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Abstract

Generating realistic animations of passive dynamic systems such as rigid bodies, cloth
and fluids is an important problem in computer graphics. Although several techniques for
animating these phenomena have been developed, achieving the level of realism exhibited
by objects in the real world has proved to be incredibly hard. We argue, therefore, that an
effective method for increasing the realism of these types of computer animations is to infer
the behavior of real phenomena from video. This thesis presents two techniques for using
video to create realistic animations of phenomena such as rigid bodies, cloth, waterfalls,
streams, smoke and fire.

The first technique, inverse simulation, estimates the parameters of physical simulations
from video. Physical simulation techniques are widely used in computer graphics to generate
animations of passive phenomenon using physical laws and numerical integration techniques.
The behavior of a physical simulator is governed by a set of parameters, typically specified
by the animator. However, directly tuning the physical parameters of complex simulations
like rigid bodies or cloth to achieve a desired motion is often cumbersome and nonintuitive.
The inverse simulation framework uses optimization to automatically estimate the simulation
parameters from video sequences obtained from simple calibration experiments (e.g., throw-
ing a rigid body, waving a swatch of fabric). This framework has three key components: (1)
developing a physical model that accurately captures the dynamics of the phenomena, (2)
developing a metric that compares the simulated motion with video and (3) applying opti-
mization to find simulation parameters that minimize the chosen metric. To demonstrate the
power of this approach, we apply this framework to find the parameters for tumbling rigid
bodies and for four different fabrics.

The second technique presents a video editing framework for creating photorealistic ani-
mations of natural phenomena such as waterfalls by directly editing reference video footage.
Our algorithm analyzes the dynamics and appearance of textured particles in the input video
along user-specified flow lines, and synthesizes seamless infinite video by continuously gen-
erating particles along the flow lines. The user can then edit the video by manipulating flow
lines from the original footage. The algorithm is simple to implement and use. We applied
this technique to perform significant edits to the video. For example, we were able to change
the terrain of a waterfall, add obstacles along the flow and add wind to smoke and flames, to
demonstrate the editing capability of our approach.

The results from these two techniques demonstrate the effectiveness of using video to
improve the realism of computer animations. Our experience with applying inverse simula-
tion for cloth resulted in improvements to existing cloth models and produced animations that
matched the realism of real fabrics. Our research on flow-based modelling produced simple
one dimensional particle models that enable animating a wide variety of natural phenomena.
We hope that the methods developed in this thesis provide useful insights into how realistic
animations for other domains might be designed.
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Chapter 1

Introduction

Creating realistic animations has been a great challenge in computer graphics for
the last two decades. Despite many advances in modelling, animation and render-
ing techniques, generating realistic animated motion has proved to be incredibly
hard. In order to create believable computer animations, we need realistic secondary
motions of common background elements such as rigid bodies, cloth, leaves, and
smoke [OZH00]. Compelling secondary motions add richness to the scene, natu-
ralness to the action and give a fuller dimension to the personality of the charac-
ter [TJ84]. This thesis focusses on techniques for creating realistic animations of a
wide range of secondary motions: tumbling rigid bodies, fabrics of different materi-
als, waterfalls, fire and smoke blowing in the wind.

We argue that a direct way of creating realistic animations of such phenomena
is to design algorithms that infer the behavior of real phenomena (e.g., cloth, fluids)
captured in video. In its most basic form, the idea of using video as reference is
known as rotoscoping [Fle17], where an animator traces over film or video frames
captured as reference. But beyond reproducing the original motion, our objective is to
generate new animations that capture the characteristics of the original phenomenon,
but can be controlled to meet an artist’s or director’s goals. For example, we would
like to create animations of a dancer wearing a fleece skirt from a video clip of a
fleece swatch (figure 1.1(a)). In a different setting, shown in figure 1.1(b), we would
like to modify the terrain of a real waterfall in video to create a new waterfall with
two extra channels. This thesis presents two methods that use video to create realistic
animations for these two different scenarios.

Physically based simulation techniques have been widely used for automatically
generating the secondary motions of passive phenomena such as rigid bodies and
cloth. One technique for creating realistic animations for the scenario in figure 1.1(a)
is to tune the parameters of a physical simulation to match real video footage. We
call this technique inverse simulation. An alternative technique is to directly model

15



(a)

(b)

Figure 1.1: Capturing the behavior of real phenomena in video for creating new
animations. The top row shows a realistic skirt simulation (on the right) created from
a video of an artist waving a swatch of real fabric. The bottom row shows an edited
waterfall (on the right) created from a short clip of a real waterfall on the left.

the motion of pixels in video, and use this model to synthesize new video. This
technique is ideally suited for examples of natural phenomena such as the waterfall
in figure 1.1(b), where the correct dynamics are difficult to simulate, but it is easy for
a person to sketch out rough flow lines on the image and manipulate these flow lines
to produce new video. We call this technique flow-based video editing.

1.1 Inverse Simulation

This thesis is organized into two parts corresponding to these two techniques: inverse
simulation and flow-based video editing. The first part develops a general framework
for estimating parameters of physical simulations from video clips of real phenom-
ena. With the right set of parameters, good simulators produce very realistic looking
motion. However, manually choosing the parameters that will provide a particular
appearance is still a time consuming task because the animator has to re-run the sim-
ulation and view it for each set of parameters. Even harder is the task of exactly
matching a simulation to a video sequence of the real world. For example, some pa-
rameters in a cloth simulation can be chosen based on the animator’s intuition about
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the fabric—a knit fabric is more stretchy than a woven fabric such as linen, for ex-
ample. But not all the parameters of a cloth simulator are intuitive or map directly to
measurements that can made by a system such as the Kawabata system [Kaw80]. For
example, guessing the dynamic parameters such as damping or air drag is very diffi-
cult because the simulated motion is affected by the choice of numerical integration
scheme. On the other hand, it is easy to film a video sequence of different types of
fabrics in motion. We present an inverse simulation framework for automatically es-
timating the parameters of physical simulations from video. We used this framework
to identify the parameters of rigid body and cloth simulations.

Parameter identification from video is a challenging problem because video does
not directly provide three dimensional (3D) shape or motion information of real
phenomena. While recent advances in computer vision enable estimating geome-
try rapidly and efficiently [TK92, MT93, ZCS02, HK03], existing methods do not
allow the computation of physical parameters such as stiffness or damping in this
manner. Our research shows that a set of perceptual features extracted from video
has sufficient information to estimate the parameters of physical simulations.

The inverse simulation framework, based on optimization, has three key steps
(figure 1.2): (1) developing a physical model for the system dynamics that captures
the complexity of the motion, (2) developing a metric to compare the simulated mo-
tion with video and (3) searching the parameter space using optimization to find the
best set of parameters. We validate the estimated parameters by applying them to
new dynamic conditions in simulation and comparing the simulated results to video.
For example, we use our parameter estimates—obtained by waving a small swatch of
fabric in front of a camera—to create an animation of a dancer wearing a skirt made
of the same material.

1.2 Flow-Based Video Editing
The second part of the thesis focusses on techniques for animating fluid-like phenom-
ena such as waterfalls, streams, smoke and fire from reference video clips. Given a
video sequence of a real phenomena like a waterfall (or smoke or fire), our objec-
tive is to capture the motion and appearance of the waterfall and create new video
of waterfalls that we can control. We present a flow-based video editing framework
for creating photorealistic animations by directly editing the reference video footage.
For example, a video sequence of Niagara falls can be edited to create a new waterfall
that is twice as big as Niagara.

Editing reference footage to create photorealistic animation is quite challeng-
ing. Although several good techniques exist for editing images [HJO+01, KSE+03,
EF01], none of them extend well to video because these techniques, applied frame-
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Figure 1.2: The steps of the inverse simulation framework applied to cloth. The
top figure shows a block diagram for parameter identification using optimization.
Images from real experiments (waving a swatch of fabric) are compared to images of
a simulation using a metric that penalizes the mismatch in their folds. The parameters
of the simulation are updated by an optimization routine (simulated annealing) until
the metric error is minimized. The bottom figure shows the validation results for skirt
simulations. The skirt simulations use the optimized parameters obtained from the
fabric swatch. The corresponding frames from a real skirt made of the same material,
driven by approximately the same human motion are shown for comparison.
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Figure 1.3: The steps of our video editing framework for creating realistic anima-
tions. First, the animator sketches a set of blue flow lines on the input video. These
flow lines capture the animator’s intuition about the flow of particles in the video. To
create a new waterfall with two extra channels, the animator sketches the output flow
lines shown in red, and specifies the correspondence between the output and input
flow lines. Our algorithm automatically generates an infinitely long edited video,
one frame of which is shown.

by-frame, do not guarantee temporal consistency (pixel colors in consecutive frames
may vary significantly). Most prior work in video synthesis [DCSW03, KSE+03,
SSSE00] has focussed on creating infinite sequences from video, with very little
effort on editing video, barring a few exceptions [DS03]. Our editing framework
leverages the animator’s intuition about the flow of particles in video to model the
input sequence and specify edits.

The two main steps of the video editing framework are (1) modelling the in-
put video as a particle system along input flow lines and (2) synthesizing the edited
sequence by generating particles along the output flow lines (figure 1.3). In our im-
plementation, the input and output flow lines are specified by an animator. This
technique works on complex natural phenomena such as waterfalls, streams, fire and
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smoke that exhibit a continuous flow of particles along constant flow directions. We
demonstrate the power of this approach with a wide range of edits: changing the ter-
rain of a waterfall, adding wind to sequences of smoke and fire and adding obstacles
to a stream.

The two video-based techniques presented in this thesis are appropriate for dif-
ferent classes of problems. The inverse simulation framework is ideally suited for
phenomena such as rigid bodies and cloth whose dynamics are accurately modelled
using a small set of parameters. Moreover, it is easy to obtain video footage for these
phenomena from controlled experiments. However, extending the inverse simulation
framework to more complex phenomena is difficult because we need custom simu-
lators for each type of phenomena (e.g., smoke, water, fire). Moreover, in order to
match real world measurements, physical simulators would require precise models
for wind and other external forces, significantly increasing the number of parameters
to be optimized. For these phenomena, flow-based video editing presents a simple
and effective alternative to physical simulation. Our flow-based interface provides an
intuitive interface for creating controllable animations of natural phenomena. How-
ever, the information learned from one sequence using the flow-based approach may
not generalize to other sequences or new scenario.

1.3 Applications
Creating realistic animations of common passive objects using video footage has
direct applications in entertainment, science, technology and medicine. Here, we
discuss a few of the potential long term applications:

Visual Effects and Computer Games: Physically based simulation techniques are
very popular techniques for animating secondary motion in movies and games. For
example, the motion of Yoda’s costume in Star Wars: Episode II was created us-
ing physical simulations. Automatic techniques for parameter identification from
real footage should increase the realism of physical simulations, and will reduce the
manual time spent on tuning their parameters. Our flow-based framework could be
potentially used to increase the realism of scale models of natural phenomena such
as waterfalls in studios, for example, by adding mist from real waterfalls.

Medicine: Mathematical models of human tissue have been developed to simulate
organs and analyze the conditions for various disorders. Applying inverse simulation
techniques to obtain accurate simulation parameters should help doctors to locate
the plausible stresses in the tissues they are surveying. For example, Eysholdt et
al. [ERH03] use endoscopy video of the vocal chords to analyze speaking disorders
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in humans by estimating the force production in the larynx. Moreover, realistic ren-
dering of human tissue using data from real video footage could significantly increase
the usefulness of simulations for surgical training.

Web commerce: Accurate physical models of real objects will be beneficial to
web-based commerce and interaction. One potential application is online shopping
stores where customers can try out fabrics of different material on virtual avatars.
The material parameters for the different fabrics could be obtained a priori using our
inverse simulation framework.

Home video editing: Techniques for creating compelling animations by video edit-
ing could allow amateur artists to prototype their ideas by modifying existing video
footage. Such software would also have potential for home video editing, allowing
users to create new video by selectively cutting and pasting portions from different
clips.

This thesis is organized as follows: chapter 2 presents the inverse simulation
framework for capturing simulation parameters of rigid bodies and cloth. Chapter 3
discusses the video editing framework for creating photorealistic animations from
short video clips. Finally, in chapter 4, we conclude with a discussion on the contri-
butions and limitations of the two techniques, and directions for future research.
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Chapter 2

Inverse Simulation Techniques

Physically based simulation techniques are often used for generating realistic anima-
tions of complex physical behavior such as colliding rigid bodies [Bar94, MC95],
folding cloth [BW98, BFA02, BWK03, CK02], rising smoke [FSJ01], burning fire
[LF02] and splashing water [Sta99, FF01]. An attractive feature of physical simu-
lation is that the animation is generated automatically—the animator only needs to
specify a few physical parameters. This feature has made simulations a very popular
tool for animating secondary motions in computer games and movies.

The primary drawback of physical simulations, however, is the lack of intuitive
control over the resulting animation. For example, an animator might have to sim-
ulate a skirt that moves and responds like satin. But, there is no easy way to guess
the static and dynamic parameters of a cloth simulator that might achieve this effect.
Adjusting the simulation parameters manually to achieve a desired outcome is often
tedious and nonintuitive. An automatic solution to the parameter estimation problem
is one of the main challenges in computer graphics [TPB+89]. The objective of the
first part of this thesis is to automatically infer the simulation parameters from video.

Figure 2.1(a) shows a block diagram representation of a physical simulation. The
term forward simulation refers to the process of numerically integrating the math-
ematical model for a given set of parameters. The inverse of this step, where the
parameters of the simulation are estimated from state measurements, is typically re-
ferred to as inverse simulation (figure 2.1(b)). This thesis presents an inverse sim-
ulation framework based on optimization that uses video measurements. We have
applied this technique to estimate the model parameters of rigid body and cloth sim-
ulators. The video used in our framework is obtained from laboratory experiments
(using tumbling rigid bodies or swatches of fabrics) that are designed to exercise the
different behaviors of the physical system. Our framework uses a temporal sequence
of image features (silhouette and shape) derived from video for parameter identifi-
cation. We validate the estimated parameters to ensure that they generalize to new
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Figure 2.1: Forward and inverse simulation techniques.

simulation settings.
The parameter identification algorithm optimizes the simulation parameters such

that the rendered simulation matches the video captured from the controlled experi-
ments. We use perceptually motivated metrics to evaluate the match between video
sequences from simulation and real experiments. The design of these metrics from
video is an important contribution of our thesis. Metrics evaluate the visual realism
of simulations by scoring them based on their match with real video. Equally impor-
tant is the design of the (real) experiments, which provides the reference video. The
experiments are designed such that they are simple, repeatable and easy to set up (in
reality and in simulation), yet capture the complexity of the dynamics. For example,
we waved swatches of fabrics of different material in front of a camera to capture the
simulation parameters of different fabrics.

The next section presents a brief overview of the inverse simulation framework
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Figure 2.2: Block diagram of parameter identification using the inverse simulation
framework.

for capturing parameters using optimization. We introduce the various components
of the framework, focussing mainly on the specifics for rigid bodies and cloth.

2.1 Overview
Optimization is a common technique for estimating the parameters of non-linear dy-
namic systems. We pose the parameter estimation as an unconstrained minimization
problem, with an objective function that minimizes a metric computed on rendered
and video images. We used a gradient-based optimization routine for estimating
rigid body parameters, and simulated annealing for estimating cloth parameters. Fig-
ure 2.2 shows the process diagram of our parameter identification framework, where
the blocks on the left are obtained from real measurements and the blocks on the
right are computed in simulation. For a given set of parameters, the metric compares
the image sequences rendered from simulation against images captured from real ex-
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periments. The optimizer continuously tunes the model parameters until the metric
error is minimized. We now briefly discuss a few key elements of figure 2.2.

