
Fast Simulation of Skeleton-driven Deformable Body
Characters
Junggon Kim and Nancy S. Pollard
Carnegie Mellon University

We propose a fast physically based simulation system for skeleton-driven
deformable body characters. Our system can generate realistic motions of
self-propelled deformable body characters by considering the two-way in-
teractions among the skeleton, the deformable body, and the environment in
the dynamic simulation. It can also compute the passive jiggling behavior
of a deformable body driven by a kinematic skeletal motion. We show that
a well-coordinated combination of (1) a reduced deformable body model
with nonlinear finite elements, (2) a linear-time algorithm for skeleton dy-
namics, and (3) explicit integration can boost simulation speed to orders of
magnitude faster than existing methods, while preserving modeling accu-
racy as much as possible. Parallel computation on the GPU has also been
implemented to obtain an additional speedup for complicated characters.
Detailed discussions of our engineering decisions for speed and accuracy
of the simulation system are presented in the paper. We tested our approach
with a variety of skeleton-driven deformable body characters, and the tested
characters were simulated in real-time or near real-time.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—Ani-
mation

General Terms: Algorithms

Additional Key Words and Phrases: Physics simulation, deformable body,
skeleton, finite element method, mesh embedding, hybrid dynamics, par-
allel computing, physically-based simulation, skeleton-driven deformable
body

ACM Reference Format:
Junggon Kim and Nancy S. Pollard, 2009. Fast Simulation of Skeleton-
driven Deformable Body Characters. ACM Trans. Graph. XX, X, Article
XXX 2010), 19 pages.
DOI = 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

Authors’ emails: {junggon, nsp}@cs.cmu.edu
Authors’ address: Robotics Institute, Carnegie Mellon University, 5000
Forbes Avenue, Pittsburgh, PA.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c⃝ YYYY ACM 0730-0301/YYYY/11-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

1. INTRODUCTION

Many researchers are interested in fast simulation of elastically de-
formable bodies and many approximate techniques have been pro-
posed, along with fixes to those techniques. However, it is not clear
how to make the best choices to have a fast simulation that is also
as accurate and realistic as possible. In addition, although skeleton-
driven deformable bodies are very important, they have been lit-
tle studied in previous literature. This paper looks at skeleton-
driven deformable bodies, discusses design choices for mathemat-
ical modeling, and details a complete implementation of a simula-
tion system.

Producing character motion through physics simulation usually
takes a long time not only because the simulation itself is com-
putationally expensive, but also because many trials must be run
with different settings of simulation parameters to reach a desired
result. Therefore, in order to be most useful to animators, a sim-
ulation system should be fast enough to run at interactive rates.
Speed, however, is not the only virtue required of a simulation al-
gorithm. The accuracy of the simulation is also very important, be-
cause obtaining better, or realistic, animation is the very reason for
using an expensive physics-based technique. Because speed and ac-
curacy usually cannot be pursued at the same time, most existing
techniques find their own points of compromise between the two
ultimate goals. This paper considers in detail which design trade-
offs should be made when real-time or near real-time simulation of
characters such as that shown in Figure 1 is a requirement.

We focus on physics-based simulation for elastically deformable
body characters which have their own skeletons inside the soft
bodies, and the deformable bodies are assumed to be driven by
their skeletons. The types of simulation may be classified into two
groups: the so-called one-way and two-way simulations. In one-
way simulation, the skeleton is driven kinematically so that the
global skeletal motion is not affected by the secondary motions of
the passive deformable bodies and the environment. Such one-way
simulation systems have been implemented in many commercial
animation tools for postprocessing the behavior of passive elements
such as hair and clothing. In two-way simulation, on the contrary,
the character is usually actuated by internal forces only – in this
case, forces or torques applied at the joints of the skeleton. The two
physical systems, the skeleton and the deformable body, interact
with each other so that the global motion of the skeleton is affected
by the secondary motions of the soft body as well as the internal
actuation. The character and the environment can also be affected
by each other through contact and collisions, and this often leads to
complicated behaviors, especially when the environment is change-
able, e.g., by having movable obstacles as shown in Figure 2.

In this paper we present a fast physics simulation system for
skeleton-driven deformable body characters. Our system can han-
dle both one-way and two-way simulations for skeleton-driven de-
formable body characters in a unified framework. Moreover, the
simulation speed is fast enough to be applied to an interactive char-
acter animation system. For example, the jiggling in the deformable

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

2 • Junggon Kim et al.

Fig. 1. A skeleton-driven deformable body character (Fatman): A realistic jiggling behavior of the dancing character’s deformable body can be captured
in near real time with our physically based simulation technique. See Figure 15 and Table IV for its simulation model and computation time.

body of the complex skeleton-driven character, Fatman, shown in
Figure 1 can be generated in almost real-time in our system (Ta-
ble IV). Our system for skeleton-driven deformable body charac-
ters has the following features, and to our knowledge, no previous
work shows all of them.

(1) Speed: The simulation speed is fast enough to be applied to an
interactive animation control system while preserving model-
ing accuracy as much as possible.

(2) Unity: Our system handles both the one-way and two-way sim-
ulations in a unified formulation.

(3) Scalability: The cost of all run-time computations for solving
the equations of motion for a single simulation time step is
linear in the model complexity, which is desirable for good
scalability to complicated characters.

We investigate existing techniques, review their strengths and
weaknesses, and take some of their advantages while addressing
their drawbacks by modifying them or by hiring other techniques.
More specifically, a nonlinear finite element method is chosen to
handle largely deformed elements effectively, a reduced system for
deformable bodies obtained by applying mesh embedding and mass
lumping is used to speed up the simulation, and a linear-time algo-
rithm is used to solve the fully nonlinear dynamics of the skeletons.
We present detailed discussions on our engineering decisions in
putting such technical pieces together to achieve a fast simulation
speed while preserving modeling accuracy as much as possible.

After reviewing related previous work in Section 2, we will ex-
plain our choices in building an approximate mathematical model
for a skeleton-driven deformable body system and solving the equa-
tions of motion of the dynamical system efficiently in Section 3, 4
and 5. Parallelizing the computation can lead to additional speedup,
and this will be addressed in Section 6. Finally, we will show the
results in our experiments in Section 7, and conclude this paper in
Section 8.

2. RELATED WORK

Generating realistic behaviors of deformable bodies has been an
active research topic in computer graphics. After the pioneering
work by Terzopoulos et al. [1987], physics-based methods have
been applied successfully to the simulation of various phenom-
ena in deformable objects such as cloth [Baraff and Witkin 1998;
Bridson et al. 2002; Choi and Ko 2002], elasticity [O’Brien and

Hodgins 1999; Müller et al. 2002], and plasticity [O’Brien et al.
2002; Bargteil et al. 2007]. An excellent survey on the methods for
deformable bodies in computer graphics can be seen in Nealen et
al. [2006], and here we briefly summarize the previous work most
closely related to ours, i.e., the techniques for physically based sim-
ulation of soft elastic bodies with skeletons.

Shinar et al. [2008] presented a time integration scheme for solv-
ing dynamic elastic deformations in soft bodies interacting with
rigid bodies. Their framework can handle an articulated rigid body
skeleton embedded in a soft body using pre-stabilization and post-
stabilization to enforce joint constraints, and capture the two-way
coupling between the skeleton and the deformable body. However,
their method does not facilitate development of an interactive ani-
mation system because of the massive computation required for the
finite elements representing the deformable body. In their experi-
ment, for example, it took about 30min for a 1sec simulation of a
flopping fish motion. In our approach we obtain a similar two-way
coupling of dynamic motions in real-time with a reduced model
while preserving modeling accuracy as much as possible.

