fβ (4) and hard-negative mining. At test
time, we only use the standard scoring function (2) (which
is also equivalent to setting λ = 0 in (5)).

5. Experiments
We now present experimental results to demonstrate the

effectiveness of adding geometric representation and con-
straints to a deformable part-based model. We will show
how adding 3D parts and geometric constraints not only
help improve the performance of our object detector but also
help us to develop 3D understanding of the object (in terms
of surface normals). We perform our experimental evalua-
tion on the NYU Depth v2 dataset [25]. We learn a gDPM
model for five object categories: bed, chair, monitor+TV
(M.+TV), sofa and table. We use 3 components for each
object category and some of the learned models are shown
in Figure 7. This dataset has 1,449 images; we use the train-
test splits from [25] (795 training and 654 test images). We
convert the object instance segmentation masks (provided
by [25]) to bounding boxes for training and testing object
detectors. For surface normal prediction for the object, we
superimpose the surface normals corresponding to each part
and take the pixel-wise median. We also use colorization
from [25] to in-paint missing regions in the object for visu-
alization.

Qualitative: Figure 8 shows the performance of gDPM de-
tector on a few examples. Our gDPM model not only local-
izes the object better but is also able to predict the surface
normals for the detected objects. For example, in the first
row, gDPM not only predicts the flat sittable surface of the
couch but it also predicts the vertical backrest and the hori-
zontal surface on the top of it. Similarly, in the second row,
our approach is able to predict the horizontal surface of the
small table. Figure 9 shows one of the false positives of
our approach. In this case, a chair is predicted as a sofa by
gDPM but notice the predicted surface normals by gDPM.
Even in the case of wrong category prediction, gDPM does

Table 1. AP performance on the task of object detection.

Bed Chair M.+TV Sofa Table

DPM (No Parts) 20.94 10.69 6.38 5.51 2.73
DPM 22.39 14.44 8.10 7.16 3.53

DPM (Our Parts, No Latent) 26.59 5.71 2.35 6.82 3.41
DPM (Our Parts) 29.15 11.43 4.17 8.30 1.76

gDPM 33.39 13.72 9.28 11.04 4.05

a reasonable job on the task of predicting surface normals
including the horizontal support surface of the chair.
Quantitative: We now evaluate gDPM quantitatively on
the task of 2D object detection. As a baseline, we compare
our approach against the standard DPM model with and
without parts. We also evaluate the performance of DPM
by treating our initial part hypothesis as strong supervision
(ground truth parts) and not doing any latent updates. Fi-
nally, we also evaluate the performance of our parts with the
standard latent updates which do not consider the geometric
constraint based on depth data. Table 1 shows the average
precision (AP). Our approach improves over the standard
DPM by approximately 3.2% mean AP over 5 categories;
and for categories like bed and sofa, the improvement is as
much as 11% and 4% respectively. We also evaluate our
surface normal prediction accuracy in a small quantitative
experiment. Against Geometric Context [19], our surface
normal prediction is 2◦ better, in terms of median per-pixel
error.

6. Conclusions
We proposed a novel part-based representation,

geometry-driven deformable part-based model (gDPM),
where the parts are defined based on their 3D properties.
gDPM effectively leverages depth data to combine the
power of DPMs with the richness of geometric representa-
tion. We demonstrate how depth data can be used to define
parts and provide weak supervision during the latent update
steps. This leads to a better model in terms of detection
performance. But more importantly, a joint geometric and
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Enforcing geometric constraints using large-scale RGBD data.	
  