Physical Model: We applied our algorithm on two types of simulators—rigid bod-
ies and cloth—that are widely used in computer graphics. Our first experiment was
to estimate free-flight parameters of a tumbling rigid body from video. The tum-
bling dynamics of a rigid body is governed by the Newton-Euler equations of motion
[Sym71]. Because gravity is the only external force acting on the body, the body rota-
tional dynamics is completely governed by its inertia and initial conditions (position,
orientation, linear and angular velocities). The goal of our second experiment was to
estimate the static and dynamic parameters of the Baraff and Witkin [BW98] cloth
simulator for different fabrics. We improved this model to handle object and self-
collisions, added a non-linear air drag term and used a explicit integration scheme to
improve the realism of the generated cloth motion.

Metric: One of the key elements of our framework is the design of metrics to com-
pare video rendered from physical simulations with video from real experiments.
Mathematically, the metric M takes two video sequences A and B and returns a
number c that captures the difference between the two sequences.

M(A,B) = c (2.1)

Our goal is to design the function M such that the difference c measures the percep-
tual dissimilarity between the two sequences. For rigid bodies, our metric computes
the frame by frame difference in silhouettes between the simulation and video. Simi-
larly, for cloth, our metric measures the frame by frame difference between the folds
in simulation and video. Both these metrics can be computed robustly and very
quickly from video using standard computer vision algorithms, which make them
suitable for inner loop computations in our optimization framework.

Optimizer: Our choice of optimization technique for a given problem was guided
by three factors: noise of the error space, availability (or not) of analytical gradients
and ease of initialization. We used analytical gradients to optimize the simulation
parameters of a tumbling rigid body using a gradient descent algorithm. However,
for cloth, the error space was extremely noisy, and it was very hard to initialize the
optimizer with a good starting value for the parameters. So we chose a global opti-
mization scheme, simulated annealing, which explores the space before settling for
a particular minima. Although simulated annealing is several orders of magnitude
slower than gradient descent, it performs well on noisy error spaces where the gradi-
ent information may not be reliable for optimization.
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The rest of this chapter is organized as follows: first, we present related work in
parameter identification techniques for dynamic systems. The next section presents a
detailed discussion of estimating the parameters of rigid body and cloth simulations.
For each simulation type, we present the related work, and details of the mathe-
matical model, identification experiments, perceptual metrics and the optimization
routine. Then, we validate the estimated parameters by creating new animations and
evaluating their visual realism. Finally, we conclude with a summary that highlights
the challenges of achieving realism in simulation, and justifies the various engineer-
ing decisions that we made along the way. We also present a couple of examples of
metrics for cloth that did not work, and analyze the reason for their failure.

2.2 Related Work
This section summarizes the prior work in parameter identification and optimal con-
trol applied to physics based animation. The later sections on rigid bodies and cloth
will present a detailed survey of the related simulation and video based techniques
specific to these two systems.

In recent years, the computer graphics community has made great progress in
modelling the complex secondary motions of passive phenomena through physical
simulations [Bar94, MC95, BW98, BFA02, BWK03, CK02, Sta99, FSJ01, LF02,
FF01]. These simulation techniques can generate very realistic results, but the ani-
mations that they produce are often difficult to control. The problem of controlling
physical simulations has received considerable interest lately. Popović and his col-
leagues [PSE03] presented a sketch-based interface for controlling rigid body mo-
tions. They pose the control problem in a parameter estimation framework, and
identify the initial conditions and other physical parameters for a desired sketch.
An alternative approach for controlling passive systems like smoke [TMPS03, FL04]
solves for custom wind fields that are continuously applied to guide the simulation
towards desired key frames. Our inverse simulation framework draws from the work
on interactive control and parameter estimation for rigid bodies [PSE+00, PSE03].

Constrained optimization techniques from optimal control theory [Ste94] have
been used for inverse simulation of active dynamic systems. These techniques, called
spacetime constraints in the graphics community [WK88], compute the motion of ac-
tive dynamic systems by continuously applying actuating forces/torques f(t) at the
active joints. The motion of passive objects like rigid bodies and cloth are fully deter-
mined by a finite number of simulation parameters p and therefore present a simpler
problem. Our framework uses video from real world measurements to estimate the
simulation parameters p.

Parameter identification of linear dynamic systems has been used successfully

26



to a wide range of problems in engineering, chemistry, biology and other sciences
[Kai79]. However, the equations of motion of most passive dynamic systems are
typically described by non-linear differential equations. Recently, several techniques
for non-linear system identification have also been developed (see [Nel00] for an ex-
cellent survey). Of these techniques, parameter identification using optimization is
very popular and fairly easy to use, with excellent toolboxes and resources [Gra92,
GMW82]. Optimization-based algorithms typically consider the simulation as a
black box and therefore generalize well for different physical systems. Moreover,
the objective function can be designed to minimize image measurements, which
make them better suited for our framework in comparison to standard estimation
techniques (e.g., non-linear least squares) that require state measurements.

2.3 Capturing Rigid Body Parameters
Our first experiment was to estimate the physical parameters of a rigid body in free
flight (called tumbling motion) from a video sequence of its motion. Rigid bodies are
ideal candidates for testing our inverse simulation framework because their complex
tumbling motion is constrained by a small set of physical parameters and initial con-
ditions [Sym71]. The parameters governing the tumbling motion of a rigid body in
video can be categorized into two groups:

• Object Parameters: intrinsic (object shape, mass distribution, location of center
of mass), extrinsic (initial position, orientation, velocity, angular velocity).

• Environment Parameters: gravity direction, air drag.

The objective of our first experiment is to extract the object parameters and the grav-
ity direction from a video sequence of a rigid body in free flight. For the sake of
simplicity, we assume that the object shape and inertial matrix are known and the
effect of air drag is negligible.

2.3.1 Prior Work
Techniques for simulating rigid body motion have matured tremendously in the last
few years. Modern rigid body simulators [GBF03, MC95, Bar94] can robustly han-
dle complex interactions such as collisions, contact, friction and stacking involving
thousands of rigid bodies. We are interested in estimating the parameters of rigid
body simulations from video.

Prior work in computer vision has mainly focussed on the problem of extracting
the shape of rigid bodies and tracking them in video [TK92, HZ00, FLP01, TWK88].
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There is surprisingly little work on extracting the underlying physical properties of
the object or the environment. Furthermore, prior video-based techniques for param-
eter estimation make simplifying assumptions about the shape and properties of the
rigid bodies. For example, several researchers [RK96, BS99] make point mass as-
sumptions to design robot controllers for juggling or playing air hockey using video
measurements. Ghosh et al. [GL95] estimate the shape and dynamics of planar ob-
jects from optical flow measurements. The problem of simultaneously recovering the
physical parameters of a 3D rigid object and its environment from a single camera
has not been previously addressed.

More closely related to our identification framework is prior work on physics
based reconstruction and tracking in computer vision [TWK88, Har92, CC91, SD91,
Bre97, DF99, Wre00, PH91, MT93]. Most of these tracking techniques (in computer
vision) define a dynamic model that is controlled via forces and torques. Their ob-
jective is to compute the set of forces and torques that give rise to the shape or trajec-
tory that best fit the image data. An important limiting feature of most model based
tracking techniques is that real world dynamics, including important effects due to
gravity and impact, are not fully modelled. Consequently, the forces and torques
computed through physically based approaches in computer vision are physically in-
spired but do not capture real world physics. In many cases, the dynamic model
that relates the current and previous states is approximated using a linear Kalman fil-
ter [Har92, CC91], which works well for applications involving rigid body tracking
[Har92] or navigation [CC91, SD91].

Our dynamic model captures the true rotational physics of a tumbling rigid body.
This aspect distinguishes our work from prior work in motion tracking and analysis
where the focus is on identifying object kinematics, i.e., motion trajectories. More-
over, our algorithm uses information from all frames in the video sequence simulta-
neously, unlike feed-forward filter based methods. Figure 2.3 compares the results
of our offline batch algorithm with an online Kalman filter applied to a synthetic ex-
ample of 2D ballistic motion with gaussian noise. Our algorithm tries to find the best
fit parabola to the data, whereas a Kalman filter fits a higher order curve to the data.
Although the Kalman filter approach tracks the data better, our algorithm finds the
parameters describing the physics of the ballistic motion. These parameters can now
be used to animate a particle in simulation, that moves like the given data.

2.3.2 Model
The tumbling motion of a rigid body in free flight is characterized by its position,
orientation, linear and angular velocity. Let q(t)= [ ~X(t),~θ(t),~V (t),~ω(t)] be the state
of the rigid body at time t. ~X(t) ∈ R3 and ~θ(t) ∈ SO(3) specify the position and
orientation in a world coordinate system. We use a quaternion to represent the orien-
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Figure 2.3: Illustrating the differences between parameter estimation using optimiza-
tion (left) and a Kalman filter (right) on a simplistic 2D example. The input data
is the trajectory of a point mass in free flight, corrupted with gaussian noise. Our
optimization algorithm uses all the data points simultaneously to fit a path that glob-
ally satisfies physical laws; in this simple case, a parabolic path. The Kalman filter
processes the data sequentially and fits a higher order curve to the data.

tation with four parameters. ~V (t) ∈ R3 and ~ω(t) ∈ R3 specify the linear and angular
velocity coordinates. The time derivative of the state q(t), called the simulation func-
tion ~F (t,q(t)), is governed by the ordinary differential equation (ODE):

~F (t,q(t)) =
d

dt
(q(t)) =
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(2.2)

Here, ~I(t) is the inertia matrix in world coordinates, and ~g ≈ (0,−9.81m/s2, 0) is
the acceleration due to gravity. The product ∗ refers to quaternion multiplication.
The state q(t) at any time instant t = tf is determined by integrating Equation 2.2:

q(tf ) = q(t0) +
∫ tf

t0

~F(t,q(t))dt (2.3)

The state at any time q(t) depends on the initial state at time t = t0 and inertial
matrix. In this thesis, we assume that the inertia matrix is known. Consequently,
it is sufficient to solve for the initial state, which we denote by pobj. Because we
are interested in estimating the simulation parameters from video, it is convenient
to place the origin of the world coordinate system at the camera center, with the
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principal axes aligned with the camera coordinate system. Due to the choice of this
coordinate system, the direction of gravity depends on the orientation of the camera,
and is not necessarily vertical. The gravity direction in our framework is encoded
by two angles (tilt and roll). We use the symbol penv to indicate the direction of
gravity in simulation, and the symbol p to denote the total set of simulation parame-
ters: p = (pobj,penv).

2.3.3 Metrics from video
We use the mismatch between the object silhouettes extracted from the simulation
and video as the metric for comparing a rigid body simulation with video. Silhouettes
are an appropriate choice for comparing videos of tumbling rigid-bodies. Because
the motion of a tumbling rigid body in video is complex with many self-occlusions,
traditional feature trackers or optical flow algorithms may produce unreliable feature
estimates. On the other hand, silhouettes can be computed quickly and reliably from
video.

Silhouette Comparison: We begin by preprocessing the input video sequence to
compute the silhouettes at each frame. Similarly, we render a silhouette sequence in
simulation using the current parameter values. We present two techniques to compare
silhouette images, as shown in figure 2.4. The first metric (left) counts the number
of mismatched pixels between the two silhouettes. We used this metric in our imple-
mentation. Define Ak as a binary silhouette image of size (Sx, Sy) at frame k.

Ak(i, j) =

{

1, inside silhouette
0, otherwise

(2.4)

The error at frame k is given by:

Esilh
k =

Sx
∑

i=1

Sy
∑

j=1

‖Areal
k (i, j) − Asim

k (i, j)‖ (2.5)

The second metric computes the distance between the corresponding edge pixels
(right side of figure 2.4) of the two silhouettes. To evaluate this metric, we first
generate a silhouette edge from the silhouette image using a Canny edge detector.
For each pixel in the first silhouette edge, we compute the closest point (L2 norm) in
the second silhouette edge. The final value of the metric is obtained by accumulating
the (square of) distance values across all pixels:

Esilh
k =

M
∑

m=1

(im − i∗m)2 + (jm − j∗m)2 (2.6)
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Figure 2.4: Two different methods of comparing silhouettes. Left: (a) Counting
the number of mismatched pixels corresponds to the area within the silhouettes but
outside the black region. Right: (b) Computing the distance between closest pixel
pairs (minimum L2 distance) from the two silhouette edges (shown as red stripes in
the figure). We show only a few closest pixel pairs in this figure (for clarity)—the
metric computes the distance for all the pixel pairs from the two silhouette edges.

where (im, jm) and (i∗m, j∗m) are corresponding pixels in the two silhouettes and M
is the total number of pixels in the first silhouette edge. The error across the whole
sequence of N frames, is given by:

E =
N
∑

k=1

Esilh
k (2.7)

2.3.4 Optimization
The optimization algorithm solves for the object and environment parameters simul-
taneously to match the silhouettes from simulation with those from video. Recall that
the motion of a rigid body is fully determined by the parameters p. For a given set
of parameters, the optimizer simulates the motion to compute the silhouette images
at each frame. It then computes the gradients of the silhouette metric and uses it to
update the parameters of the optimizer. The goal of the optimization algorithm is to
minimize the objective function defined by equation 2.7. We provide an initial esti-
mate for the parameters p and update it at each step using gradient descent. Gradient
based methods are fast, and with reasonable initialization, converge quickly to the
correct local minima. The update rule for parameters is

p = p − λ
∂E

∂p
(2.8)

where λ is the magnitude of the step in the gradient direction.
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Gradient Computation. The optimization algorithm requires computing the gra-
dients of the objective function. This in turn, requires computing the gradients of
the silhouette at each frame. Although the state q(t) is a continuous function of the
parameters p, quantities such as silhouettes are not continuously differentiable func-
tions of parameters p. One straightforward approach is to compute the gradients of
the error function ∂E(q)/∂p numerically, using finite differences. This approach,
however, has two major drawbacks. First, computing the gradients of the metric
with respect to pobj (initial conditions) using finite differences is extremely slow,
because the simulation function has to be evaluated several times during the gradient
computation. Second, determining step sizes that yield an accurate finite difference
approximation is difficult. We resort to a hybrid approach for computing the gradi-
ents. We analytically compute the gradients of the state with respect to parameters
∂q(t)/∂p. We then compute the derivative of the error with respect to the state us-
ing finite differences, e.g. ∂E(q)/∂q. We use the chain rule to combine the two
gradients:

∂E

∂p
=

∂E

∂q

∂q

∂p
(2.9)

Because the metric (e.g., silhouette S) depends only on the position and orientation
terms of the state q, the gradient ∂S(q)/∂q can be computed quickly and accurately
using finite differences. The camera parameters do not depend on the 3D state of the
object, which allows us to use finite differences to compute the gradients with respect
to the gravity vector penv.

Jacobian for Free Flight. The motion of a rigid body in free flight (in 3D) is
fully determined by the control vector pobj. Rewriting equation 2.2 to show this
dependence explicitly yields:

dq(t)

dt
= F(t,pobj) (2.10)

We evaluate the Jacobian ∂q(tf )/∂pobj at time tf by numerically integrating the
equation

d

dt

(

∂q(t)

∂pobj

)

=
∂F(t,pobj)

∂pobj

(2.11)

until time tf with the initial condition ∂q(t0)/∂pobj. We use a fourth order Runge-
Kutta method with fixed step size to perform this numerical integration.

Derivatives of Error function. We use finite differences to compute the derivative
of error function with respect to the current state q(t). We compute the silhouette at
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the given state by rendering the simulated object. The derivative of the error function
with respect to a scalar component qi of the state q has the form:

∂E

∂qi

= lim
∆qi→0

(

E(q + ∆qi) − E(q)

∆qi

)

(2.12)

The error Jacobian is obtained by applying chain rule

∂E

∂pobj

=
∂E

∂q

∂q

∂pobj

(2.13)

Finally, we compute the error Jacobian with respect to a scalar component pi
env

of the gravity direction penv using finite differences, as shown:

∂E

∂pi
env

= lim
∆pi

env→0

(

E(penv + ∆pi
env) − E(penv)

∆pi
env

)

(2.14)

The overall Jacobian matrix is given by:

∂E

∂p
=

( ∂E
∂pobj

∂E
∂penv

)

(2.15)

2.3.5 Results
Our system has three main modules: preprocessor, rigid body simulator and opti-
mizer. We first preprocess the video sequence to compute the silhouettes of the rigid
object. We build a background model for the scene and use autoregressive filters
[BSK00] to segment the moving object from the background. We then compute the
silhouette metrics from the segmented image at each frame. Our tumbling video
sequences are typically 35-40 frames long when captured with a digital camera op-
erating at 30 Hz. The optimizer typically takes a couple of minutes to compute the
parameters from the sequence on a SGI R12000 processor.