Focusing on the surface rather than the volume is one possi-
ble approach to a fast solution for physically-based deformations
of soft bodies [Turner and Thalmann 1993; Bro-nielsen and Cotin
1996; James and Pai 1999; Shi et al. 2008]. Galoppo et al. [2006]
presented a fast method to capture dynamic deformations on the
surface of a soft body including a rigid core, and they extended
their method to apply to soft body characters with multiple rigid
bones in Galoppo et al. [2007]. Their formulation, however, only
considers the elastic energy from skin-layer deformation and does
not include the deformation inside the volume, so it does not cap-
ture pose-dependent deformations correctly.

Another possible approach to fast, physically-based volumetric
deformations in the soft body is using a quasi-static approximation.
Teran et al. [2005] presented a quasi-static solution for flesh defor-
mation driven by a skeleton. Lee et al. [2009] used a similar method
to compute the deformation of the soft tissue in their biomechani-
cal model of the human upper body. Though such quasi-static so-
lutions are much faster than a fully dynamics simulation with the
same model size, they do not capture the dynamic behaviors of the
soft body such as jiggling.

Reducing the mathematical model size would be a practical
choice to speed the full dynamics simulation to an interactive
rate. Mesh embedding, which is also called free-form deforma-
tion [Sederberg and Parry 1986], uses a low-dimensional coarse
volumetric mesh to represent the behavior of a deformable body.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fast Simulation of Skeleton-driven Deformable Body Characters • 3

Fig. 2. A starfish escaping from a glass cage: A starfish has been trapped in a glass cage and is trying to escape by attempting a few trials, e.g., hitting the
obstacle with a jump (the second frame) or lifting up the obstacle’s edge using its arm (the third frame). Our two-way simulation handles such complicated
interaction between the character and the changeable environment automatically, and results in a physically plausible animation.

The embedding mesh representation has been successfully applied
to physics-based simulations of deformable objects such as elas-
tic soft bodies [Faloutsos et al. 1997; Capell et al. 2002b; Nesme
et al. 2006; Nesme et al. 2009; Kharevych et al. 2009] and visco-
plastic material flow with thin features [Wojtan and Turk 2008].
Particularly, Capell et al.[2002a] employed a skeleton to control
the coarse mesh enclosing a soft elastic body and they extended
their method to include rigging forces which guide the deformation
to a desired shape [Capell et al. 2005]. They handled the skeletal
constraints as a set of prescribed trajectories for the nodes located
on the bones, so that the trajectories must be given before simu-
lation. Though their method can effectively handle one-way sim-
ulation with a given global skeletal motion, it does not consider
two-way coupling among the skeleton, the soft body, and the envi-
ronment which is needed to generate physically plausible motions
of lifelike characters. Our approach can handle two-way interac-
tions in the simulation to create realistic motions of self-propelled
characters like the starfish shown in Figure 2, in addition to one-
way simulation. In this animation, two-way coupling gives us, for
example, physically plausible ballistic trajectories, and realistic vi-
bration of the entire character body, including the skeleton, when
the starfish drops onto the pier, while handling complicated inter-
action between the character and the movable obstacle.

Using a linear subspace spanned by a small number of basis vec-
tors to represent the global deformation of a deformable body is one
of the most popular techniques for reducing the dimension of com-
plexity in a huge physics model. Such a technique, which is also
called modal analysis, has been successfully applied to the analysis
of mechanical structures in engineering, because usually very small
deformation occurs in such systems. After the pioneering work by
Pentland and Williams [1989], modal analysis has also been stud-
ied by many researchers in the graphics community. James and
Pai [2002] used precomputed modal vibration models excited by
rigid body motions to produce secondary motions of the soft tis-
sues attached to the character bones in real time. More recently,
many researchers have tried to expand the applications of modal
analysis by effectively handling nonlinear deformation and geo-
metric constraints. For example, Hauser et al. [2003] presented a
method for real-time manipulation of positional constraints, Choi
and Ko[2005] presented a modal warping technique which han-
dles large rotational displacements and orientational constraints,
and Barbič and James [2005] used additional basis vectors obtained
from either modal derivatives or user sketches to capture the non-
linear deformation effectively. Kim and James [2009] introduced
an online model reduction technique, which incrementally builds a
reduced model as the simulation progresses, to skip the computa-
tionally expensive precomputation stage and not to be restricted to
any initial basis. Though exploiting the modal technique is comple-
mentary to the approach described in this paper and may potentially

give our simulation system further speedup, it is still inherently
difficult to handle the nonlinear kinematic constraints caused by
a complex internal skeleton within the linear subspace framework.

In this paper, we reduce the mathematical model size through
the use of mesh embedding, but in a form that allows for two-way
coupling. We discuss the implications of using nonlinear finite ele-
ments in such an implementation, and present a novel technique to
speed up treatment of largely deformed elements. We discuss the
advantages of the lumped mass model and detail proper treatment
of mechanical properties near the boundary of the body in order
to preserve modeling accuracy as much as possible even in such a
reduced system. We describe how to treat skeletal dynamics so that
the entire system scales in a linear way with character complexity.
Finally, we discuss issues that arise in parallel implementation of
such a system. Throughout the paper, we explain our engineering
decisions and compare to alternatives.

3. NONLINEAR FINITE ELEMENTS

The first decision that must be made is to choose how to model
the deformable body for simulation. In this section we argue for
the choice of nonlinear finite elements, discuss the importance of
handling largely deformed elements properly, and present a novel
algorithm for fast detection of largely deformed elements. For ad-
ditional background information to supplement this section, please
see the textbooks [Bonet and Wood 1997] and [Basar and Weichert
2000], as well as the overview by Nealen et al. [2006].

3.1 Nonlinear Deformation

Strain is a geometric measure of deformation such as stretching,
compression and shearing in a deformable body. Most previous
work pursuing fast simulation relies on a linearized strain, or in-
finitesimal strain under the assumption of small deformation, be-
cause of its simplicity in computation. The linearized strain, how-
ever, can cause serious problems such as inflation of the body espe-
cially when the deformation contains rotational modes as illustrated
in Müller and Gross [2004]. This is because the linearized strain
cannot cleanly filter out the rigid rotational modes. Many tech-
niques, called corotational methods, have been suggested to remove
as much of the rigid rotation as possible by using local coordinate
frames following the global motion of the body [Terzopoulos and
Witkin 1988; Capell et al. 2002a; Müller et al. 2002; Müller and
Gross 2004]. Though corotated linearized strain has been widely
used in interactive graphics applications, it is still valid only when
the deformation is very small.

Skeleton-driven deformable bodies, however, are likely to un-
dergo large deformation, especially near the skeletal joints (e.g., see
Figure 4). When deformations are large, a linearized method can
generate highly unrealistic deformations as pointed out in Capell

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

4 • Junggon Kim et al.

Fig. 3. Simulated motions of self-propelled characters: The fish and worm characters have deformable bodies attached to their skeletons, and the jumping
and rolling motions were actuated only by internal motors (i.e., the active joints in the skeleton). The only external forces are those due to gravity and contact
forces computed using a penalty-based contact mechanism. This physically plausible model of forces was used for the two-way simulation in order to mimic
lifelike self-propelled motions.

Fig. 4. A largely deformed mesh: Large deformations may easily occur
during the simulation of skeleton-driven deformable body systems. This
figure shows an example of such deformations in the worm mesh. The red
ovals indicate highly deformed regions due to the underlying skeleton mo-
tion and the contacts between the character and the ground (black horizontal
line). Handling such large deformations effectively is important to obtain a
pleasing result and to achieve a stable simulation system. The reddish grid
lines represent the volumetric finite element mesh. This mesh is attached to
the skeleton (blue links and yellow joints) by fixing some of the the mesh
nodes (black spheres) to the links. See Section 5 for detail on our skeleton-
driven deformable body model.

et al. [2005]. In order to handle large deformation in the elements
effectively, we use the nonlinear Green-Lagrangian strain tensor
because it can express large deformations correctly regardless of
the rigid modes. From the viewpoint of simulation speed, however,
using the nonlinear strain could be risky because of the expensive
computation required. We overcome this problem by reducing the
number of mesh elements with a coarse mesh (Section 4) and by
parallelizing the computation (Section 6). This combination of de-
cisions makes it possible to have convincing large deformations
near the joints at real-time or near real-time simulation speeds.

Nonlinear Strain Details. The nonlinear Green-Lagrangian
strain is defined as

E =
1

2
(FTF − I) (1)

where I is the identity tensor and F is the deformation gradient
tensor F = ∂x

∂X
where x and X denote the positions of a point in

the material after and before deformation respectively.
In a finite element method, the strain E for each element is com-

puted from the nodal positions in the currently deformed state and
the initially undeformed state. In the case of a tetrahedral mesh
with a linear shape function, E becomes a constant 3 × 3 matrix
for each element. One can see, e.g., O’Brien and Hodgins [1999]
for an explicit formula in such a case.

3.2 Elastic Forces

To compute elastic forces from deformation, or strain, we need to
know how internal stress is distributed across the entire soft body.
Because the internal stress depends on both the amount of deforma-
tion and the material’s mechanical properties, we need a mathemat-
ical material model, which is also called as a constitutive equation,
to represent the relationship. Once a proper material model is cho-
sen, we can compute the stress from the strain already obtained
above.

St. Venant-Kirchhoff (or StVK) material is one of the most pop-
ular models for the purpose of computer animation because it is
simple to compute and applicable to geometric nonlinear analysis.
The material is defined by

S = λ(trE)I + 2µE (2)

where S is the second Piola stress tensor, and λ and µ are Lamé pa-
rameters which determine the material’s elastic properties. Though
our simulation system does not require the use of a particular mate-
rial model, we chose the StVK model for our examples because of
its simple implementation. The StVK model, however, has a fatal
drawback when the element undergoes large compression. During
large compression the stiffness of the material gets weaker as com-
pression increases so that the internal stress finally becomes zero
when the element is flat. Moreover, if the element gets inverted,
the stress acts in the opposite direction so that the inverted element
cannot be naturally restored after the inversion [Irving et al. 2004].
To handle the problem, Irving et al. [2004] suggested a correction
mechanism for largely deformed elements, which will be briefly
reviewed in Section 3.3 along with our suggested improvement for
fast computation.

The elastic forces acting on the element nodes can be obtained
from the second Piola stress tensor S in (2). We follow the formula

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fast Simulation of Skeleton-driven Deformable Body Characters • 5

0 1

0

deformation gradient

st
re

ss

Fig. 5. The relationship between the deformation gradient (F̂) and the
first Piola-Kirchhoff stress (P̂) along a principal axis: (Red) St. Venant-
Kirchhoff model (blue) Rotated linear models with the same stiffness as
the StVK model at the boundaries (blue circles). Note that the element is
undeformed, compressed and stretched when F̂ = 1, F̂ < 1 and F̂ > 1
respectively.

in Teran et al. [2003] because the formula fits well with the diag-
onalization technique of Irving et al. [2004]. The elastic forces are
obtained by

fi = Pbi (3)

where P = FS denotes the first Piola-Kirchhoff stress tensor and
bi = − 1

3
(A1N1 + A2N2 + A3N3) where Aj are the areas of

the undeformed faces incident to the vertex and Nj denotes the
normal vectors to those undeformed faces. Because Aj and Nj do
not change during simulation, bi can be precomputed. One can also
save multiplications by using the relationship f0 = −(f1+f2+f3).
The total elastic force acting on a node is obtained by summing
the forces exerted by all elements incident to the node. Note that
(3) is valid only when the mesh element is fully filled with elastic
material. We will discuss how to handle partially filled elements,
which are commonly found when modeling with mesh embedding,
in Section 4.3. Treating partially filled elements properly is criti-
cal for achieving accuracy in modeling and for improving stability
of the simulation, but to our knowledge is not addressed in prior
publications.

3.3 Largely Deformed Elements

As mentioned above, the StVK material becomes softer as the ma-
terial gets compressed and this can lead elements to become in-
verted quite easily. More seriously, the material is getting rapidly
stiffer as it gets stretched and this may cause the simulation to di-
verge. In fact, many other mathematical material models have sim-
ilar problems. For example, Neo-Hookean material has behavior
opposite to StVK material in large compression, becoming rapidly
stiffened as it is compressed.

To overcome such a problem Irving et al. [2004] presented a
technique for modifying the material model in the range of large
deformation. Suppose that the deformation gradient F can be de-
composed as

F = UF̂V T (4)

where F̂ is a diagonal matrix, and U and V are pure rotations, i.e.,
UTU = V TV = I and detU = detV = 1. Note that such a de-
composition is slightly different from the traditional singular value

α

β
L

δ

U
δ

2

2

Fig. 6. A cubic polynomial: If a cubic polynomial, f(λ) = λ3 +aλ2 +
bλ + c, satisfies (7), the zeros of the polynomial must be located between
δ2L and δ2U where 0 < δ2L < δ2U .

decomposition in the sense that U and V must be pure rotation ma-
trices and the diagonal entries in F̂ can be negative. The diagonal
entries of F̂ , which are called the principal stretches, represent how
much the element has been stretched or compressed along princi-
pal axes. Therefore, through the diagonalization of the deformation
gradient, we can determine if an element undergoes large deforma-
tion or not. For example, if one of the diagonal entries is negative,
it means that the element has been inverted along the correspond-
ing principal axis. If the element has been stretched or compressed
too much in a certain principal direction, a different material model
such as a linear model is applied in that direction to obtain reason-
able stress and stiffness. In our implementation the StVK model
is replaced with rotated linear models when the deformation ex-
ceeds given lower or upper limits as shown in Figure 5. Once the
stresses along the principal axes are determined from the principal
stretches, the first Piola-Kirchhoff stress tensor can be obtained as

P = UP̂V T (5)

where P̂ = P (F̂) is a diagonal matrix whose diagonal entries are
the stresses along the principal axes, and U and V have been ob-
tained in (4).

In order to decompose the deformation gradient, we need to per-
form singular value decomposition on F (or solve the eigenprob-
lem FTFv = λv) and postprocess to ensure U and V are pure
rotations [Irving et al. 2004]. Though F is just a 3× 3 matrix, exe-
cuting the process for every element is computationally expensive.
We suggest an efficient way to address this problem by diagonaliz-
ing the deformation selectively for largely deformed elements only.