Estimation: Figure 2.5 shows a few frames of a T-shaped object in simulation
matched with video. This sequence was obtained by tossing the object in the air
in front of a camera. Our user interface lets the user specify an approximate value
for the initial positions and velocities of the body. The algorithm robustly estimates
the initial position and linear velocity, even with a poor initial guess. However, it is
very sensitive to the initial estimate of the orientation and angular velocities. From
numerous experiments, we have found that the error space of the silhouette metric
contains many local minima. However, with a reasonable initialization for the ori-
entation and angular velocity parameters, we find that our algorithm converges to a
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reasonable local minima. This convergence is seen in figure 2.5(a), where the over-
all motion of the simulation closely matches the motion in video. We superimpose
the bounding boxes obtained from simulation onto the frames from video (the white
boxes in the first row) to show the match. We also show the match between the trajec-
tory of a corner point in video with the corresponding trajectory in simulation. The
small square boxes show the trajectory of a corner point, identified by hand, from
the video sequence. These trajectories are shown for visualization purposes only and
are not used in the optimization. As the algorithm proceeds, the trajectory of the 3D
corner point in simulation (black line) overlaps with these boxes. This sequence also
highlights some limitations with our optimization framework and metrics. Row (c)
shows an example where the simulated and the real object have different orientations
but silhouettes that appear similar.

Prediction: The objective of this experiment is to predict the motion of a rigid body
in a long video sequence of free flight from a subset of frames of the same sequence.
Figures 2.6 and 2.7 show two different video clips of a rigid body in free flight, with
different motion trajectories. We match the motion of the shorter clip to a simulation
and use the simulation parameters to predict the motion of the longer clip.

In figure 2.6, the object tumbles about its major axis—the physics of this motion
is captured in a shorter subsequence. Hence the simulation parameters computed by
matching this small sequence correctly predict the motion in the overall clip. How-
ever, the motion of the object in figure 2.7 is about the body’s intermediate axis,
which degenerates into complex motions about all three axis [Sym71]. Small errors
in the estimated values of simulation parameters result in a large orientation error in
the predicted frames, as time increases. We see this effect in the results obtained in
figure 2.7.

Roll Correction: Because the orientation of the camera is not known, our algo-
rithm optimizes the direction of the gravity vector along with the motion parameters
from a video sequence. Figure 2.8 shows results of roll correction performed using
the parameters obtained from our optimization algorithm. The first row shows four
frames of a video sequence captured from a camera with significant roll distortion.
We compute the camera pitch and roll parameters which minimize the silhouette er-
ror. These parameters are used to warp the original sequence such that the camera
vertical axis aligns with the gravity vector. The last row shows the result of this rec-
tification using the estimated roll angle (the pitch angle was estimated as well in this
experiment, but was not used for rectification). The people in the first row are in a
slanted pose, whereas they are upright in the last row.
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Figure 2.5: Computing the parameters of a T-shaped object thrown in the air. The
first row (a) shows a few frames from the video (right to left) and the corresponding
physical simulation generated by our algorithm. The bounding boxes from simula-
tion are superimposed over the video to show the match. The small square boxes
indicate the trajectory of a corner point in video. The thin line indicates the motion
of the corresponding corner in simulation. Row (b) shows the results of the algorithm
at different stages of optimization. Notice that the match improves as the number of
iterations increases. Row (c) highlights a limitation of the silhouette based metric.
Note that although the orientation of the simulated object is flipped relative to the
real object, they both have similar silhouettes.
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Optimized Frames

Figure 2.6: Predicting the motion of objects in free flight in video. The first row
shows a long sequence of an object thrown from right to left. We select a portion of
this sequence and match its motion in simulation. The second row shows a portion
of the original clip contained inside the yellow box, and the corresponding frames of
a simulation. We use these parameters to predict the motion of the tumbling object
across the whole sequence.
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Figure 2.7: Predicting the motion of an object in a complicated tumbling pattern (top
row). The second row shows the match between a small portion of the video clip and
a simulation. The simulation matches the video quite well for the frames on which it
optimized, but the small errors propagate to larger errors in the predicted frames.
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Figure 2.8: Using rigid-body motion estimation to correct for camera roll. An object
is thrown in the air from left to right (top row) and captured from a video camera
with significant roll. The video is difficult to watch because of the image rotation.
The motion of the object is estimated (middle row), as well as the camera roll (de-
fined by the orientation with respect to the gravity direction). The video frames are
automatically rectified to correct for the camera roll.
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2.4 Capturing Cloth Simulation Parameters

The objective of our second experiment was to create realistic cloth simulations that
matched the behavior of four real fabrics—linen, fleece, satin and knit. The ubiquity
of cloth makes it an indispensable element in creating compelling animations of hu-
man figures. Realistic virtual clothing is now possible because of recent advances in
cloth simulation techniques[BW98, CK02, BHW94, CVMT95, BFA02].

The motion of fabric is determined by resistance to bending, stretching, shearing,
external forces, aerodynamic effects, friction and collisions. We used the cloth sim-
ulator developed by Baraff and Witkin [BW98] for our experiments, and estimated
the static and dynamic parameters of this model from video. The parameters of the
Baraff-Witkin model can be characterized into three groups:

• Static Parameters: mass, stiffness (stretch, shear and bend). Our model has
stiffness parameters to control the stretch, shear and bend forces acting on the
fabric. The stretch and shear stiffness parameters have two components along
the two principal directions, and the bend stiffness has one component.

• Dynamic Parameters: damping, air drag. We have a damping term corre-
sponding to each stiffness term, namely stretch damping, shear damping and
bend damping. Additionally, we model the air drag with a three parameter
model.

• Collision parameters: stiffness terms for self collisions and object collisions.
The collision parameters were selected manually in our experiments.

Our algorithm estimated the static and dynamic parameters on a set of static shots
and motion clips of a small swatch of a particular fabric and then tested on a simu-
lation of a full skirt made from that fabric. We designed the swatch tests to span the
space of behaviors that we expect to see in the final sequences of motion with the
skirt so that all parameters can be tuned appropriately. We use simulated annealing
for the optimization step with an optimization function that assesses the extent to
which the folds in the simulated and physical fabric match. This match is evaluated
by means of a shape metric that uses projected light to detect surface orientation in
real and simulated fabrics. The metric is tuned to be most sensitive along folds and
to discount planar regions.

We use the system to find the parameters for four different fabrics. We show
the match between the video footage and the simulated motion on the calibration
experiments, on additional video sequences for the swatches, and on a simulation of
a full skirt.
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2.4.1 Prior Work

Cloth modelling has a long history, dating back to work in the textile community
from the mid-1930s by Peirce [Pei37]. Work on cloth modelling in computer graph-
ics has focused on developing dynamic simulation techniques that are both realistic
and fast. Baraff and Witkin describe a cloth model that uses stiff springs with implicit
time integration [BW98]. This model was subsequently adapted to reduce the over-
damping due to implicit integration [CK02]. Explicit time integration approaches
[HDB96] use weaker springs for stretching and shearing, often explicitly limiting
the amount of stretching [Pro95, BFA02]. Choi and Ko introduced a bending en-
ergy model that more accurately captures the fine creases and bends of cloth [CK02].
Lahey provides a comprehensive overview of cloth hysteresis models from the per-
spective of computational fabric mechanics [Lah02]. Extensive work has also been
done on modelling collisions and friction. Cloth self-collision is handled either by
untangling the cloth [CVMT95, VMT00, BWK03] or by preemptively avoiding col-
lisions [Pro97, HMB01, BFA02]. Various potential field methods have been used for
general collision detection and response [TPBF87, SP91].

Despite this large body of work on cloth simulation models, little work has ap-
peared in the computer graphics literature on estimating the parameters of these mod-
els so that they match the behavior of real fabrics. Cloth parameter estimation has
been studied in the textile community (for an overview, see Breen and colleagues
[HB00]), but such methods have not yet enjoyed widespread use in the computer
graphics community. An important exception is the work by Breen [BHW94] who
used the Kawabata system [Kaw80] to measure bending, shearing, and tensile param-
eters by subjecting a swatch of fabric to a series of mechanical tests and measuring
the force needed to deform it into a standard set of shapes. Although the Kawabata
system can provide accurate measurements, these measurements are problematic for
computer graphics cloth simulation problems for two reasons. First, there might not
be a direct and simple mapping between the parameters for a particular cloth model
and the Kawabata parameters. Second, the Kawabata system does not measure dy-
namic cloth parameters, e.g. air drag or damping, which are essential for computing
the motion of cloth.

One promising approach for modelling cloth parameters is to automatically search
for parameters that match real cloth. Jojic and Huang fit parameters of a particle-
based cloth model to fit a range scan of real cloth in a static rest configuration, draped
over a sphere [JH97]. However, they did not treat the problem of measuring dynamic
parameters or demonstrate accurate results across a range of fabric types. Instead,
they explored the problem of measuring the 3D geometry of an object from the rest-
ing shape of a piece of cloth draped over it, a challenging problem that we do not
consider in this paper.
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More distantly related are techniques for computing the geometry of cloth from
images. Coarse estimates of the time-varying geometry of cloth can be computed us-
ing traditional stereo matching techniques by using two or more cameras and treating
each time instant independently (see Scharstein and Szeliski [SS02] for an overview).
More accurate results may be obtained by projecting structured light patterns on the
cloth (see Zhang et al. [ZCS02] for an overview). Rather than computing shape at ev-
ery time instant independent from the next, it can be advantageous to integrate images
over time to improve accuracy. Two examples of promising work along these lines
are Carceroni and Kutulakos [CK01] and Torresani et al. [TYAB01]; both studies
demonstrated reconstructions of moving cloth.

2.4.2 Cloth Model

Because our framework for estimating cloth simulation parameters is independent
of the cloth model, we can, in principle, select a specific model that meets a set
of criteria such as accuracy or simulation speed. Our choice of a cloth model was
guided by two goals: realism and practicality. We wanted a model that was sophisti-
cated enough to capture the detailed dynamic behavior found in real fabrics but still
straightforward to implement. Because our intention was to apply the learned cloth
model parameters to arbitrary garments with varying triangle resolution, it was also
important that the cloth parameters scale correctly with the resolutions of the cloth
simulation.

We used the model described by Baraff and Witkin as the basis for our cloth
simulator [BW98]. This model has sufficient richness to produce a wide variety
of cloth behaviors. The underlying mesh is triangular, making clothing modelling
easier. More importantly, its input parameters are independent of meshing, so that
parameters recovered on one mesh (the test swatch) can be transferred to another (the
skirt). While nonlinear models such as the buckling behavior of Choi and Ko [CK02]
could potentially capture more realistic details of cloth, there is no straightforward
way to scale the parameters of these models to meshes of varying resolutions. We
expect that future application of our parameter-estimation framework to other scale-
invariant cloth models will provide even more realistic results.

The model developed by Baraff and Witkin formulates the energy of a particular
triangle in terms of condition functions C(x) such that the total potential energy
associated with the system is given by

Eu =
ks

2
C(x)CT (x) (2.16)

where ks is a stiffness coefficient associated with the particular condition function.
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Forces are then simply calculated by

F = ∇xEu (2.17)

Damping forces are similarly fomulated in terms of the C(x):

d = −kd

dC

dx
Ċ(x) (2.18)

We thus associate a stiffness coefficient ks and a damping coefficient kd with each
of the C(x). In their paper, Baraff and Witkin describe a set of C(x) consisting of
an in-plane stretch term, an in-plane shear term, and an out-of-plane bending term,
giving a total of six parameters we can use to tune the internal cloth model. We
refer the reader to their paper for the full details[BW98]. We note, however, that (as
they allude to in footnote 5) energy should scale linearly with triangle area to ensure
scale independence. Therefore, we need to be careful when substituting C(x) for
stretch and shear into eq. 2.16 that the resulting formula is linear in area rather than
quadratic.

In the course of running our experiments, we discovered that a linear drag model
such as that used in previous cloth work [BW98, CK02] was not able to capture
dynamic aspects of cloth. In order to add additional air-drag degrees of freedom
to our cloth model without resorting to fully modeling aerodynamics [Lin00], we
developed a simple nonlinear alternative. Our new formulation for the drag force has
a linear term for the tangential velocity component (vT ) and a quadratic term for the
normal velocity component (vN ), with an additional term kf that controls the degree
of nonlinearity:

fdrag = −a

(

kN |vN |2

1 + kf |vN |2
vN

|vN |
+ kTvT

)

where a is the area of the given triangle. The linear term is merely Stokes’s law
[Ach90]; the quadratic term matches better the experimental behavior of macroscopic
bodies in low Reynold’s number flow[Fro84]. The addition of the |v N |

2 term in the
denominator which makes the force asymptotic as vN → ∞ was partially motivated
by the observed phenomenon of drag crisis [Fro84], where under certain circum-
stances the drag coefficient can actually drop at the onset of turbulence [Ach90]. The
optimizer is free to eliminate this behavior or other terms of this equation by setting
the corresponding parameters to zero.

Initially, we used a first-order implicit Euler time integration scheme similar to
the one described by Baraff and Witkin [BW98]. Unfortunately, we found that im-
plicit integration introduced damping which could not be eliminated by optimizing
cloth parameters. We had more success in matching realistic cloth motions by us-
ing higher-order explicit methods. The results in this thesis use an adaptive 4th-
order accurate Runge-Kutta methods with embedded error estimation [AP98]. While
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this method offers the advantages of simplicity and automatic bounding of error, it
is rather slow, and recent work suggests that using 2nd-order backward differences
[CK02] or Newmark schemes [BMF03] may be a better choice.

For collision handling, we use a model similar to that used by Bridson and col-
leagues [BFA02]. It combines repulsion forces with impulses to robustly prevent all
collisions before they occur. However, separating repulsion forces from the cloth in-
ternal dynamics and applying them outside the Runge-Kutta solver affected stability
and resulted in visible artifacts. Instead, we apply repulsion forces inside the solver
loop, so that the solver’s own internal error estimation can remove these artifacts.
The drawback of this technique is speed, because the system must check for colli-
sions every time it evaluates the state derivatives (as opposed to once every collision
timestep as in Bridson et al. [BFA02]). To achieve acceptable performance, we used
a number of collision culling algorithms, including hybrid top-down/bottom-up up-
date [LAM01], fast triangle reject tests [Möl97], and a curvature-based criterion for
rejecting self-collisions that was first introduced by Volino and Thalmann [VMT94]
and later refined by Provot [Pro97].

2.4.3 Metrics from Video

We use a perceptually motivated metric to compare the motion of cloth in simula-
tion with a video sequence of real fabric motion. Our metric captures the complex
dynamics of cloth motion and also helps to distinguish between different fabrics.

Researchers in computational neurobiology hypothesize that the human percep-
tual system is sensitive to moving edges in video [Fie87, Fie94, vHR98]. Stud-
ies have shown that the receptive fields of simple cells in the macaque cortex act
as edge or line detectors, responding to oriented edges or lines in natural scenes
[HW68, VYH82, DOF93]. In cloth, these edges correspond to folds and silhouettes,
which are regions of high variation in shape. Hence, our perceptually motivated met-
ric for cloth compares two video sequences, one from simulation and one from the
real world, and returns a number that measures the differences in their folds. The
metric also penalizes the silhouette mismatch between the two sequences.