Selective Diagonalization

The key for selective diagonalization is to sort out largely deformed
elements in a short time. To see whether the element deformation
exceeds a given range of small deformation, checking the range
of the principal stretches, rather than obtaining the exact values of
them, is enough. If detF ≤ 0 for an element, this means that the
element has been inverted so that we need the diagonalization pro-
cess on that element. On the other hand, if detF > 0, we need an
additional step to decide whether the element undergoes large de-
formation. Let [δL, δU] be a given small deformation range where
we do not need the diagonalization process. First note that the so-
lutions of the characteristic equation, det(λI − FTF) = 0, cor-
respond to the square of the principal stretches. For elements with
small deformation, solutions to this equation must lie between δ2L
and δ2U . Now, observe that the left hand side of this equation is a
cubic polynomial in λ

f(λ) = λ3 + aλ2 + bλ+ c (6)

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

6 • Junggon Kim et al.

where a, b, and c are the coefficients of this polynomial. This cubic
polynomial will have three zeros, which all must lie between δ2L and
δ2U for the element to have small deformation. Finally, consider the
diagram in Figure 6. We can conclude that the element has a small
deformation, i.e., that all of the solutions are in the range [δ2L, δ

2
U]

by satisfying

f(δ2L) < 0, f(δ2U) > 0, δ2L < α, β < δ2U (7)

where α and β are the solutions of f ′(λ) = 0. If some of (7) are
not satisfied for an element, this means that the element has been
largely deformed and we need the diagonalization process for the
element. With given F and C = FTF , the check process requires
up to 37 multiplications per element in our implementation.

For every element we execute the determination process, and
then we follow the diagonalization technique by Irving et al. [2004]
for the largely deformed elements only. In the worst case, i.e., when
every element is largely deformed, our approach could be ineffi-
cient for its added determination process. However, in many char-
acter motions only some part of the deformable body undergoes
large deformation.

The speedup by the selective diagonalization technique varies
depending on many factors such as the type of motions to be cre-
ated, the number of the finite elements and the choice of SVD al-
gorithm for the diagonalization. It is clear that the technique can
be more effective when the number of finite elements is large so
that most of the computation time is spent in computing the elastic
forces inside the deformable bodies. Indeed, this technique results
in a speedup of a factor of 3 or more in the time required for the en-
tire physics simulation in some of our tests (Table V). Even for our
low-dimensional models, we found that the technique still works to
some extent (speedup from 10% to 70% depending on the simula-
tion setup). The effect of the technique will be discussed in detail
in Section 7.

4. REDUCED SYSTEM

In this section we explain our reduced model for deformable bod-
ies. We use a mesh embedding technique to reduce the complexity
of the mathematical model so that we can perform a fast low res-
olution volumetric simulation. We also consider a high resolution
character surface in the formulation to handle the contact between
the character and the environment, and to capture correct mechan-
ical properties of the deformable body such as mass and elastic
forces.

4.1 Mesh Embedding

In order to capture the detailed physics of the deformable body with
a finite element method, a fine mesh structure fitting to the body’s
volumetric geometry can be used as in Shinar et al. [2008]. How-
ever, though the fine mesh gives high accuracy to the simulation,
the computation is too expensive to be applied to a fast simulation
system. Therefore we need to reduce the complexity of the mathe-
matical model to speedup the simulation.

Most techniques to reduce the system’s DOF within a finite ele-
ment framework can be roughly classified into two groups – modal
reduction and mesh embedding. Modal reduction is a very popular
method to reduce the complexity of a finite element system. It uses
a linear subspace spanned by a small number of displacement basis
vectors to represent the deformation in the body. The eigenmodes
obtained from linear modal analysis would be the best basis vectors
for small deformation. For large deformation, however, they are not
sufficient to capture the nonlinear deformation, so many techniques

have been suggested to choose a good deformation basis set. See,
e.g., Barbič and James [2005] for their choice of the basis vectors
based on either modal derivatives or user sketches. Though modal
techniques have been widely used in many real-time applications
handling soft bodies such as surgery simulators, it is still an open
problem to handle the nonlinear constraints caused by a skeleton in
the soft body within the linear framework.

Mesh embedding, which is also called free-form deformation in
the literature, uses a relatively low-dimensional coarse volumetric
mesh enclosing the entire deformable body in order to represent the
behavior of the body. The location of every material point inside
the deformable body is determined by interpolating the positions
of the neighboring nodes in the mesh. Since the work by Faloutsos
et al.[1997], the mesh embedding technique has been widely used
to simulate soft bodies in graphics literature [Capell et al. 2002a;
Kharevych et al. 2009; Nesme et al. 2009].

We chose the mesh embedding to reduce the DOF of the de-
formable bodies in our simulation system not only because the
technique can reduce the system DOF without losing the fine ge-
ometry of the characters but also because the internal skeleton can
be handled more easily in the embedding mesh system compared
to the modal reduction. Capell et al.[2002a] presented an embed-
ding mesh framework to control soft body characters which have
an underlying skeleton made up of mesh nodes with known global
trajectories. In our formulation, however, the skeleton is considered
as an articulated rigid body system and the dynamics of the skele-
tal system is fully considered in solving the equations of motion of
the whole system. Therefore, our method can simulate not only the
deformable body motions that result from a kinematically moving
skeleton, but also the motions of lifelike characters that are actuated
with internal motors in the skeleton. The complete system consist-
ing of a deformable body and a skeleton will be addressed later in
Section 5.

The position of a material point in the deformable body is deter-
mined from the nodal positions of the coarse mesh through inter-
polation. We assume a linear relationship between the body point
and the nodes defined as

y =
∑
i

ϕi xi (8)

where y ∈ ℜ3 denotes the position of a body point, xi ∈ ℜ3 rep-
resents the i-th nodal position, and ϕi = ϕi(y) ∈ ℜ is a coeffi-
cient which is associated to the i-th node at the point y and sat-
isfies

∑
i ϕi(y) = 1. Only neighboring nodes of the body point

have non-zero coefficients, and in the case of tetrahedral mesh, we
choose the four nodes of the tetrahedral element enclosing the ma-
terial point as the neighbors. In this case, (ϕ1(y), · · · , ϕ4(y)) is
the barycentric coordinates of the point y with respect to the nodal
position (x1, · · · , x4).

4.2 Mass Lumping

The mass matrix for the deformable body can be obtained from its
kinetic energy formula,

T =
1

2

∫
V

ρ ẏT ẏ dV (9)

where ρ denotes the material density at a body point y, and ẏ is the
velocity of the point. By substituting (8) to (9), one can get T =
1
2
ẋTMẋ where M denotes the mass matrix of the deformable body

and x is a concatenated position vector of the coarse mesh nodes.
The mass matrix can be obtained by mij =

∫
V
ρ ϕi ϕj dV where

mij · I denotes the 3 by 3 matrix component of M representing

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fast Simulation of Skeleton-driven Deformable Body Characters • 7

Fig. 7. Mesh embedding and mass lumping: This 2D illustration shows
two different examples (middle, right) of coarse meshes enclosing a de-
formable body (left) depicted as the solid green circle. The meshes are
depicted as the blue lines, and their corresponding lumped mass particles
located at the nodes are shown as the solid blue circles. The area of the cir-
cles represents the mass of the particles and the deformable body, and the
lumped masses were computed by (10). Note that the sum of the lumped
masses must be equal to the mass of the deformable body.

the mass coupling between the i-th and j-th mesh nodes, and ϕi

and ϕj are the coefficients associated with nodes i and j as defined
in (8). Though the mass matrix for the deformable body is sparse,
the cost for solving the equations of motion of the whole system,
including the deformable body and the skeleton, increases rapidly
as the number of mesh nodes increases. This is not only because the
mass matrix for the skeleton is always dense and dependent on the
pose but also because mass coupling between the soft body and the
skeleton also occurs when the soft body is attached to the skeleton
by fixing some nodes to the bones as illustrated in Figure 9. No
efficient linear-time solution for such a system is yet known.1

Mass lumping is a common way to simplify the dynamics equa-
tions and speed up the computation by approximating the mass ma-
trix with a diagonal matrix. Using mass lumping for the soft body
allows a linear time solution to the dynamics equations of the en-
tire system and this will be described in Section 5. Through mass
lumping, the continuously distributed mass in the deformable body
is modeled as a set of point masses located at the nodes. More-
over, by merging the point masses of the fixed nodes into the bones,
the mass coupling between the soft body and skeleton can also be
simply treated within the skeletal dynamics without any additional
cost. Note that we will still fully consider the dense mass matrix of
the skeleton because it can be efficiently handled by existing linear-
time algorithms such as [Featherstone 1983] and [Baraff 1996].

The point mass of the i-th node is obtained by integrating an
effective material density over the mesh volume,

mi =

∫
V

ρ ϕi dV, (10)

1Let Ms be the mass matrix of the skeleton and [mij] =

[
Maa

d Mab
d

Mab
d Mbb

d

]
be the mass matrix of the deformable body where the superscripts a and
b denote the terms corresponding to the free and fixed nodes respectively.
When the fixed nodes are attached to the skeleton with hard constraints, i.e.,
xb = f(q) where q denotes joint coordinates of the skeleton and f(q) is
forward kinematics to the nodes, the mass matrix of the whole system can

be written as
[

Maa
d Mab

d J

JTMab
d JTMbb

d J+Ms

]
where J = ∂f

∂q . Because the mass

matrix is not constant (Ms and J are dependent on the skeleton pose), no
efficient linear-time solution exists yet.

and it is same as the sum of the i-th row, or column, of the full
mass matrix, i.e., mi =

∑
j mij . 2 In the case of tetrahedral mesh,

the mass contribution of an element fully filled with a homoge-
neous material to its four nodes is simply ρ v/4 where v is the
undeformed volume of the element [O’Brien and Hodgins 1999].
Because we use a coarse mesh enclosing the deformable body, the
mesh elements near the boundary of the body may not be fully filled
with a material. We obtain the mass contribution of such elements
to their nodes by computing (10), which will be explained in Sec-
tion 4.3. By lumping the mass of the soft body, the whole system
including the deformable body and its skeleton can be treated as
a mechanical system consisting of point mass particles and articu-
lated rigid bodies, which could be solved by any existing rigid-body
dynamics engines. We, however, use our own implementation of a
recursive dynamics algorithm in our simulation system for better
performance and a more flexible simulation setup, and this will be
described in Section 5.

4.3 Mechanical Properties near Boundary

Usually the coarse mesh elements near the fine surface of the soft
body are partially filled with a material. In most previous work us-
ing mesh embedding, however, such elements are assumed to be
fully filled for simplicity at the cost of decreased accuracy. With
the assumption of fully filled elements, the lumped mass can be
easily computed from the undeformed volume of the elements, and
the elastic force can be obtained as explained in Section 3. Though
such an approach could be thought as a practical choice for graphics
applications that are generous with regard to the simulation accu-
racy, sometimes it could lead to visible artifacts such as overly stiff
behaviors of soft thin bodies surrounded by coarse control lattices
as pointed out in Nesme et al. [2009].

Capturing the mechanical properties of a soft body as correctly
as possible in a coarse embedding mesh system has been explored
recently. Nesme et al. [2006] suggested spatial averaging of mass
and stiffness for coarse linear finite element models. They recently
extended it to consider material inhomogeneity through obtaining
a displacement map between coarse nodes and fine level nodes
by solving a static equilibrium equation on the fine level model,
and finally obtaining the stiffness matrices of the coarse elements
[Nesme et al. 2009]. Partially filled coarse elements are handled
in their method by introducing hard constraints rigidly linking the
disconnected coarse nodes to their neighboring fine nodes when
solving the equilibrium equation. Kharevych et al. [2009] also
presented a similar method for capturing material inhomogeneity
within a coarse mesh system, but in a different way, by finding an
effective linear elasticity tensor per each coarse element and a dis-
placement mapping between coarse nodes and fine nodes. How-
ever, because the previous methods are based on a linear finite el-
ement framework, they do not fit well in our simulation system,
which uses nonlinear finite elements. Wojtan and Turk [2008] pre-
sented a method for capturing the correct mass of thin homoge-
neous materials within a time-varying coarse mesh system, but they
did not discuss elasticity in the partially filled elements.

We have already discussed how to obtain the mass matrix of the
deformable body from its kinetic energy and how to effectively ap-
proximate the mass property with a set of lumped nodal masses

2The lumped mass formulation can also be obtained from momentum as in
[Sifakis et al. 2007]. Let P be the momentum of the deformable body and
mi be an effective lumped mass at the i-th node. Then, P =

∫
V ρ ẏ dV =∑

i miẋi, and substituting (8) for ẏ and differentiating both sides of the
equation with respect to ẋi will lead to (10).

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

8 • Junggon Kim et al.

Fig. 8. Effect of the treatment of partially filled elements on the simu-
lation: All three models have the same volumetric mesh (upper), but they
deform differently under the heavy load pressure due to our treatment of
partially filled elements (lower).

in Section 4.2. To evaluate the volume integration in (10) numeri-
cally, we discretize each element volume near the body surface by
randomly sampling points. We follow [Rocchini and Cignoni 2000]
for generating random points in tetrahedral elements. For each sam-
ple point, we check whether it is located inside of the body or not,
and if it is, the mass contributions of that point, ρϕiv/ns, are added
to the neighboring nodes where ϕi denotes the nodal coordinates of
the sample point, v is the volume of the element, and ns is the num-
ber of sample points used for the element. We also refer the reader
to [Rathod et al. 2005] for Gauss Legendre quadrature formulas for
computing numerical integration over a tetrahedron.

Obtaining the particle masses correctly is not sufficient for both
accuracy and stability of the simulation. In fact, without consid-
ering partially filled elements in calculating the elastic forces, the
correct mass computation could do more harm than good, espe-
cially with regards to stability. Indeed, as shown in Figure 7 (right),
the outermost nodes may have very small masses so that the elastic
force computed from an assumption of fully-filled elements, which
is much larger than the force that should be exerted on the node,
could lead to an unstable simulation. For example, a Fatman model
with only the mass treatment required a simulation step size nearly
10 times smaller for the simulation of the dancing motion shown in
Figure 1.

Computing elastic forces while taking care of partially filled non-
linear elements is surprisingly simple, though, as far as we know,
it has not been clearly discussed in the literature. We assume that
each element has constant material properties such as Lamé pa-
rameters for StVK material. The nonlinear strain tensor is constant
for each element as mentioned in Section 3.1, and the stress tensor
is also constant due to the constant material properties. Therefore,
the elastic potential for each element is proportional to the mate-
rial volume of the element. Because the elastic force is defined as
the negative partial derivative of the potential with respect to nodal
position, the forces acting on the nodes due to the partially filled
element can be obtained by

f̃i = wfi (11)

where fi is the elastic force computed by (3) with the assumption
of a fully filled element, and w denotes the ratio of the filled region
in the element to its volume. The volume ratio for each element
can be obtained as w = n∗

s/ns where n∗
s is the number of sample

points located inside the soft body and it can be counted during the
nodal mass calculation described above. Note that the nodal masses
and the volume ratio for each element can be precomputed because
they do not vary during simulation. We show the effectiveness of
our treatment of partially filled elements in Figure 8 where different
soft body models with the same volumetric mesh are compared.
Without the treatment, all three models in the figure would have
had the same deformation which is not physically plausible.