Fold Detection and Representation: Folds appear as soft edges in video whose
appearance is dependent on material properties and lighting. Haddon and Forsyth
[HFP98, HF98] describe a learning approach for detecting and grouping folds (and
grooves) in images of fabrics. Their technique can handle lighting effects caused
by diffuse inter-reflections in cloth. However, most fabrics have very complicated
reflectance properties. In our experiments, we eliminate the effects of lighting and
material reflectance by projecting a structured light pattern of horizontal stripes onto
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the fabric.
From the light-striped video sequence, we compute the dominant orientation for

each edge pixel by convolving it with a steerable filter bank [FA91]. In our imple-
mentation, we use the G2/H2 quadrature pair with kernel size 12 as the basis filters.
Details of computing the dominant orientation from the coefficients of filter bank
response are given in Appendix I of Freeman and Adelson [FA91]. We convolve
the image with the filter bank, compute the filter coefficient responses, blur the co-
efficients using a gaussian kernel, and compute the dominant orientation from these
coefficients. We name the resulting orientation image an angle map, shown in figure
2.9. The angle map, which measures the local orientation of the projected pattern,
has a constant value when the surface is planar and varies at folds. We threshold the
gradient of the angle map to get a gradient mask Mk for each frame of video (figure
2.9).

Mk(i, j) =

{

1, ‖δ(i, j)‖ ≥ τ
0, ‖δ(i, j)‖ < τ

(2.19)

where τ is a user defined threshold and ‖δ(i, j)‖ is the magnitude of the gradient of
the angle map at (i, j). The gradient mask is non-zero at regions of high gradients,
corresponding to folds, and zero at planar regions.

Fold Comparison: Our metric computes the frame by frame sum of squared dif-
ferences (SSD) between masked angle maps in simulation with video. We preprocess
the input video sequence to compute the angle map at each frame. Similarly, in sim-
ulation, we render the cloth shape using the current parameter values and project the
same striped pattern, to get a striped simulation sequence. We compute the angle
map at every frame in simulation from this sequence. We then compute the SSD of
the angle values for all overlapping points in the two angle maps. We multiply this
difference with the gradient mask, which helps to emphasize the differences in fold
regions over planar regions (figure 2.10). We sum the error across all frames to com-
pute the overall error across the entire sequence. The error at any particular frame k
along the sequence is

Efold
k =

Sx
∑

i=0

Sy
∑

j=0

Mk(i, j) · (θ
real
k (i, j) − θsim

k (i, j))2 (2.20)

where (Sx, Sy) is the size of the angle maps and θreal, θsim are the angle values from
real and simulation angle maps respectively.

Silhouette Comparison: In addition to the angle map error, we penalize the sil-
houette mismatch between the simulation and the video of real cloth. This penalty
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Figure 2.9: Top Row: Input light striped image. Bottom Row (left to right): angle
map and gradient mask.

is proportional to the difference between the two silhouettes, i.e., the number of mis-
matched pixels:

Esilh
k =

Sx
∑

i=0

Sy
∑

j=0

| Areal
k (i, j) − Asim

k (i, j) | (2.21)

where

Ak(i, j) =

{

1, inside silhouette
0, otherwise

(2.22)

The total error in frame k is

Ek = Efold
k + αEsilh

k (2.23)

where α is a user-defined weight that controls the relative contribution of the two
terms. We used a value of 0.1 for α in our experiments. The error across the entire
sequence of length N frames is given by

E =
N
∑

k=1

Ek (2.24)
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Figure 2.10: The stages in the metric pipeline. Top row (left to right): Angle map
from video, angle map from simulation. Bottom row (left to right): angle map differ-
ence, final metric value for this frame (angle map difference multiplied by gradient
mask from video).

2.4.4 Parameter Identification

We use optimization to estimate the parameters of the cloth simulator from video.
Before we describe the details of the optimizer, it is informative to look at the error
space of the angle map metric. This fairly noisy space motivates the use of a global
optimization technique, like Simulated Annealing and also gives us useful insight
about the parameters of the system. Figure 2.11 shows the variation of error for dif-
ferent values of bend and stretch stiffness coefficients for satin. Here, the angle map
in video is obtained after the fabric settled down in a static test. The corresponding
angle map in simulation is computed for a wide range of values for bend and stretch,
spanning the space of these two parameters. From the figure, it is evident that the
error space is very noisy with several local minima, motivating the need for a global
optimization technique.
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Figure 2.11: This plot shows angle map error as a function of bend and stretch stiff-
ness parameters. Dark areas indicate regions of small error and bright areas corre-
spond to large errors. Note that the space is fairly noisy. The minimum found by the
optimizer is contained in the large dark region in the lower portion of the plot.

2.4.5 Optimization Framework

We use simulated annealing to find the parameters that minimize the error function
given in eq. 2.24. Simulated annealing initially explores the space in a semi-random
fashion and eventually takes downhill steps. The likelihood that it will take a step in a
direction that is not locally optimal is a function of the temperature (figure 2.12). We
use the continuous simulated annealing method presented in Press et al.[PFTV92],
which combines the Metropolis algorithm with the downhill simplex method for con-
tinuous n-variable optimization. We reset the simplex with the current best solution
when the temperature is reduced by a factor of 3. Prior to optimization, we perform
an exhaustive search for each fabric, where we choose four values for each cloth pa-
rameter across its entire range. This procedure corresponds to a very coarse sampling
of the parameter space. We simulate the fabric for all points in this coarse set (with
49 points – 9 parameters × 4 values per parameter) and compute the error for each
point by comparing against the real fabric. We initialize the optimizer with the point
corresponding to the minimum error. We have found that this strategy for initializa-
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Figure 2.12: Progress of the simulated annealing optimizer as measured by error.
The temperature decrease is governed by a geometric cooling schedule.

tion allows the optimizer to locate a better minimum of the space rather than using
constant (arbitrary) values for the parameters for the initial guess.

2.4.6 Experiments

We designed simple experiments to capture the dynamics of the different types of fab-
rics and the air/cloth interaction. The experiments are easy to perform, capture, and
repeat; yet they demonstrate the complex dynamics of cloth motion. The parameters
obtained from the simple experiments were used to simulate skirts and other complex
fabric motions. In essence, our experiments were designed to be a calibration setup
for estimating the static and dynamic parameters of a cloth simulator.

We perform two estimation experiments for each fabric, a static test and waving
test. We used four types of fabrics: linen, fleece, satin and knit. These fabrics exhibit
a wide range of static and dynamic behavior and span a large range of real fabrics.

We perform the static and waving tests on a small swatch of each fabric. In
the static test, the two top corners of the fabric are held stationary, and the fabric is
allowed to sag under gravity. For a fixed separation between the top corners, different
fabrics attain different static shapes as shown in figure 2.13. The static test gives a
good estimate for the static stiffness and bend parameters.
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Linen Fleece

Satin Knit

Figure 2.13: The static test with four real fabrics. Top corner separation is identical
across all four fabrics.

Figure 2.14: Three frames from the waving test for satin.
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In the waving test, one of the top corners of the fabric is fixed and the other corner
is moved back and forth (figure 2.14). The waving motion of fabrics in simulation
is affected by their dynamic parameters. The videos posted on our website1 that real
fabrics exhibit a wide range of interesting motions even with the same input excita-
tion. We designed the waving motion to approximately match the types of motion
occurring in real garments such as skirts. This experiment gives reasonable estimates
for cloth parameters while avoiding the need to optimize directly on complex fabric
geometries (e.g. skirts) involving many collisions.

2.4.7 Results
In this section, we report the results of simulation parameters obtained using our
technique applied to four fabrics: linen, fleece, satin and knit. We measured the mass
and dimensions of the fabrics. We also accurately measure the position of the two top
corners using a Vicon motion capture system. We compute the projection matrices
for the camera and projector using a calibration grid with several motion capture
markers. We performed two trials per experiment, each with slightly different initial
conditions and optimized on the first 50 frames of video in each trial. Each trial took
approximately 50 hours to converge on a 2.8GHz Intel Pentium 4 Xeon processor
(approximately 600 iterations of simulated annealing). Because each optimization
takes a long time to converge, we choose the final parameter estimate (for each fabric)
from one of the two trials (that minimizes the total error on the two trials) instead of
simultaneously optimizing across both the trials.

Static test. We performed optimization on two trials for each fabric; the results are
shown in figure 2.15 and figure 2.16. The two trials have different separation dis-
tances between the top corners. For each fabric, we optimized for six parameters:
stiffness and damping parameters for stretch, shear, and bend. The air drag parame-
ters were set to the mid point of their range of values for this experiment.

The initial values and final values of the estimated parameters are summarized in
table 2.1. Figures 2.15 and 2.16 show a very good visual match between the simu-
lations with their counterpart real fabrics. However, there is a significant disparity
in the optimized parameter values from the two trials. In order to understand this
disparity, we performed a set of optimizations (on a single fabric) with very similar
initial values. Table 2.2 shows the parameter values for satin from five optimizations
where the initial conditions were randomly varied by ±5%. From the table, we see
that the final error values are very close. We get consistent estimates for parameters
that have lower variability (e.g., bend, stretch). Parameters with high variability are

1http://graphics.cs.cmu.edu/projects/clothparameters
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Figure 2.15: Results of optimization for the static test, trial 1. Top row: real fabrics
(left to right) linen, fleece, satin and knit. Bottom row: Corresponding fabrics in
simulation.

Figure 2.16: Results of optimization for the static test, trial 2. Top row: real fabrics.
Bottom row: Corresponding fabrics in simulation.
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Linen Fleece
Parameters Start Exp 1 Exp2 Start Exp 1 Exp 2

Bend 1e-3 0.009 0.0045 1e-4 0.0001 0.0001
Stretch 4000 404.9 3682.1 50 129.2 200.04
Shear 215.44 175.37 208.15 215.44 103.96 31.39

Bend damping 1e-7 9.92e-7 3.22e-7 2.15e-6 2.13e-7 4.11e-7
Stretch damping 10 12.16 10.17 10 4.78 0.064
Shear damping 10 2.19 13.17 10 13.86 3.75
Error (Exp 1) 75.0 62.8 136.8 121.5
Error (Exp 2) 81.2 67.0 207.3 98.7

Satin Knit
Parameters Start Exp 1 Exp2 Start Exp 1 Exp 2

Bend 1e-5 1.106e-5 6.94e-6 1e-6 1.52e-6 1.51e-6
Stretch 50 19.58 19.38 50 27.97 28.36
Shear 50 76.81 69.65 50 1226.44 2693.07

Bend damping 1e-7 2.49e-7 3.98e-7 1e-7 1.01e-7 2.27e-7
Stretch damping 10 14.42 3.68 10 10.12 11.83
Shear damping 10 4.11 4.56 10 0.13 4.04
Error (Exp 1) 115.5 92.5 253.1 172.8
Error (Exp 2) 194.7 104.7 179.7 136.1

Table 2.1: Tabulation of the static parameters from two experiments.

Bend Stretch Shear Bend Damp Stretch Damp Shear Damp Error
Initial Values 1.0e-05 50 50 2e-07 10 10 179.026

Optimization 1 6.93766e-06 19.3832 69.653 3.98337e-07 3.67932 4.56238 104.747
Optimization 2 7.77204e-06 20.2884 32.6492 2.08755e-07 1.95807 10.6535 104.502
Optimization 3 8.75613e-06 19.8365 50.8304 2.56854e-07 7.08276 9.25576 103.501
Optimization 4 9.55647e-06 19.2745 74.7429 3.14821e-07 5.47909 1.06559 103.243
Optimization 5 8.47762e-06 20.1119 36.762 2.3997e-07 8.38981 11.9167 103.849

Variability (in %) 9.18 8.10 23.01 21.11 >100 >100

Table 2.2: Performance of simulated annealing on several optimizations. All the
optimizations start with values which are within ±5% of the initial values given in
the first row. Some parameters (e.g., stretch damping) vary significantly across the
different optimizations while others (e.g., bend) are consistent across multiple opti-
mizations.
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estimated poorly, because their values does not affect the final error value. This result
is consistent with our intuition that static tests cannot be used to estimate dynamic
parameters like stretch and shear damping or air drag and motivates the waving test,
which exercises both the static and dynamic parameters.

Waving test. We optimized for nine parameters in the waving test: the six cloth
stiffness and damping parameters and three air drag parameters (figure 2.17). As
with the static test, we initialized the static parameters in this test from a coarse
exhaustive search. The dynamic parameters were initialized using a random guess.
We optimized on the first 50 frames of the sequence. The initial values and final
values of the optimized parameters for two trials are reported in table 2.3. The final
values of the parameters from the two trials differ in part because the variability of
the parameters is still fairly high (figure 2.18). Different motions or longer sequences
might further reduce the variability of the parameters. We choose the parameter
set that minimizes the sum of the error from the two trials. For instance, in the
following example of satin waving, we choose the parameters from experiment 2.
This approach seems to produce plausible results with skirts and other validation
experiments.

Optimization progress. Figure 2.19 shows the static shape of the simulation be-
fore and after optimization. Figure 2.20 shows the corresponding angle map compar-
ison. These two figures show the progress of the optimization and indicate that the
minimum corresponds to a visually compelling match.

Metric validation. We compare each of the four optimized angle maps from sim-
ulation (corresponding to the four fabrics) with the four angle maps computed from
video. In figure 2.21, each curve shows one particular fabric compared with four
simulations, corresponding to each fabric type. We see that each fabric in simulation
has a minimum error when compared to its counterpart in reality. Figure 2.21 also
demonstrates that our approach could be potentially useful for recognizing different
types of fabrics in video.

2.5 Animation by Inverse Simulation
The parameters obtained using the inverse simulation framework can be used to cre-
ate new simulations under different conditions. In this section, we present two ex-
amples of using the estimated cloth parameters to create new animations. In the
first example, we simulate the fabric swatches with new input excitations (waving
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Figure 2.17: Waving results for satin. The top picture in each block shows the real
fabric and the bottom shows the corresponding frame from simulation.
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Linen Fleece
Parameters Start Exp 1 Exp2 Start Exp 1 Exp 2

Bend 1e-3 0.001 0.0008 1e-4 1.1e-5 0.0001
Stretch 4000 2016.8 2935.3 50 82.6 89.3
Shear 215.4 167.8 465.7 215.4 255.2 296.9

Bend damping 1e-7 3.1e-7 4.7e-7 2.2e-6 1.4e-6 1.3e-6
Stretch damping 10 2.7 5.2 10 2.4 5.9
Shear damping 10 3.9 5.5 10 1.6 9.8

Linear drag 2 8.7 2.2 2 2.4 1.6
Quadratic drag 2 5.6 2.0 2 3.1 0.3

Drag degradation 2 0.4 1.3 2 4.3 1.2
E1 (Error from Exp 1) 94.2 85.9 93.1 208.8 179.6 222.2
E2 (Error from Exp 2) 115.7 113.0 100.9 233.2 230.2 180.2

E1+E2 198.9 194.0 409.8 402.4
Satin Knit

Parameters Start Exp 1 Exp 2 Start Exp 1 Exp 2
Bend 1e-5 6.4e-6 5.6e-6 1e-6 1.1e-6 1.2e-6

Stretch 50 26.4 32.4 50 69.7 12.7
Shear 50 97.7 74.2 50 37.5 60.0

Bend damping 1e-7 1.5e-6 1.2e-7 1e-7 1.0e-7 5.4e-7
Stretch damping 10 0.6 4.5 10 4.5 3.9
Shear damping 10 6.6 4.7 10 4.9 2.6

Linear drag 2 4.8 0.8 2 1.5 1.0
Quadratic drag 2 1.8 1.5 2 0.5 1.8

Drag degradation 2 0.9 0.8 2 1.2 0.3
E1 (Error from Exp 1) 124.0 106.4 114.1 230.7 208.8 246.3
E2 (Error from Exp 2) 280.8 272.8 178.6 255.1 261.8 225.3

E1+E2 379.2 292.7 470.6 471.6

Table 2.3: Parameters from two waving experiments. Line E1 shows the error for
Experiment 1 with the initial conditions and after optimization. It also shows the
error for experiment 2 when run with the parameters found for experiment 1 without
further optimization. Similarly line E2 shows the initial error for experiment 2, the
error after optimization, and the unoptimized result with those parameters on exper-
iment 1. The parameter set from the experiment shown in bold is selected as the
final estimate for each experiment because this parameter set minimizes the sum of
the error from the two trials, E1 + E2. Satin has very different starting errors for
the two experiments although the initial conditions are the same and the error values
after optimization also differ significantly. This disparity is caused because the two
experiments had significantly different waving motion.
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Figure 2.18: Bar charts showing the variability analysis results for the waving test.
From left to right: linen, fleece, satin and knit. Legend: 1=bend, 2=stretch, 3=shear,
4=bend damping, 5=stretch damping, 6=shear damping, 7=linear drag, 8=quadratic
drag, 9=drag degradation.

motions). In the second example, we created skirt simulations for a virtual character
performing a hop-scotch jump. In both these examples, we validate the realism of the
resulting simulations by comparing them against video of real swatches and skirts.

Animating waving fabrics. In order to validate the parameters obtained from op-
timization, we simulated four types of fabric swatches excited by the same input
waving motion (a simple sinusoidal trajectory). This experiment allowed us to per-
form a side-by-side evaluation of the simulations for the different fabric material. For
comparison with ground truth, we captured video sequences of the corresponding
real fabrics waved using a Mitsubishi PA-10 robot arm. The robot was programmed
to repeat the same sinusoidal trajectory for all the real fabrics, thereby ensuring the
same input excitation for all fabrics in reality and simulation. Figure 2.22 and the
accompanying videos2 show a good visual match between corresponding frames in
simulation and video.

Animating skirts. We used the optimized parameters to simulate the skipping mo-
tion of a human actor wearing a skirt (figure 2.23). Our skirt simulation used a high
resolution mesh (about 5000 nodes) to generate detailed dynamic motions and wrin-
kles that were much more complex than the rectangular swatches of fabrics used for
identification. To simulate skirt-body and skirt-skirt interactions, we extended our
cloth solver to robustly handle self collision [BFA02] and collisions with the actor’s
body. We used data from a full body optical motion capture of the actor performing
the skipping motion to drive the animated character for the cloth simulation.

We obtained a simple skirt pattern and had four matching skirts (of different ma-

2http://graphics.cs.cmu.edu/projects/clothparameters/
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Figure 2.19: Showing the improvement in shape match after optimization. The top
row compares a video frame of fleece with simulation before optimization. The bot-
tom row shows the corresponding video/simulation pair after optimization.

terial) tailored. To create matching skirts in simulation, we require a cloth mesh that
has the same basic shape as the real skirts. We generated this mesh from the sil-
houettes of the skirt pattern using the Maya package3. Maya includes the capability
to generate a cloth mesh bounded by an arbitrary set of curves in the plane. These
meshes are optimized to work with Maya’s own Baraff/Witkin style solver. We ex-
ported these meshes for use in our own cloth solver.

We used piecewise rigid geometry for the upper and lower legs, feet and hips of
the actor, which simplifies collision checking in our solver and eliminates the diffi-
culty of properly skinning the model. To attach the skirt to the body, we selected a
set of attachment points for the mesh vertices along the top of the skirt. We ensured
that attachment points were well-separated around the waist by choosing them based
on arc-length. We created an appropriate initial condition for the animation by sim-
ulating the skirt to wrap around the waist by allowing the skirt to fall under its own
weight and simultaneously pulling the designated skirt points toward their attach-
ment points (using a simple damped spring). This pre-simulation step ensured that

3http://www.alias.com
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Figure 2.20: Comparison of angle maps for the shapes shown in figure 2.19 before
and after optimization. Top Row (Before Optimization, from left to right): Angle
map from video, angle map from simulation, angle map SSD. Bottom Row: The
corresponding angle maps after optimization.
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Figure 2.21: Comparing the optimized parameters in simulation for each fabric with
the four real fabrics. For example, point 1 in the graph shows the error when a
simulation with fleece parameters is compared with video of satin. Similarly, point
2 is the error when the satin simulation is compared with real satin. The four curves
have a minimum when they are compared to their correct counterparts.
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Figure 2.22: Validating the estimated parameters using the same input excitation. The
top right corner of the fabric is actuated using a Mitsubishi PA-10 robot. Each row
shows the match between video (top) and simulation (bottom) at four frames chosen
from a 100 frame sequence. The fabrics, from top to bottom, are linen, fleece, satin
and knit.
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the attachment points reached their destinations and the skirt is well-settled (velocity
was zero) before simulating with the motion capture data. During the simulation,
skirt points along the waistline were moved based on the mocap data at the hip. The
remaining points were simulated to follow the motion of the skirt points, after resolv-
ing collision and other physical forces. Stiffness was not a major problem with skirts
because the simulation time steps were quite small because of collision handling.

To generate the motion data for figure 2.234, the actor repeated the same hop-
scotch motion (approximately) for the four different skirts. The videos from our web
page show that the parameters obtained from our optimization approach success-
fully captures the static shape and dynamic properties of skirts of different materials.
Because the simulation parameters were tuned to match folds, our algorithm works
especially well on softer fabrics like knit and satin that exhibit a lot of static and
dynamic folds. However, the linen skirt appears to be stiffer in simulation than the
real skirt. We attribute it to two factors – first, the seamstress cut the fabric along
the bias to stitch this skirt whereas the swatch used for estimation was cut along the
normal direction (not along the bias). Although we tried to compensate for the bias
effect by rotating the coordinate system of the skirt simulation (uv coordinates in
Baraff/Witkin solver) by 45 degrees, this approximation did not work well for stiff
fabrics. Second, our fold-based metric was probably not very effective for stiffer fab-
rics like linen, which do not have any folds in the static and waving tests. We believe,
however, that our technique can easily be tuned to handle stiffer fabrics by assigning
higher weight to silhouettes over folds in the metric. In conclusion, our fold-based
metric is ideally suited for softer fabrics like satin or knit, which are in general harder
to simulate accurately when compared to stiffer fabrics like linen.

2.6 Discussion

This chapter described the inverse simulation framework for identifying the param-
eters of physically based simulations of passive objects from video. Our technique
has been applied to estimate the free flight parameters of rigid bodies and the material
parameters for different types of cloth. We showed that the estimated parameters can
be used to create realistic animations under new simulation conditions.

We first experimented with rigid body simulations, which was a simple yet illu-
minating example for testing our inverse simulation framework. We simplified the
estimation problem by focussing only on the free flight parameters. Our optimization
approach is well suited for rigid body simulations for several reasons—the free flight
dynamics is easy to model accurately, experiments with real objects (of reasonable

4http://graphics.cs.cmu.edu/projects/clothparameters/
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Figure 2.23: Validating the estimated parameters on a more complicated motion and
garment. We show (from left to right, top to bottom) several frames of an actor
skipping while wearing a fleece skirt. The corresponding frames of the skirt in sim-
ulation show that our technique captures the approximate shape and dynamics of the
real skirt. These frames were equally spaced in time (0.5 seconds apart). The videos
in the web page show the validation results on all four skirts.
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size) are easy to perform, silhouettes from video can be extracted robustly, and ana-
lytical gradients can be computed accurately. However, tuning tumbling rigid body
simulations proved to be very challenging because the angular motions are extremely
sensitive to initial conditions [Sym71]. Moreover, the error space of the silhouette-
based objective function includes local minima. In our experiments, we noticed that
several different combinations of initial orientations and angular velocities result in
silhouette sequences that look similar while representing quite different orientations.
This observation is especially true for short sequences, which do not have enough
information to uniquely identify the true parameters. Nevertheless, with longer input
sequences and reasonable initial guesses, our gradient based optimization success-
fully identified the simulation parameters for several tumbling rigid body sequences.

Next, we experimented with cloth simulations, where our objective was to iden-
tify parameters of four real fabrics. We captured the behavior of small swatches of
fabric using a set of dynamic and static tests and demonstrated that the optimizer
could identify appropriate simulation parameters from those tests. These parame-
ters produced four distinct and recognizable fabrics when applied to a more complex
simulation of a skirt as it was driven by motion capture data from a human figure.

However, cloth simulations were much harder to match with real fabrics. To
match a video sequence accurately using our framework, the cloth physics model as
well as the collision algorithms had to be chosen carefully. The choice of integra-
tion scheme is crucial because extra damping introduced by implicit methods (e.g.,
Baraff and Witkin [BW98]) makes crisp folds impossible to match. Parameters must
be independent of the resolution of the mesh so that they can be identified on low
resolution swatches and applied to higher resolution garments. Several cloth mod-
els do not satisfy this requirement. For example, the non-linear bend model used by
Choi and Ko [CK02], does not scale with mesh resolution. Progress is being made
in these areas, for example, Bridson et al. [BMF03] introduced a scale-independent
bend model with encouraging results.

During the course of this thesis, we experimented with a several cloth models
(Choi and Ko [CK02], Baraff and Witkin [BW98]) different numerical integrators
(implicit, explicit—RK4, leapfrog). We used the Baraff/Witkin model with an ex-
plicit integrator (RK4) for all our simulations. A major addition to this model was a
nonlinearity in the drag model. We also modified the model so that the parameters
scale correctly with the resolutions of the cloth simulation.

En route to the metric used in the experiments described here, we tried a num-
ber of other metrics: comparing the overlap of the silhouettes, the distance function
between silhouette edges, and using information from internal edges marked on the
fabric. Figure 2.24 shows a static optimization result that failed to capture the fabric
shape and folds even though the internal edges matches well. The metric that mea-
sures folds and silhouettes, in concert with the projector for the light stripes, proved
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to be a simple and effective metric that far out-performed our earlier attempts. Our
angle map metric also performs better than metrics that operate on fold edges (e.g.,
figure 2.25). We believe that the error space of the angle map is much smoother than
the error space of the fold edges because these edges depend on a discrete threshold.
Although our anglemap metric also uses a threshold to compute the gradient mask
from reality, this threshold just alters the weights of the anglemaps (higher weight to
folds over planar regions) and hence does not affect the noise of the error space.

An effective strategy for debugging the blocks of the inverse simulation frame-
work was to test them on synthetic input sequences. This test factors out any prob-
lems that might arise due to the model’s inability to accurately mimic the real world.
For example, we could simulate the input waving motion with a pre-defined set of
parameters, and determine whether the metric steers the optimization towards the
correct solution. Repeating the optimization with different values for the parameters
and a different driving motion for simulation would also give us a good understand-
ing of the convergence properties of the optimizer. After determining that a given
metric worked on synthetic input, we would know that problem with real input were
either due to inaccuracies in the model or computation of the metric on real video
images.

The space of possible metrics is vast, of course, but one class of metrics that we
did not experiment with are statistical metrics that compute a function of the shape
of the fabric across time rather than evaluating the match on a frame-by-frame basis.
The experiments with the swatches were carefully controlled to be short and have
initial conditions for the simulation that matched those seen in the video. If instead,
we were to optimize on more complicated garments or longer sequences, then such
tight control of the initial conditions is unlikely and a statistical metric might be
preferable. Such a metric might, for example, compute the average number of folds
across a time sequence rather than looking for a fold to appear at a particular location
on the swatch in a particular frame.

Because the main focus of this work was to achieve visual realism in simula-
tion, we qualitatively evaluated the estimated parameters by performing a side by
side comparison of our simulation results with real fabric motion. An alternate idea
for evaluating our results would be to perform a blind test by presenting users with
the four unlabelled simulations (for the four swatches), and asking users to match
each simulation to its counterpart from reality. Performing the blind test for new
experiments (e.g., draping) would allow us to visually evaluate the generality of the
simulation parameters in new situations.

Another idea to evaluate the parameter estimates obtained from optimization is
to perform statistical tests such as N-fold cross validation using data from multiple
trails [Ste94]. For example, we could perform the waving test with several initial
conditions to obtain a representative data set for each type of fabric. The cross val-
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idation technique estimates the parameters from a portion of this data set (training
set) and evaluates the estimated parameters on the remaining data set (test set). Vary-
ing the size and elements of the training and test set would allow us to compute the
confidence intervals on the estimated parameters [Nel00]. Moreover, using data from
different experiments in the training set (e.g., waving, static draping, dragging fabrics
over different surfaces) would result in parameter estimates that would generalize to
a wide range of fabric behavior.

Although the skirt is far more complex than the swatches that were used to de-
termine the parameters, it is not as complex as many garments, for example, a form-
fitting pair of pants or a tailored blazer. For more complex garments, choosing the
parameters via optimization on small, flat swatches may not be sufficient because the
shape of the garment is determined by darts, pleats and by the interplay of different
fabrics (wool, lining, and interfacing, for example). More complex garments may re-
quire the hand design of additional tests that mimic particular behaviors or elements
of the garment in isolation. Moreover, the model might need extra parameters to han-
dle anisotropic effects, hysteresis and coupling effects (stretching along one direction
causing shrinking in the other direction), all of which would need specialized tests.
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SIDE VIEW

FRONT VIEW

Real Simulation Edge Metric

Figure 2.24: Example of a failed metric. The top row shows the optimization results
for knit using a pattern of horizontal lines marked on the fabric. Only the static
parameters were tuned in this experiment. The green lines (in the third column) show
the edges extracted from the real fabric and the red lines are the edges extracted from
simulation. (The same pattern was texture mapped in simulation, it is not shown in
this figure). The edges from simulation match well with the edges from video after
optimization. However, this metric does not guarantee a good visual match. The
bottom row shows the same result from a different camera view, which highlights
the mismatch in folds between the simulated and real fabric. This example illustrates
that matching patterns drawn on the fabric does not guarantee a perceptual match,
which motivates our fold based metric that matches folds directly.
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Video Simulation

Figure 2.25: Another edge based metric that did not work well for parameter identi-
fication. In this case, these fold edges were obtained by thresholding the angle maps.
The top column shows an image of the fabrics (in video and simulation) with a pro-
jected pattern. We computed the angle maps for both these images and applied an
edge detector to obtain the fold edges in the middle row. The threshold for edge
detection and the scale was chosen manually, based on the angle map from video.
The last column shows the mismatch between the two fold edges, where the red lines
show the distances between corresponding points in the two edge images (left image
shows correspondences from edge pixels in blue to their closest green edge pixel,
right image shows correspondences from green to blue) . The main problem with
this metric was its sensitivity to the manually selected threshold. A threshold chosen
to detect folds in stiff fabrics results in erroneous folds in softer fabrics. This depen-
dence on threshold makes the search space very noisy and hence makes the metric
unreliable.
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Chapter 3

Animation by Video Editing

Creating photorealistic animations of such natural phenomena as water, fire and
smoke is an important and challenging problem with many applications in computer
graphics. Physics-based techniques have become a popular choice for simulating
fluid flows with the advent of new algorithms and faster hardware. However, despite
enormous advances in simulation and rendering techniques, synthetically generated
video of natural phenomena rarely matches the complexity and beauty of real world
video footage. Video captures the complex variations in the motion and texture of
real fluids interacting with their environment. Thus in this chapter, we explore how
to directly model the dynamics and appearance of video and use it to create new
animations.

Inverse simulation techniques from chapter 2 could potentially be applied to cre-
ate realistic simulations of natural phenomena using video data. However, extending
the inverse simulation framework to natural phenomena is difficult because we need
custom simulators for each type of phenomena. For example, models for simulating
water [FF01] vary significantly from models for smoke and gases [FSJ01, Sta99],
which in turn differ from models for fire [NFJ02]. Moreover, in order to match
with real world measurements, physical simulators would require precise models
for wind and other external forces. Although certain types of external forces (e.g.,
wind, vortices) can be easily parameterized [TMPS03], incorporating their parame-
ters increases the dimensionality of the search space, making the optimization pro-
cess much harder.

In this thesis, we would like to develop an general framework for animating a
wide range of natural phenomena from real video footage. Given a video sequence
of a real phenomena like a waterfall (or smoke or fire), our objective is to capture the
essence of the waterfall and create new video of waterfalls that have characteristics
that we can control. Here, essence refers to the appearance and dynamics of the
natural phenomena in video. This chapter presents a novel solution—a flow-based
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(a)  Input (b)  Edited

Figure 3.1: Given a video of a waterfall on the left, our objective is to synthesize a
new waterfall with two extra channels shown on the right. We propose a flow-based
algorithm that directly edits the input video to create the output.

video editing algorithm, that generates controllable animations of fluidic phenomena
by editing the reference video clip.