5. SKELETON-DRIVEN DEFORMABLE BODY

So far we have chosen a coarse mesh structure with lumped mass
particles to reduce the model size. We also selected nonlinear fi-
nite elements with the selective diagonalization technique for bet-
ter handling of large deformation, and considered the fine geometry
of the body in calculating the particle masses and elastic forces for
better modeling accuracy. In this section, we complete our model-
ing and mathematical formulations for skeleton-driven deformable
body systems.

The skeleton consists of arbitrarily shaped rigid bones connected
with joints, and one of the bones is virtually connected to the
ground with a joint which is called the root joint. We assume that
the skeleton has a tree topology, and there is no other restriction
in modeling of the articulated rigid body system such as the mass
properties of the bones and the types of joints. In this section we
will explain how to attach the deformable body to the skeleton,
consider damping and contact, and efficiently solve the equations
of motion of the entire system.

Fixed Nodes

One possible way to attach the deformable body to the skeleton
would be to use soft positional constraints as done by [Lee et al.
2009] in their quasistatic soft tissue simulation. Zero-length springs
are used to connect points in the soft body to their target position on
the bones. Such an approach allows flexibility in choosing the at-
tachment points, but the stiff constraint springs could cause a severe
time step restriction in the simulation. Though implicit integration
could alleviate the small step size problem, it requires building and
solving a huge matrix system which is neither positive-definite nor
symmetric, and this decreases the overall simulation speed.

Instead, we attach the deformable body to the skeleton by di-
rectly fixing some of the coarse mesh nodes to the bones (Figure 9).
The simplest way to select the nodes to be fixed would be to choose
nodes located near the bones. However, if there are specific points
in the soft body to be fixed to bones, we must generate the em-
bedding coarse mesh in such a way that its nodes are placed on
those locations. In such a case, we first set the positions of nodes
and then generate mesh elements using a 3-D Delaunay triangula-
tion. Because the Delaunay triangulation always results in a convex
mesh, we usually cut out some of the outer elements which do not
contain the soft body material. This cutting-out process, however,
is not really necessary because the empty elements will be auto-
matically excluded from the simulation by (11). The mass of each
fixed node is merged into the bone to which the node is attached, in
order to consider the mass coupling between the deformable body
and the skeleton in the skeleton dynamics. All the forces acting
on the fixed nodes such as the elastic forces are transmitted to the
bones and they affect the solution of the skeletal dynamics. The re-
sulting skeletal motions will also affect the secondary motions of
the deformable body in the next time step through the updated fixed
nodal positions.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fast Simulation of Skeleton-driven Deformable Body Characters • 9

0
x 1

x

2
x 3

x
4
x

5
x

6
x

7
x

8
x

9
x

10
x

12
x

11
x

13
x

14
x

0
q

2
q1

q

Fig. 9. A 2D illustration for skeleton-driven deformable body systems:
The shape of the deformable body is defined by the fine surface, but the
motions of it are represented by the coarse volumetric mesh enclosing the
surface. The deformable body is attached to the skeleton by fixing some of
the mesh nodes (black dots) to the bones, and overall motions are driven
by the skeleton. In this illustration, {q0, q1, q2} is the joint coordinates of
the skeleton where q0 denotes the coordinates of the virtual root joint, and
{x0, · · · , x14} represents the coordinates for the deformable body.

Damping

We need damping to attenuate jiggling in the deformable bodies.
The most common approach for this in the literature would be to
use Rayleigh damping, which assumes that the damping matrix is
proportional to the mass and stiffness matrices. Applying Ralyleigh
damping in our simulation system, however, is not straightforward
because the stiffness matrix for nonlinear finite elements, which
is not needed in our system, would have to be constructed, and this
would decrease the simulation speed. Perhaps, it would be most ele-
gant to consider the viscous term along with the elastic forces in the
finite element formulation as done by O’Brien and Hodgins [1999],
but this method requires to additionally compute the strain rate and
the viscous stress in each element.

We want a simple and effective way of dissipating vibrations in
the deformable bodies. In addition, the damping forces must be de-
pendent on the relative velocity of the deformable body to the un-
derlying skeleton, rather than the global velocity, so that the forces
dampen the jiggling only and do not drag down the whole body
motion.

With these considerations in mind, we connect a damper to each
node, or mass particle, in the deformable body and attach the other
end of the damper to the particle’s reference bone which is usually
set to be the nearest bone from the undeformed position of the node.
The damping force fd acting on the particle is obtained by

fd = −c (ẋ− ṗ) (12)

where c is a damping coefficient proportional to the particle’s mass,
ẋ is the global velocity of the particle, and ṗ denotes the global ve-
locity of the point to which the damper is connected to the bone.
The body velocity ṗ is a nonlinear function of the skeletal pose
and the skeletal joint velocities, i.e., it can be written as ṗ = Jq̇
where J = J(q) is a pose dependent Jacobian matrix and q̇ denotes
the joint velocities. In our implementation, ṗ is obtained efficiently
when we update kinematic information of the skeleton which will
be discussed later in this section. Our damping model fits well to
our skeleton-driven deformable body systems, and as far as we
know, it has not been explicitly mentioned in the literature. Note

that the opposite force must also be transmitted to the reference
bone because the other end of the damper is connected to the bone.

Frictional Contact

We apply penalty-based contact normal forces and Coulomb fric-
tion forces to the fine surface of the deformable body, not to the
coarse mesh. Because we use the coarse mesh in the simulation,
we must transform the contact forces acting on the fine surface to
equivalent forces acting on the coarse mesh nodes. The force trans-
formation can be obtained easily from the principle of virtual work
as done in Faloutsos et al. [1997]. Let X and Y be the vectors rep-
resenting all of the nodal positions of the coarse mesh and all of the
vertex positions on the surface respectively, and they have a linear
relationship δY = J δX where J is a Jacobian matrix. Let Fs be
the contact forces acting on the surface vertices and Fv be the nodal
forces equivalent to the contact forces. From the principle of virtual
work, we have δY TFs = δXTJTFs = δXTFv and this leads to
Fv = JTFs. More specifically to our formulation, because we use
a linear embedding defined in (8), for each contact force acting on a
surface vertex, fs, we can obtain its equivalent nodal forces acting
on its neighboring nodes with

fv
i = ϕif

s (13)

where fv
i denotes the equivalent force acting on the i-th neighbor

node of the surface vertex, and ϕi is the corresponding coefficient
defined in (8). The total forces acting on the coarse mesh nodes are
obtained by summing the forces transformed from all contact forces
on the surface, and the computational cost for the force transforma-
tion is linear to the number of contact points on the surface. Note
that the transformation can be applied to transform any forces act-
ing on the deformable body into equivalent nodal forces.

Though we compute contact forces with respect to the vertices
on the fine surface of the soft body, penetration of the surface into
an obstacle will still occur because of the underlying penalty-based
contact mechanism. If non-penetration is of utmost importance, a
projected vertex approach, in which the contact vertices are pro-
jected onto the obstacle’s surface and velocity impulses are applied
to those vertices, could also be used within our framework. How-
ever, because we use a low-dimensional coarse mesh to control the
surface, multiple contact vertices in an element could cause con-
flicting constraints. Applying the method to only the most deeply
penetrating vertex in each element would be a practical way to
avoid such a problem as is done in Wojtan and Turk [2008].