To motivate this approach, consider that we have a short reference footage of a
waterfall shown in figure 3.1(a). Leveraging such footage for special effects is dif-
ficult, however, because a natural scene may not match the director’s intentions. He
might want a waterfall with four channels, for example, figure 3.1(b). Modifying the
physical setting to achieve this effect in the real world may be expensive or impos-
sible. Our technique allows the user to modify real world footage while maintaining
its natural appearance and complexity. We demonstrate this capability by modifying
scenes of waterfalls, a river, flames, and smoke.

Our algorithm works in two steps, first creating an infinite sequence from the
input and then using it to create infinite edited sequences. In the first step, our algo-
rithm captures the dynamics and texture variation of the particles along user-specified
flow lines in the input video. Figure 3.2(b) shows a set of user-defined flow lines (in
blue) sketched over the input video (figure 3.2(a)). The algorithm generates an in-
finite sequence by continuously generating particles along the input flow lines. To
create the edited video, the user specifies a new set of flow lines in red, shown in fig-
ure 3.2(c), and specifies the correspondence between the output (red) flow lines and
the input (blue) flow lines. Our algorithm generates the edited video by continuously
generating particles along the output flow lines (figure 3.2(d)).

Our approach works on natural phenomena such as waterfalls whose behavior
can be characterized as motion of textured particles along well-defined flow lines.
The key to our synthesis step is an insight about the continuity of flows that makes
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(a) Input
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 Input

(c) Specify
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(d) Edit
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Sketch output flowlines 

and correspondence

Render

Figure 3.2: A visual flow chart of our synthesis/editing algorithm. An artist sketches
the blue input flow lines, the red output flow lines, and specifies the correspondence
between the two pairs of flow lines. The algorithm automatically synthesizes an
infinitely long edited sequence, one frame of which is shown.
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it extremely simple to create infinite looped video without apparent discontinuities.
Our synthesis procedure enforces temporal continuity by forcing the particles to com-
plete their path along the flow lines. In contrast, simply looping a short video clip
to produce an infinite sequence produces a jarring artifact because all particles are
interrupted simultaneously in their path along the flow line.

We have tested our algorithm on a variety of sequences such as waterfalls, streams,
smoke and flames. Our technique can be applied to any phenomena that exhibits con-
tinuous flow of pixels along constant flow directions. We leverage the user to define
flow lines on both the input and output video. Our framework allows the user to
perform significant edits to the scene—changing the terrain of a waterfall, adding
obstacles along the the flow or adding wind to smoke and flames. We show that
flow lines provide an intuitive and effective user interface to edit video sequences of
natural phenomenon.

The rest of this chapter is organized as follows: we begin with a discussion of
related work in creating photorealistic animations of natural phenomena. Then, we
present our key insight for generating infinite sequences from short video clips, and
describe an implementation using a particle-based algorithm. The next section de-
scribes our editing framework, where we present the algorithm details and show the
results on several sequences. We then discuss the limitations of our current frame-
work and show a few interesting extensions that addresses some of the limitations.
Finally, we conclude with a list of contributions and directions for future research.

3.1 Related Work
Creating realistic animations of fluid flow is an active area of research in computer
graphics. Physics-based simulation techniques have been successfully used to sim-
ulate and control fluids (e.g., [Ree83, Sta99, TMPS03]). Earlier work in simulating
fluid-like phenomenon (fire, smoke, cloud, etc.) used dynamic particle systems, that
was introduced into computer graphics by Reeves [Ree83, RB85]. Individual parti-
cles within a particle system move in three-dimensional space (under the influence
of user-defined forces) and also change over time in color, transparency, and size.
Particle systems provide a high degree of user control over the simulation and are
very intuitive to use. The rendering process can also be parallelized [Sim90] because
the individual particles have independent attributes, and hence can be rendered sep-
arately. However, specifying the force fields and color attributes for complex fluid
motions is very laborious. Therefore, designing particle systems to match real video
footage is labor intensive.

In contrast, modern physical simulators (e.g., [Sta99, FSJ01, FF01, LF02]) pro-
duce stunning photorealistic fluid animations by using sophisticated models for dy-
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namics and light transfer. These techniques model fluid motion using the Navier-
Stokes equations and integrate these equations over a 2D or 3D grid. Several of these
also provide indirect methods for controlling the simulation, for example using colli-
sion objects [FF01]). However, these techniques are computationally expensive and
are usually tailored for a single type of natural phenomena such as smoke, water, or
flame. Moreover, directly controlling these simulations is very hard due to the chaotic
nature of the underlying equations of motion. A few recent papers have addressed
the problem of controlling fluids for specific domains. For example, Lamorlette and
Foster [LF02] present a semi-automatic framework for producing controllable sim-
ulations of fire. Treuille et al. [TMPS03, MTPS04] use a gradient-based nonlinear
optimization framework to control the simulations of smoke and water. Fattal et
al. [FL04] present a closed-form solution for controlling smoke simulations by al-
lowing the user to specify high-level directions. Once again, these techniques are
specifically designed for controlling a particular simulation (e.g., smoke) and may
not generalize to other types of natural phenomena. In contrast, our technique works
on a wide range of natural phenomena characterized by continuous flow along well
defined directions. Our approach that models video using particles automatically
achieves photorealism, while allowing a wide range of interesting edits by manipu-
lating the particle trajectories in video.

Recently, several researchers have attempted to model the textured motion of flu-
idic phenomena in video and synthesize new (and typically longer) image sequences.
Wang and Zhu [WZ02] present a generative model for analysis and synthesis of nat-
ural phenomenon from video. Their algorithm uses a second order Markov chain
to automatically model the motion of texture particles in video. They use the EM
algorithm to infer the properties of the Markov chain. Doretto et al. [DCSW03]
use Auto-Regressive filters to model and edit the complex motion of fluids in video.
Non-parametric models for texture synthesis have been applied to create 3D temporal
textures (e.g., [WL00]). The graph cuts algorithm combines volumes of pixels along
minimum error seams to create new sequences that are longer than the original video
[KSE+03]. Another class of synthesis techniques creates longer videos from short
clips by concatenating appropriately chosen subsequences, and allows for high level
control over moving objects in video (e.g., [SSSE00],[SE02]). Most of these tech-
niques focus on creating long video sequences from short clips with little or no edit-
ing capabilities. In this thesis, we are interested in performing substantial edits to the
video, resulting in infinitely long edited sequences. However, editing has been well
studied for images and textures. Image Analogies [HJO+01] uses a non-parametric
learning technique to edit images using the texture by numbers framework. The im-
age quilting algorithm [EF01] and the graph cuts algorithm present several examples
of texture editing. Our algorithm provides a flow-based technique for editing video.

Our synthesis approach is very simple and produces results that are comparable

71



to previous video synthesis algorithms on sequences with continuous flow. Addition-
ally, our technique allows an artist to specify edits intuitively by sketching input and
desired flow lines on top of an image. The next section describes the central idea of
the synthesis step that allows us to generate infinitely long sequences with no visual
discontinuities.

3.2 Synthesizing Infinite Sequences

In this section, we present a particle-based framework for modelling video sequences
of such natural phenomenon as waterfalls, streams, smoke and fire. This model al-
lows us to synthesize new sequences by varying the parameters of the particle system.
Before discussing the details of our model, we first present a short tutorial on particle
systems and their applications in computer graphics.

3.2.1 A Brief Tutorial On Particle Systems

Particle systems have traditionally been used in computer graphics for modelling
fuzzy objects such as fire, clouds, smoke or water [Ree83]. A particle system is
defined as a collection of particles whose motion, color and other attributes are con-
trolled by user scripted rules (or forces). The particle attributes—positions, veloci-
ties, colors, transparencies, size, age, etc.—are typically stochastic in nature. Each
particle goes through three distinct phases in its life cycle: generation, dynamics, and
death. Particles in the system are stochastically generated from user specified emit-
ters, and are destroyed after their lifetime exceeds a pre-defined threshold or if they
go out of the view area.

Particle Dynamics. The motion of particles is governed by user-specified velocity
or force fields. In a first order particle system, the user defines a velocity field over
a grid (workspace) and the particles are advected through the velocity field. These
velocity fields are typically generated procedurally (e.g., Flow Tiles [Che04]), or
from physics (e.g., Stable Fluids [Sta99]). In a second order particle system, the
user specifies a force field on the workspace and the particles move in response to
these forces [Ree83, RB85]. Gravity, wind and collisions are typical ingredients
of hand crafted force fields. In some cases, the particle dynamics can be purely
procedural, for example, when particle position depends on positions and velocities
of other particles, as seen in flocking behavior [Rey87]. Additionally, the attributes
of each of the particles may vary over time. For example, the color of a particle in an
explosion may get darker as it gets further from the center of the explosion, indicating
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that it is cooling off. In general, each of the particle attributes can be specified by a
parametric equation with time as the parameter.

Particle Rendering. Particles are typically represented as blobs, streaks, clouds,
tubes or sprites. Although the specific details of rendering each particle type dif-
fers, most rendering algorithms have a few common features in order to scale to
large number (tens of thousands) of particles. For example, most algorithms render
each particle independently and later combine the (projected) colors in screen space.
This simplification allows particles to be rendered in parallel and eliminates the need
for hidden surface removal algorithms. For increased realism, sprite-based particle
renderers use texture patches from real images [PDI01] for rendering stochastic phe-
nomena like smoke and fire, instead of using blobs or streaks. These textures, either
hand drawn or manually chosen from images, are varied procedurally as the parti-
cle evolves. Our algorithm, in contrast, automatically extracts these time-varying
textures from video.

Particle systems are very intuitive to use and provide a high degree of user con-
trol. However, designing the dynamics and appearance of particle systems to match
with real fluids is very laborious and often impossible. Our algorithm addresses
these limitations by automatically estimating the particle dynamics and its time vary-
ing texture attributes from video. We evaluate the quality of our particle model by
creating infinitely long simulated sequences and comparing them side by side with
the corresponding input video.

3.2.2 Modelling Video Using Particles

Our synthesis algorithm uses particle systems to model video of natural phenomena.
Rather than hand crafting the dynamics and appearance of particles, our algorithm
derives these attributes from video using a combination of user interaction and motion
estimation techniques.

Our technique is ideally suited for modelling phenomena that have time-varying
appearance but roughly stationary temporal dynamics [DCSW03]. For example, the
velocity at a single fixed point on a waterfall is roughly constant over time. Conse-
quently, these phenomena can be described in terms of particles moving along fixed
flow lines (possibly curved) that particles follow from the point at which they enter
the image to the point where they leave or become invisible due to occlusions. The
flow lines, which are sketched by a user, define the particle trajectories in the input
video (figure 3.3). The particle attributes—velocity and texture (a rectangular patch
of pixels, figure 3.3(b))—changes as the particle moves along the flow line.

Our video texture synthesis technique produces seamless, infinite sequences by
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(a) Flow line (b) Particles

Figure 3.3: (a) A flow line sketched on Niagara falls. (b) Particles moving along the
flow line.

modelling the motion and texture of particles along user-specified flow lines. We first
describe the way in which the particles move in video, and then describe how they
are rendered using texture patches.

Particle Dynamics. To begin, consider the case of a single flow line in the image,
as shown in figure 3.4(a). Any particle that begins at the start of the flow line d1

will pass through a series of positions d1, d2, . . . , dn during its trajectory. The par-
ticle’s velocity along the flow line may be time varying; thus the positions di need
not be evenly spaced. The particle’s texture may vary as it moves along the flow
line (figure 3.4(b,c,d)).

We represent the temporal evolution of particles along this flow line as follows.
Define as a matrix M(d, t) = (p, f), where p refers to a specific particle, and f spec-
ifies the frame in the input sequence where that particle appears at d. Figure 3.5(a)
plots M(d, t) for the input sequence, where the number in each cell corresponds to
f and the color to p. The first column of this matrix shows the particles and their
positions on the flow line in frame 1 of the input (hence these entries have f = 1).
The red numbers, for example, show the path of a single particle during the course of
the input sequence.

When the sequence is looped, there is a discontinuity (vertical black line) between
frames 5 and 6 because particles abruptly move to different locations or disappear
altogether. This discontinuity appears simultaneously for every pixel in the image
making it a very noticeable artifact.

We can reduce this discontinuity by a simple change to the entries of M(d, t).
The modified matrix is obtained by repeating the first K diagonals of the original
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Figure 3.4: A particle-based representation for video. (a) A particle moving along its
flow line. (b) Particle texture moving along the same flow line over time. (c) Texture
variation of a real particle from the Niagara sequence. For clarity, we show the
particle texture every 6th frame as it moves along the flow line. The particle velocity
increases as the particle moves downward as would be expected due to gravity. (d) A
filmstrip (left-right, top-bottom) showing the particle texture for each frame as the
particle travels downward along the flow line. The texture of two adjacent cells is
similar, which facilitates tracking. However, the texture varies significantly between
the beginning and end of the flow line.

75



1

3

2

3

4

3

4

5

1 2 3

2 2 3

3

1 2 3

4 2 3

4 5 3

t

1

3

2

3

4

3

4

5

4

2

1 2 3

d

5

5 1 2 3

2

1

21 3 4

4

5

4 5

5

d

d

d

1

2

3

(a)

(b)

t

1

K

Simple loop

Our algorithm

d

d

d

d

1

2

3

Figure 3.5: (a) Plot of M(d, t) showing the particles on a single flow line over time
in the input sequence. Numbers specify frames, and colors specify particles. Note
that there is a discontinuity for each particle along the flow line between time t = 5
and t = 6 when the input sequence is looped. (b) In contrast, our synthesis algorithm
maintains temporal continuity along flow lines. Although there is a discontinuity
along the diagonal stepped line, it is less noticeable because all particles complete
their paths along the flow line.
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(a) (b) (c)

Figure 3.6: Computing the particle texture and velocity from video. (a) shows a
particle along the flow line. To compute its position in the next frame, we search
along the flow line to find the most correlated block in the next frame. The white
region in (b) shows the search window along the flow line. The best matching block
is shown in (c).

matrix. For example, the shaded entries of figure 3.5(a) are repeated to produced
figure 3.5(b). While the modified matrix is composed of a subset of the same en-
tries as in (a), it enforces temporal continuity because each particle completes its full
path along the flow line. The vertical discontinuity in figure 3.5(a) is replaced with
a ladder-shaped discontinuity pattern in figure 3.5(b), with one spatial discontinuity
in each column, corresponding to an abutting pair of patches in the output sequence
that were not adjacent in the input sequence. These spatial discontinuities are dif-
ficult to detect, however, because the abutting pair of patches move together in the
output sequence. This simple procedure lets us create a matrix of arbitrary width that
preserves temporal continuity for all particles along the flow lines.

We implement the procedure in figure 3.5(b) by sequentially generating particles
at d1 from a subset of K input particles (shaded in figure 3.5(a)), and moving them
along the flow line over time. First, an artist sketches a dense set of flow lines over
the input video. Then, we compute and store the particle velocities and textures along
these flow lines. The particle velocities are computed as follows. For a given parti-
cle location in the current frame, we search along the flow line for a corresponding
location in the next frame that best matches the texture of the current particle (fig-
ure 3.6). This procedure performs a constrained form of optical flow along the flow
line [TV98]. The rectangular patch of pixels around the best match location becomes
the particle texture for the next frame. We repeat this procedure to compute the at-
tributes for particles starting at different frames in the input video (for all flow lines).
For example, figure 3.7 shows the texture attributes for four particles that start from
the top of the flow line at different frames of the input video. All the synthesis pa-
rameters, including the number and spacing of flow lines, and the size of the particle
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Figure 3.7: Showing the temporal history of four particles that start at different
frames of the input video. The variation of the particle attributes along the flow line
for all four particles are similar (but not identical). This sequence is a good example
of a stationary process.

texture (rectangular region) are controlled by the artist.
The user plays a crucial role in the modelling step by specifying the input flow

lines. These flow lines capture the user’s intuition about the dynamics of particles in
video. Such user interaction enables our algorithm to model (and synthesize) com-
plex sequences like Niagara falls. Modelling such sequences using existing optical
flow algorithms is challenging, especially at interfaces (e.g., water and mist).