Equations of Motion

The dynamics of the free mass particles, the nodes which are not
fixed to the bones, can be simply written as

miẍi = fi (14)

where mi is the mass of the i-th free particle, xi denotes the global
position of the i-th free particle, and fi represents all forces acting
on that particle which includes the elastic force, the damping force,
the equivalent contact force, and the gravity. Once all the forces
have been computed from the current state, the equation of motion
for each free particle can be solved independently from the other
particles and the skeleton.

The skeleton is an articulated rigid body system with a tree topol-
ogy. We use the relative joint coordinate system to represent the
degree of freedom of the skeleton system (Figure 9). The equations
of motion of the skeleton can be written as

Mq̈ + b = τ (15)

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

10 • Junggon Kim et al.

Fig. 10. A jump turn of a starfish character: In order to mimic a lifelike
self-propelling motion, we ran the two-way simulation by giving joint com-
mands on the active skeletal joints only. The root joint was set to be passive
and no external forces except contact forces were applied to the simulation.
See Section 7 for how to control the starfish character to make the jump
turn.

where q denotes the joint coordinates including the root joint coor-
dinates, τ is the torques, or forces, acting on the joints, M = M(q)
is the mass matrix of the skeleton, and b = b(q, q̇) denotes all the
other terms including the Coriolis and centrifugal forces, the force
by gravity, and the forces transmitted from the mass particles in
the deformable body. As we mentioned before, the rigid bodies,
or bones, in the skeleton contain the masses of the fixed particles.
The elastic forces and contact forces are directly transmitted to the
bones through the fixed nodes, and the damping forces acting on
the free nodes are also transmitted to the bones. We obtain the sys-
tem state at the next time step by solving the equations of motion,
(14) and (15), for any accelerations that are unknown and by inte-
grating the solution. The skeleton dynamics will affect the solution
of the deformable body at the next time step through the updated
states of the bones, more specifically, the updated positions of the
fixed nodes and the updated velocities of the points to which the
dampers are connected to the bones.

Solution of the Skeleton Dynamics

The dynamics equations for the skeleton shown in (15) can be
solved in various ways. We briefly discuss the following three com-
mon scenarios for animated characters:

—Forward simulation with joint torques: If the joint torque τ in
(15) is known, we can compute the acceleration q̈ from the equa-
tions of motion and this is called forward dynamics. To simulate
lifelike character motion driven by internal motor actuation only,
we can set the torque acting on the root joint to be always zero.
This choice leads to the following equations of motion

M

(
q̈a

q̈r

)
+ b =

(
τa
0

)
(16)

where the subscripts ‘a’ and ‘r’ denote the active internal skele-
tal joints and the root joint respectively, and the boldfaced sym-
bols – here, the accelerations of the internal and root joints –
represent the unknown variables to be solved in the equations. To
execute the simulation by providing torques at the active joints,
we usually need a servo controller for each actuator to generate
a torque compensating for error in tracking a given desired joint
trajectory or to achieve other goals. Most of the physically based
character simulations in the literature lie in this category, and a
freefall simulation can also be regarded as its special case when
τa = 0 or τa = Kqa with a spring element in the joint. We
refer readers to Shinar et al. [2008] as an example of such sim-
ulation for a skeleton-driven deformable body character. In our
examples with the fish and starfish characters shown in Figure 2,
3 and 10, we generated the landing motions with the free-falling
simulation.

—Forward simulation with prescribed joint trajectories: We
may also define a simulation by prescribing the acceleration of
the active joints in some cases, e.g., when the reference joint tra-
jectory for the active joints has been given:

M

(
q̈a
q̈r

)
+ b =

(
τa
0

)
(17)

In this case, the acceleration of the active joints becomes the
command input of the simulation, and the acceleration of the
passive root joint (and, if needed, the torques acting on the ac-
tive joints as well) will be obtained by solving the equations
of motion. Because the prescribed joints follow the given tra-
jectory kinematically or exactly, such joints do not need servo
controllers, but they will lose compliance. Note that, though the
active joints in the skeleton are kinematically following the refer-
ence trajectory, the global skeletal motion is obtained after inte-
grating the root joint acceleration which is computed from the
skeletal dynamics. We mainly used this type of simulation to
create realistic motions for self-propelled characters. Examples
can be seen in Figure 2, 3 and 10. (See Section 7 for a descrip-
tion of how we set the acceleration of the active joints.) Because
the resulting global motion can be regarded as a function of a
given active joint trajectory, this approach has also been applied
to find optimal joint trajectories for ballistic characters [Albro
et al. 2000; Sulejmanpašić and Popović 2005].

—Simulation of secondary motion of the passive deformable
body with a fully prescribed skeletal motion: Another com-
mon scenario for physically based animation would be obtaining
the secondary motion of a soft elastic body that is driven by a
given global skeletal motion as done in [Capell et al. 2002a]. In
this case, we do not need to solve the equations of motion for the
skeleton (15) because we already know the global motion of the
skeleton. (If needed, we can compute the joint torques with the
given joint acceleration from the equations and this is called in-
verse dynamics.) Instead, at every time step, the global positions
and velocities of the fixed nodes attached to the bones must be
updated using kinematics. The state of the deformable body at
the next time step is then obtained by integrating the solution of
the particle dynamics (14). Note that, in this case, the secondary
motions of the soft body do not affect skeletal motions (one-way
simulation). We obtained the jiggling soft body motion of Fat-
man shown in Figure 1 in this way.

In general, the command input on a joint can be either torque
or acceleration during the simulation and the command type does
not have to be same for all joints. The equations of motion can be
rewritten as

M

(
q̈u
q̈v

)
+ b =

(
τu
τv

)
(18)

where the subscript ‘u’ is for the acceleration-prescribed joints and
the subscript ‘v’ is for the joints with given, or known, torques. We
can compute (τu, q̈v) with known (q̈u, τv) from the equations and
we call this hybrid dynamics 3. The second scenario with prescribed

3We follow [Featherstone 1987] for the terminology. The term ‘hybrid dy-
namics’ used in this paper differs from the concepts with similar names
such as the hybrid control for non-smooth dynamical systems in control
community [Grossman et al. 1993], the hybrid control by mixing kinematic
and dynamic controls in computer graphics such as [Zordan and Hodgins
2002], and the hybrid simulation for deformable solids combining a mesh-
based method and a point-based method such as [Sifakis et al. 2007].

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fast Simulation of Skeleton-driven Deformable Body Characters • 11

joint trajectories described above is one common application of hy-
brid dynamics and see also, e.g., Lee et al. [2009] for applying
hybrid dynamics to a biomechanical upper body simulation. Note
that hybrid dynamics is a generalization of traditional forward and
inverse dynamics, i.e., they can be regarded as the extreme cases
of hybrid dynamics when all of the joints have given, or known,
torques and when all of the joints are acceleration-prescribed re-
spectively.