Particle Rendering. Once the particle positions along the flow lines in each new
image are determined, the system blends their textures to produce the rendered result.
Recall that we store the particle texture as it evolves along the flow line in the input
sequence. Rendering simply involves drawing the patch of texture around each par-
ticle, and using feathering to blend the overlapping regions from different patches.
The feathering method assigns a weight to each pixel in the overlapping region that
is inversely proportional to its distance to the edges of the overlapping region.

Generality. Our approach works best for input sequences that have stationary tem-
poral dynamics. Waterfalls and rivers are examples of continuous phenomena where
the velocity (magnitude and direction) at any fixed point in the image is roughly
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constant over time. Phenomena like flames rising upward or smoke from a chimney
(without wind) can also be modelled with a simple extension to our method for defin-
ing particle dynamics. For such input sequences, we allow the velocity magnitude at
each fixed point on a flow line to vary over time. Unlike figure 3.4(a), particles that
begin at the start of the flow line d1 at different times t will pass through a different
series of positions d1(t), d2(t + 1), . . . , dn(t + n− 1) along the same trajectory. This
modified procedure uses the steps for dynamics and rendering described in the pre-
vious paragraphs, however, particles with different frame indices f may now have
different velocity magnitudes along the flow line. Although this extension is an ap-
proximation to input video with non-stationary dynamics, it seems to work well in
practice for video of flames and smoke where the overall direction of flow remains
almost constant.

3.2.3 Synthesis Results

We used our algorithm to synthesize long image sequences for natural phenomena
such as waterfalls, rivers, smoke and flames1. For most of these examples, we create
a long temporal sequence from a short clip of video (approximately 50 frames long).
We used texture patches of 24 × 24 pixels for all sequences except flame, where
the patch size was 100 × 100 pixels. Our rendering speeds in Matlab (frame size
320 × 240) were roughly 20 seconds per frame on a 2GHz Pentium PC with 512M
RAM.

Niagara Falls: This sequence has several distinct texture regions, with clear wa-
ter on the top, foamy water on the left and spray on the bottom (figure 3.8). Each
region also exhibits a significant variation of texture along the flow lines. Our algo-
rithm does not model the change in transparency of the foam rising from the bottom
right portion of the image (where flow lines from these two regions overlap). This
effect causes some visual artifacts at the interface between water and foam in the
synthesized infinite sequences.

Waterfall: We sketch a set of vertical flow lines to capture the water moving
down and another set of radial flow lines to model the collisions at the bottom of the
fall (figure 3.9). The interface between the waterfall and the lake at the bottom causes
interesting foam patterns, which are captured in the temporally extended sequences.

Stream: Here, the flow lines are mostly horizontal, except for regions where the
water rises due to collisions with the underlying rock bed (figure 3.10).

Smoke: This example shows our algorithm applied to a sequence that exhibits
intermittent motion along flow lines (figure 3.11). However, the overall direction
of the smoke motion almost remains constant throughout the input sequence, which

1http://graphics.cs.cmu.edu/projects/flow/
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Figure 3.8: The synthesis results for Niagara falls. The first column shows one frame
of the input sequence and the user specified flow lines superimposed on the input. The
last three rows show nine consecutive frames (scan-line order) from a long synthe-
sized sequence. The red circle drawn on the result shows the motion of the particles
in the synthesized video.
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Figure 3.9: Synthesis results for a waterfall, with the input shown on the first row and
nine consecutive frames of the output shown in the next three rows.
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Figure 3.10: Synthesis results for a stream sequence, with the input shown on the
first row and nine consecutive frames of the output shown in the next three rows.

82



Figure 3.11: Synthesis results for a smoke sequence. The input is shown on the first
row and nine consecutive frames of the output are shown in the next three rows.
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Figure 3.12: Synthesis results for a flame sequence. The input is shown on the first
row and nine consecutive frames of the output are shown in the next three rows.
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particles = 5

particles = 15

particles = 25

Input Video

Figure 3.13: The effect of varying the number of particles used in the synthesis step.
The first three rows show a few frames of the synthesized flame using different num-
ber of input particles, and the last row shows the input video. The texture patterns
in the first row shows very little variation over time. However, as we increase the
number of particles used in the synthesis, the synthesized flame begins to capture the
dynamics and appearance properties of the input.
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makes the static flow line assumption hold. Particles that start at different frames
have different speeds (magnitude) along the flow line.

Flame: We model the flame using particles moving on a single vertical flow
line (figure 3.12). Similar to the smoke example, the flame direction throughout the
sequence is almost constant (vertical, in this example). However, the speed (mag-
nitude) and texture of different particles (that start at different frames of the input)
vary quite a lot for this example. This difference results in interesting artifacts (fig-
ure 3.13) when we vary the number of particles used in the synthesis. For example,
using fewer particles causes texture repetition along the flow line, because our syn-
thesis algorithm uses the (small number of) particles repeatedly to create the output.
Using more particles reduces this effect and makes the synthesized result resemble
the input flame.

3.3 Editing
The synthesis algorithm described in the previous section can be extended to support
editing by synthesizing texture over a new set of flow lines. Our framework requires
the user to perform the following two steps (figure 3.14):

• Sketch new (output) flow lines (figure 3.14(a)). This step specifies the direction
of motion of particles in the resulting edit. The set of output flow lines are
typically much sparser than the input.

• Specify correspondence between the input and output flow lines (figure 3.14(b)).
This step specifies the texture along the output flow lines.

These two steps allow the user to creatively specify the desired edit. Our algorithm
first interpolates the sketched flow lines (red) to create a dense set of flow lines (green
lines in figure 3.14). To generate the final edited video, our algorithm performs the
following steps:

• Compute the correspondence between the interpolated flow lines and the input
flow lines. This assignment is achieved automatically using dynamic program-
ming.

• Render output flow lines by warping the synthesized input texture to the output.

Correspondences for interpolated flow lines: We use dynamic programming to
find a globally optimal set of correspondences between the interpolated flow lines
and the input flow lines. Let Y be the dense set of input flow lines and X be the set of
edited flow lines. For every pair (x−1, x) of neighboring edited splines, we compute
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(a)

(b)

(c)

Figure 3.14: The left column shows an input waterfall sequence and the right column
shows an edited waterfall created using our algorithm. (a) The animator draws the
flow lines in the input image, shown in blue. To specify an edit, she draws a sparse
set of flow lines in red. Then, she specifies correspondences between all edited flow
lines and the input flow lines (two of these are shown in (b)). The system generates a
set of interpolated flow lines (thick green lines in (c)) and computes a correspondence
with the input flow lines automatically using dynamic programming.
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Input (Y) Edited (X)

Figure 3.15: For a set of neighboring edited flow lines (x−1, x) and their correspond-
ing input flow lines (y′, y), the patch overlap error computes a least square difference
between the colors of overlapping regions, shown in green.

the patch overlap error E(x− 1, y′, x, y) for all possible pairs (y′, y) of input splines
(figure 3.15). We evaluate the overlap error term by synthesizing the flow line x − 1
using texture from y′ and the neighboring flow line x using texture from y. The
error is defined as the sum-squared error in color in the overlapping regions of the
two textures, averaged over a fixed number of frames (30 in our experiments). To
compute the correspondence, we minimize the following cost function:

C(x, y) = min
y′

[C(x − 1, y′) + E(x − 1, y′, x, y)] (3.1)

where x ∈ X , y ∈ Y and y′ ∈ Y . Although the dynamic programming approach
is an O(N2) algorithm (and hence slow), it produces a set of interpolated flow lines
whose colors match well.

Rendering the output flow lines: We warp the texture along the input flow line to
synthesize texture over the edited flow line, using the tangent information between
corresponding points of the two curves (figure 3.16). A simple scheme for assign-
ing corresponding points between the two flow lines is to choose points of equal ar-
clengths (from the start of the flow line) along the two curves. An alternative is to add
a term to the warping function that scales the arclengths of the input to be equal to the
edited flow lines. This method produces edited textures that are scaled and warped
versions of the texture from the input flow line. The animator chooses between these
two schemes to create different effects in the edited sequence (figure 3.17).
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Figure 3.16: Schematic showing the transformations used to transfer texture from
an input flow line to an edited flow line. For example, the green and red pixels in
the edited flow line are obtained from the input particle texture using the tangent
information at corresponding points.
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Figure 3.17: Result of editing a smoke sequence by manipulating flow lines. Cor-
responding flow lines have the same color in this picture. The flow lines from the
second and third chimney in the edited sequence (shown with letter S) are scaled
because the input and edited flow lines have different lengths.
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Figure 3.18: Various editing results obtained using our flow-based editing algorithm.
The left column show a frame of the input video with the input flow lines, the middle
column shows the edited flow lines and the right column shows a frame of the edited
video synthesized by our algorithm. 90



3.3.1 Editing Results

We demonstrate a range of creative edits on video sequences of waterfalls, streams,
smoke and fire by manipulating their flow lines in video. The input clips were the
same ones that we used in the previous section to create infinite sequences. Because
editing is a creative process, most of these examples took a few iterations of flow line
sketching and correspondence specification before the desired edit was found. These
edits demonstrate the effectiveness of our flow-based interface for creating dramatic
edits to the scene.

Niagara Falls: We edited the Niagara sequence to change the landscape and
remove the foamy portion of the waterfall. The resulting edited sequence and the
corresponding flow lines are shown in figure 3.18(a). We then edited the waterfall
to add some extra foam on the bottom right corner of the waterfall (figure 3.18(b)).
This edit simulates the effect of changing the terrain under the waterfall, as if there
were extra rocks causing the new foam to appear. In both the edits, we removed the
mist (the wavy lines rising from the bottom left) from the input video.

Waterfall: In this example, we added two extra channels to a waterfall sequence
(figure 3.18(c)). The terrain on the top of the waterfall was also edited to create an
effect of water forking off to the four channels.

Stream: Here, we edit a stream sequence to simulate the effect of water colliding
against a trunk (figure 3.18(d)). We edit the water flow lines to curve around the
trunk and use the foamy texture (where water collides with rocks in the input video)
to create the effect of water colliding against the trunk.

Flame: We model the input flame video using particles moving on a single ver-
tical flow line. Figure 3.18(e) shows one frame of an edited sequence, where we
simulate the effect of wind blowing to the left by specifying an edited flow line that
curves left.

Smoke: This example exhibits intermittent motion along flow lines as smoke is
emitted from a chimney (figure 3.18(f)). We add a extra chimney and change the
direction of the smoke to create an edited footage.

3.4 Physics-Based Flow Lines

The flow-based editing algorithm presented in this thesis allows an artist to create
photorealistic animations from video by specifying the input and output flow lines.
Although our framework provides the artist with the freedom to sketch what he wants,
he has to have the judgement to do things that are physically realistic. For example,
the smokestack in figure 3.17 may not produce a convincing result because the smoke
leaves the three stacks in very different directions in the edited sequence—something
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that would not happen in real life. In such situations, it is easier (and more physi-
cally accurate) to generate the output flow lines automatically from simple physical
simulations. Specifically, we show two editing examples that use a 3D particle sys-
tem in Maya2 to create the output flow lines. Varying the parameters of the particle
system allows us to edit the input video in several interesting ways. Note that the
physics model used here is very simple because its main purpose is to define the flow
lines—the detailed particle dynamics and texture are still obtained from the input
video.

Example 1: Controlling video with a 3D particle system In the first example, we
create a controlled animation of a water jet colliding against an inverted bucket (fig-
ure 3.19(c)). This simple example illustrates the key steps for incorporating physics
into our flow-based editing framework. The water jet in the input video follows a
parabolic path in the air, collides against the bucket and curves downward as it flows
down (figure 3.19(a)). We approximate the input water jet by manually tuning a
3D particle system such that the particle trajectory in simulation matches the water
trajectory in the input video (figure 3.19(b)). This approximation gives us a good
estimate of the simulation parameters such as the faucet pressure and the bucket
collision coefficients (elasticity and friction). Varying the faucet pressure or the lo-
cation/orientation of the bucket in simulation generates new output trajectories, that
allows us to control the water jet in video (figure 3.19(c)). Continuously varying
the simulation parameters results in output flow lines that change continuously over
time. For example, the faucet pressure is continuously varied to follow the moving
bucket in figure 3.19(d). To render this result, the video particles are synthesized
along the time varying output flow lines. This example also highlights the advantage
of incorporating physics because specifying time varying flow lines manually is very
hard and inaccurate. Although the correspondence between input and output flow
lines is trivial for this example, it has to be specified manually in the general case
with multiple input and output flow lines.

Example 2: Creating a 3D city scene The second example uses our framework to
create a fly-over animation of a CG city with a photorealistic waterfall (figure 3.20(c)).
To create this animation, we first constructed a 3D model of the city with a large chan-
nel in the middle for a waterfall. Similar to the previous example, we use a 3D parti-
cle system to generate the output flow lines along the waterfall (green lines in figure
figure 3.20(a)). The 3D particle trajectories in simulation are governed by the initial
velocities, terrain interactions and gravity. The input flow lines and particle attributes
of the waterfall are obtained from a video clip of Niagara falls (figure 3.20(b)). The

2http://www.alias.com
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correspondence between the input and output flow lines is specified manually. We
generate the fly-over effect by animating the camera in simulation, which causes the
projected (output) flow lines to vary continuously with time. Once again, we render
the resulting simulation by synthesizing video particles along the non-stationary out-
put flow lines (figure 3.20(c)). This example clearly demonstrates the advantages of
using a simple physics based simulator in conjunction with our video-based render-
ing technique to add photorealistic elements to synthetic scenes.

3.5 Discussion

The second part of this thesis presented a framework for creating and editing arbi-
trarily long videos from short input clips for a variety of natural phenomena. We
used this technique on image sequences of waterfalls, rivers, flames, and smoke. For
these phenomena, our synthesis results are comparable to the best existing video tex-
ture synthesis techniques. Our system also provides an intuitive interface for editing
video.

A key contribution of this work is the simple algorithm for creating infinite se-
quences without significant visual discontinuities. We achieve continuity by ensuring
that all particles complete their path along the flow lines without any interruption. We
have found that our flow-based interface is intuitive to use and is ideally suited for se-
quences that exhibit nearly stationary dynamics. The algorithm is also quite simple,
making it easy to understand and implement.

Our algorithm has a few limitations, some of which are specific to our current
implementation and others that are more fundamental to our 2D technique. Because
our algorithm does not model pixel transparencies, it can produce blending artifacts
at regions of the video that have multiple transparent layers interacting with each
other, such as the water-foam interface at the bottom portion of Niagara Falls (fig-
ure 3.21(a))3. At this interface, water particles travelling along the vertical flow lines
are occluded by the travelling mist rising on the bottom right corner of the video.
Extending the algorithm to handle transparency explicitly using video matting tech-
niques [CAC+02] might address this problem.

Our simple blending scheme performs poorly on sequences with discrete objects
moving along flow lines like cars on a highway (figure 3.21(b)). An interesting ex-
tension would be to use seaming techniques such as graph cuts [KSE+03] instead of
linear blending to approximate the interface between the textures of neighboring par-
ticles. Separating the foreground portion of the particle texture from the background
before merging should also improve the quality of the rendered result.

3http://graphics.cs.cmu.edu/projects/flow/
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Although our approach has been successfully used to edit a number of sequences,
it is limited to input sequences with nearly stationarity flow patterns. Manually speci-
fied flow lines may not be suitable for input sequences such as fire or smoke blowing
in the wind (figure 3.22), where our assumption of constant flow lines (over time)
does not hold. In order to handle general non-stationary process using our frame-
work, the user has to specify temporally varying flow lines for all particles in video,
which is a laborious task. Automatically computing flow lines from video is also
very hard, because velocity estimates from general motion analysis algorithms like
optical flow are not reliable in regions that do not have much texture. For example,
figure 3.23 shows the flow field obtained from two consecutive images of Niagara
falls using the robust incremental flow algorithm developed by Black et al. [BA96].
Although we get reasonable flow results for the top portion of the waterfall, the flow
estimates for the lower portion of the scene with mist are not very reliable. Devising
robust statistical techniques that compute flow lines automatically for general scenes
of fluid motion [CEY02] might address this problem.

Our technique is primarily suited for 2D editing, because we use video as our
source of particles. Consequently, our approach may not perform well for edits that
require a large change in the view point. For example, our technique with 2D flow
lines cannot be used to render the top view of the horse-shoe fall at Niagara using
information from the side view (figure 3.24). A potential solution is to model the
scene in 3D using the ideas presented in section 3.4 that combine our flow-based
rendering approach with 3D particle systems. Techniques for combining our particle-
based approach for appearance with general purpose fluid simulators for dynamics
might allow the us to model and edit other complex phenomena such as waves or
explosions using our flow based approach.
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parameters(a)
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(d)
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Figure 3.19: Using a 3D particle system to control video. (a) A particle system in
Maya, fitted manually to match the input video on the left. Varying the parameters
of the particle system in row (b) allows us to automatically generate the output flow
lines, which are rendered using texture from the input as seen in row (c). (d) The
water jet in the last row moves continuously to follow the moving bucket.
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(a) (b)

(c)

Figure 3.20: Building a virtual city using a 3D terrain and particle system in Maya.
The top row shows the Maya terrain and desired flow lines created using a 3D particle
system. The input flow lines are obtained from the Niagara fall clip. The bottom row
shows two frames of the waterfall, rendered at different camera viewpoints using our
technique.
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(a) (b)
http://www.capsweb.org

Figure 3.21: (a) The blending artifacts created at the interface of water and mist in
Niagara. The interface region is zoomed to show the blending artifact. This artifact is
more perceptible in video. (b) A traffic scene with discrete objects where we expect
our feathering algorithm to perform poorly.

http ://www.battelle.org http ://www.rr.ualberta.ca/Research/Areas/fireecol/

Figure 3.22: Examples of non stationary phenomena where the constant flow line
assumption fails.
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Figure 3.23: Optical flow results with two frames of the Niagara Falls sequence
using Black et al. [BA96]. The algorithm gives accurate velocity estimates at the top
portion of the fall, but performs poorly near the interface of water and mist at the
bottom.

Figure 3.24: Our 2D technique will not be able to synthesize the top view from the
side view.
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Chapter 4

Conclusions

This thesis extends the state of the art of video-based computer animation by present-
ing new algorithms for creating compelling animations of passive dynamic systems
like rigid bodies, cloth and fluids from video. Our first method, inverse simula-
tion, uses video sequences of simple experiments (throwing rigid bodies and waving
swatches of cloth) captured in a laboratory setting to identify parameters of rigid
body and cloth simulators. The parameters estimated from simple experiments can
be used to create realistic simulations under new conditions—for instance, to animate
a dancer wearing a skirt of the same material. Our second method, flow-based video
editing, creates realistic and controllable animations of fluids by manipulating and
rearranging flow lines from a reference video clip. We tested the flow-based editing
framework on several example clips: water, fire, smoke, streams and waterfalls. In all
these examples, an artist controls the global dynamics and appearance characteristics
of the resulting animation by specifying the input and output flow lines.

We review the contributions of our two video-based animation techniques in Sec-
tion 4.1. In Section 4.2, we describe several possible extensions for the two tech-
niques. Finally, in Section 4.3, we compare and contrast the inverse simulation frame-
work with the video editing framework, and present ideas for extending video-based
animation techniques to other domains.

4.1 Contributions

The main contribution of this thesis is the design, implementation and evaluation
of two video-based techniques, inverse simulation and video editing, for creating
realistic animations of a wide range of passive phenomena.
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Inverse Simulation Framework. The inverse simulation framework computes the
parameters of a simulation that match reference video footage of real phenomena. To
the best of our knowledge, the inverse framework presented in this thesis is the first
systematic technique in computer graphics for estimating the static and dynamic pa-
rameters of physical simulations from video measurements. In order to achieve this
goal, we designed new algorithms (or significant extensions of existing methods) for
various components of the inverse simulation framework. Additionally, we designed
simple laboratory experiments that excited the important modes of the dynamic sys-
tem for parameter identification.

We used the inverse simulation framework to estimate the free flight parameters
of rigid bodies, and the static and dynamic parameters of cloth simulations. En route
to designing this framework, we made a number of contributions for enhancing the
realism of computer simulations:

• Model refinement. Matching simulations to video of real cloth required several
improvements to existing cloth models. Specifically, we extended the Baraff-
Witkin cloth model to make the cloth parameters independent of mesh resolu-
tion, and used an explicit integrator that produced accurate folds. Additionally,
our three parameter model for air drag better approximates the non-linear be-
havior of air-cloth interactions.

• Metric design. An important contribution of this thesis is the design of per-
ceptual metrics, for rigid bodies and cloth, that can be robustly and quickly
estimated from video. Our results show that a metric which compares two
sequences of 2D silhouettes successfully captures the tumbling parameters of
rigid bodies. For cloth, we developed a novel representation, which we called
the anglemap, to measure fabric folds in video. The anglemap representation
allowed us to identify the parameters for four types of fabrics with sufficient
accuracy to produce visually distinct animations for each type of fabric.

Video Editing Framework. The video editing framework creates realistic anima-
tions by modelling the flow patterns of natural phenomena in video and rearranging
the flow lines to create edited sequences. The important contributions of this frame-
work are summarized below:

• Simple particle models for video. We developed a new particle model for cap-
turing the dynamics and appearance of video sequences of natural phenomena.
Our algorithm simplifies the analysis of stationary phenomena like waterfalls
to one dimension by modelling video via particles that move along constant
flow lines. This model is simple to implement and successfully models a wide
range of natural phenomena such as water, streams, fire and smoke.
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• Intuitive editing interface. Another contribution of this thesis is the use of flow
lines for editing video sequences of natural phenomena. Flow lines capture
the user’s intuition about the motion of particles in video, providing an highly
effective mechanism for specifying edits. We demonstrated the effectiveness
of the flow-based interface by creating dramatic changes to natural scenes:
altering the terrain of a waterfall, adding obstacles in streams and changing the
direction of smoke and fire.

• Controlling video. We incorporated physical simulations within our video-
based rendering framework for automatically generating the output flow lines.
Physically generated flow lines varied naturally in response to such animator
controls as emitter velocities, collisions and external forces, resulting in com-
pelling animations that are controllable and exhibit natural dynamics.

4.2 Future Work

In this section, we highlight a few interesting areas for future research in video-based
animation, focusing first on the inverse simulation framework and second on the
video editing framework.

4.2.1 Inverse Simulation

Extending the inverse simulation framework to capture the finer details of real cloth
and other passive dynamic systems (e.g., deformable tissues) would require several
advances to the existing framework. Our discussion is primarily focused on cloth
simulations, although many of the ideas apply to rigid bodies and other phenomena
as well.

Improved models. Although our current cloth model produces compelling fold
patterns that are similar to real fabrics, it does not model the time-varying changes
in cloth due to aging or wrinkling (figure 4.1). An important direction for future
work is to design cloth models that handle non-linear hysteresis effects commonly
observed in real fabrics. Additionally, incorporating complex aerodynamics [Pes77]
and wind effects [WH91] into cloth models will allow us to simulate two way air-
cloth interactions and billowing effects seen in real garments (twirling skirts). These
improved cloth models would require more parameters to be identified from video,
which in turn will necessitate the design of new experiments for exercising these
additional parameters.
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Complex Wrinkling Aging

Figure 4.1: Examples of non-linear wrinkling and aging effects in cloth.

Statistical metrics. Our metrics perform a frame to frame comparison between
features (e.g., folds, silhouettes) in simulation and video and are therefore ideally
suited for short video sequences obtained from controlled experiments. However,
such metrics may not be appropriate for matching longer sequences or complex gar-
ments like skirts, where an overall match in the folding behavior across the entire se-
quence might be desirable rather than a precise frame-to-frame match. For instance,
a frame-to-frame match might require the accurate knowledge of external parameters
such as collisions with limbs, which might be very hard to estimate. An alternative
approach would be to model the fold propagation as a statistical process. Instead of
matching the folds pixel by pixel, we could match the global characteristics across the
sequence. For example, we might match the average life time of a fold, the average
number and orientation of folds, or the average width (scale, sharpness) of folds.

Metric evaluation. Our metrics are only two of the many possible metrics for
matching simulations with video. Performing carefully designed user studies to eval-
uate the different metrics (e.g., folds versus marked patterns, frame-by-frame versus
statistical) would provide useful guidelines for designing perceptual metrics for cloth
and other similar phenomena. Such a study could be conducted, for example, by es-
timating the simulation parameters using several different metrics, and having users
rank the visual quality of the match with reality.

Experimental design. The waving test with swatches of fabrics was a simple test
that worked well for identifying the stiffness, damping and drag parameters of a cloth
simulation. However, estimating different cloth parameters, such as friction, would
require new experiments. For example, friction might be measured by dragging the
fabric over different materials. An important area for future work is to systematically
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design experiments that best exercise all the modes of the simulation [Kho88]. A
general estimation framework should also allow data from multiple experiments (and
multiple trials) to be optimized simultaneously to obtain the best parameter estimates.
Such a framework would also reduce the burden of experimental design because
individual parameters would be exercised in multiple experiments.

Inverse draping. An interesting application of the inverse simulation framework
is to explore the problem of inverse draping: given an image or video of a fabric
draped on an object, estimate the object’s underlying shape [JH97]. This analysis-
by-synthesis approach might lead to improved human tracking algorithms that could
accurately identify limb and joint configurations despite loose-fitting clothing.

Extensions to other phenomena. The inverse simulation framework can be po-
tentially applied to other domains such as deformable tissue simulations. Obtaining
realistic simulations of tissue models from real video measurements has tremendous
potential in medicine and surgery for training and diagnosis. In principle, inverse
simulation techniques could also be extended to simulations of more complex natu-
ral phenomena such as smoke, water, fire, provided that we have accurate physical
models for each phenomena. We could leverage the vast body of research in physi-
cal simulations to obtain these models. However, this extension would also require
precise models for wind and other external forces (potentially time-varying) in order
to match with video, which would increase the dimensionality of the search space.

User interaction. The inverse simulation framework presented in this thesis is a
fully automatic technique for estimating simulation parameters from video. How-
ever, having a user in the loop could potentially improve the different blocks of the
inverse simulation framework. For example, a user could guide the optimization by
specifying higher weights for certain features over others (folds over silhouettes, for
instance), or by specifying portions of the video where the match between simula-
tion and video is acceptable and portions where it is not. The optimizer could then
focus on those features or regions in subsequent iterations. The design of effective
user interfaces for steering the optimization will be challenging but is essential for
the success of this approach.

4.2.2 Video Editing

Flow lines are central to our video editing framework. Here, we discuss a few ideas
to generalize the concept of flow lines to a broader class of natural phenomena. But
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first, we present a few ideas for improving the performance of our existing particle
model.

Model Improvements. Our current particle model uses texture from video without
segmenting the foreground (fluid) layer from the background, which causes blending
artifacts at interfaces between fluids. Segmenting video sequences of natural phe-
nomena into foreground layers with alpha and a background layer might reduce this
artifact (e.g., [CAC+02, Yu04]). Segmentation would improve the particle color esti-
mates from video, and would allow us to correctly model the motion and appearance
of translucent phenomena such as mist.

Automating the input flow lines. The particle system model presented in this the-
sis assumes that the flow lines in the input video are nearly stationary. The con-
stant flow line assumption is not a fundamental limitation; it just simplifies the user
interaction—our algorithm will easily scale to non-stationary phenomena as long as
the time-varying flow lines can be specified in some way. Designing algorithms for
automatically estimating flow lines, for example, using optical flow geared towards
fluid-like phenomena [CEY02], is an interesting area of future research.

Extensions for visual effects (F/X) applications. An useful extension of our tech-
nique for F/X applications would be to combine flow lines from multiple input se-
quences to create an edited video. Such a technique might be useful for increasing
the realism of scale models, that are commonly used for animating phenomena like
waterfalls in a studio. For example, the mist caused due to water-rock collisions from
a real waterfall such as Niagara falls could be used to increase the realism of a video
from a small scale model where such effects are hard to create.

Physics-based flow lines. Our flow-based editing interface allows an artist to create
dramatic edits to a scene by manually specifying the flow patterns in video. However,
to synthesize scenes with temporally varying flow patterns, it might be advantageous
to use simple physics models to animate the output flow lines. For example, to create
the animation of a flame blowing in the wind, an artist might sketch the output flow
line in one frame, and use a physics-based wind model to deform the flow line in
subsequent frames in a controllable fashion.

Combining physics with our flow-based framework could also allow us to handle
a larger class of natural phenomena. For example, waves crashing on a beach could
be modelled using irregularly looping flow lines, whose magnitude (length) varies
stochastically to account for waves of different sizes. Such models could perhaps
be obtained from physical simulations—for example, a simple water simulator based
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on Navier-Stokes could be used to generate the flow lines for waves by simulating
the basic motion of water. An interesting direction for future research would be to
use physical models that are more sophisticated than particle systems to describe the
dynamics and use video to model the appearance.

4.3 Comparison of video-based animation methods
The two techniques presented in this thesis share a common theme of using video for
creating realistic animations. This section compares the strengths and weaknesses of
the two approaches, and discusses ideas for future research that combine the strengths
of these two approaches.

An important distinction between the two techniques is the complexity of the
model required to match the reference video. In inverse simulation we use a physical
simulation to model the 3D dynamics of the phenomena observed in video, while in
flow-based editing, we manually model the dynamics and appearance of video using
a particle system. This difference arises because physical simulations of phenomena
like rigid bodies and cloth are much easier to match with real video footage in com-
parison to natural phenomena. For example, waterfalls (and other complex natural
phenomena) would be very hard to match with video because the simulation would
require an accurate terrain model and wind fields. A water model with sufficient ac-
curacy to model Niagara falls would also likely have more parameters than the cloth
model we used. For such phenomena, flow-based video editing presents a simple and
effective alternative to physical simulation.

Parameters obtained from calibration experiments using inverse simulation gen-
eralize to new, more complex simulation conditions. For example, parameters from
the swatch test were used to create realistic animations of skirts of the same material.
In contrast, the video editing framework models each video sequence without explic-
itly extracting much knowledge of the underlying physical phenomenon. Therefore,
information from one video sequence may not generalize to new situations.

Finally, the ease of setting up and working with these two techniques differs
significantly. Inverse simulation requires a custom simulator for each phenomenon.
Additionally, it requires video footage from carefully designed experiments. Both
steps are difficult to implement and require prior knowledge about the physics of
the phenomenon. In contrast, flow-based video editing is relatively simple to set up.
However, the video editing technique is not fully automatic—it requires input from
the user to specify the input and edited flow lines. Therefore, users generally spent a
little time training with the flow-based framework before successfully creating their
own edits.

We hope that the techniques presented in this thesis will inspire new video-based
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animation algorithms that combine the strengths of the two approaches. For ex-
ample, combining Navier-Stokes fluid simulators with our particle framework for
rendering from video might allow us to produce controllable animations of com-
plex phenomenon such as explosions. The design of video-based algorithms for
articulated systems (e.g., trees) and systems with active dynamics (e.g., humans,
animals) might prove fruitful. Although several video-based techniques for ani-
mating humans and animals have been proposed (e.g., video sprites [SE02], video
rewrite [BCS97]), these techniques are purely data-driven and do not use any knowl-
edge of the physics of the system. In human animation, we might be able to ap-
ply inverse simulation techniques to improve the realism of existing human motion
simulators [LP02, HWBO95]. We hope that video-based animation techniques will
inspire the design of better simulation models for a broad range of phenomena, en-
abling a better match with reality.
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