One possible solution for hybrid dynamics is to rearrange (15)
and solve it with a direct matrix inversion. For example, the ac-
celerations of the unprescribed joints can be obtained by q̈v =
M−1

vv (τv − bv − Mvuq̈u) where M =
[
Muu Muv
Mvu Mvv

]
, b =

(
bu
bv

)
,

and q = (qu
qv). The method, however, is not efficient for a complex

system because it requires building the mass matrix and inverting
the submatrix corresponding to the unprescribed joints, which leads
to an O(n2) + O(n3

v) algorithm where n and nv denote the num-
ber of all coordinates and the number of unprescribed coordinates
respectively. When the DOF of the deformable body are small due
to use of a coarse embedding mesh, the relative cost of the skeletal
dynamics could be especially high. In this situation in particular, an
efficient algorithm for the skeletal dynamics is required for a fast
simulation system.

We use a linear-time hybrid dynamics algorithm which was orig-
inally introduced by Featherstone [1987]. We follow a geometric
formulation for robot dynamics by Park et al. [1995] to obtain a
clean and efficient algorithm which is shown in Table I for com-
pleteness. The notation used in the algorithm is summarized in Ta-
ble II and we also refer the reader to [Murray et al. 1994] for a de-
tailed mathematical background. Our hybrid dynamics algorithm is
so general that it can consider a range of single and multiple DOF
joints efficiently, and it can handle any arbitrary set of active and
passive joints in a unified manner. The hybrid dynamics algorithm
consists of three recursions – two forward and one backward recur-
sions where ‘forward’ means the computation is repeated for each
bone in the skeleton from the base bone connected to the ground by
a root joint, to the end bones, and ‘backward’ means the opposite
direction.

(1) Forward recursion: Updates kinematic information such as the
global position and velocity of each bone.

(2) Backward recursion: Updates the articulated body inertia and
bias force of each bone.

(3) Forward recursion: Calculates either the acceleration or torque
on each joint depending on whether the joint is torque-
specified or acceleration-prescribed.

Because the hybrid dynamics algorithm is a generalized version
of the traditional forward and inverse dynamics algorithms, we can
apply it to various kinds of simulation scenarios by properly setting
the joints to be either acceleration-prescribed or torque-specified
according to the problem.

The relative computational cost of the skeletal dynamics depends
on the complexity of the character model. For example, the cost of
the skeletal dynamics accounts for about 40% of the total simula-
tion cost when we use a coarse volumetric mesh for the deformable
starfish body (Figure 13, upper left), but it decreases to less than
1% in case of a very fine mesh model (Figure 13, lower right). See
Table III for the costs of the various simulation components.

Simulation

The simulation flow for a skeleton-driven deformable body system
consists of four major steps (Figure 11):

Surface vertex

posi�on

Fixed node

posi�on

Elas�c forces

Damping forces

Par�cle

dynamics

Skeleton

dynamics

Integra�on

20

Upda�ng kinema�cs Compu�ng forces Solving dynamics

Bone

posi�on & velocity

Contact forces

Fig. 11. Simulation Flow

(1) Updating kinematics: The global positions and velocities of the
bones are obtained by executing the first forward recursion step
of the hybrid dynamics algorithm in Table I. From the positions
and velocities of the bones, we compute the positions and ve-
locities of the points located on the bones such as the fixed
nodes and the points where the dampers are connected to the
bones. Finally, the positions and velocities of the surface ver-
tices on the deformable body are updated by using (8).

(2) Computing forces: After collision detection, penalty forces and
Coulomb friction forces are applied to the penetrating ver-
tices on the surface. Then, the frictional contact forces are
transformed into equivalent nodal forces by using (13). Elastic
forces acting on the nodes are obtained as explained in Sec-
tion 3 and 4.3. Damping forces acting on the free nodes are
computed by using (12).

(3) Solving the equations of motion: The accelerations of the free
nodes are computed from (14). The accelerations of the torque-
specified joints in the skeleton are obtained by executing the
second (backward) and third (forward) recursions in the hybrid
dynamics algorithm. The forces transmitted from the nodes to
the bones are handled as the external forces in the backward
recursion step, and the joint input such as torques or accelera-
tions, are considered in the last forward recursion step.

(4) Integration: The system state, which consists of the position
and velocity of the free nodes and the displacement and veloc-
ity of the skeletal joints, at the next time step is computed by
integrating the accelerations obtained by solving the equations
of motion.

We used the mixed Euler integrator, which is also known as the
symplectic Euler method [Stern and Desbrun 2006], for our ex-
periments. The integrator updates the system velocity with the ac-
celeration obtained by solving the equations of motion, and then
updates the system displacement using the updated velocity. The
mixed Euler integrator is as easy to implement as the explicit Euler
integrator, but it has much better stability so that we can choose a
reasonable step size for integration. See Section 8 for a discussion
on the choice of the integrator.

In our simulation system, there are a few important factors which
help the entire simulation to be fast and to have better stability. First
of all, using the coarse mesh significantly decreases the computa-
tional cost per each time step by reducing the DOF of the physics
model and allows larger step size because of the enlarged element
size. The mesh embedding leads to speedup factors of up to or-
ders of magnitude. Second, the stiffness of each nonlinear element
is always maintained within given boundaries due to the diagonal-
ization technique, and this makes the simulation stable even when
the skeletal motion causes large element deformation. Third, by us-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

12 • Junggon Kim et al.

Table I. Recursive Hybrid Dynamics
initialization {

V̇ground =
(

0
−g

)
}
while (forward recursion) {

Tλ(i),i = function of qi
Vi = AdT−1

λ(i),i
Vλ(i) + Siq̇i

ηi = adVi
Siq̇i + Ṡiq̇i

}
while (backward recursion) {

Ĵi = Ji +
∑

k∈µ(i) Ad∗
T−1
i,k

ΠkAdT−1
i,k

Bi = −ad∗Vi
JiVi − F ext

i +
∑

k∈µ(i) Ad∗
T−1
i,k

βk

if (i ∈ P) {
Πi = Ĵi
βi = Bi + Ĵi (ηi + Siq̈i)

} else {
Ψi = (ST

i ĴiSi)
−1

Πi = Ĵi − ĴiSiΨiS
T
i Ĵi

βi = Bi + Ĵi

{
ηi + SiΨi

(
τi − ST

i

(
Ĵiηi +Bi

))}
}

}
while (forward recursion) {

if (i ∈ P) {
V̇i = AdT−1

λ(i),i
V̇λ(i) + Siq̈i + ηi

Fi = ĴiV̇i +Bi

τi = ST
i Fi

} else {
q̈i = Ψi

{
τi − ST

i Ĵi
(
AdT−1

λ(i),i
V̇λ(i) + ηi

)
− ST

i Bi

}
V̇i = AdT−1

λ(i),i
V̇λ(i) + Siq̈i + ηi

Fi = ĴiV̇i +Bi

}
}

ing the hybrid dynamics algorithm, the skeleton-driven deformable
body character can trace a given reference skeletal motion without
relying on a servo controller which could make the whole system
very stiff and the simulation unstable. Finally, the computational
cost per step size increases linearly as the model size grows, which
is favorable for complex characters such as Fatman in Figure 1.

As explained before, our skeleton-driven deformable body sys-
tem uses fixed nodes to attach the soft body to the skeleton. Because
the fixed nodes in the volumetric mesh are firmly attached to the
skeletal links, the finite elements located near the joints may expe-
rience unrealistically large deformation, such as element inversion,
depending on the underlying skeletal motion, especially when the
mesh is very coarse (e.g., Figure 4). Though our simulation system
handles such elements well so that they usually do not cause critical
problems such as instability, the character surface obtained by in-
terpolating the mesh nodes may have undesirable scars at moments
of large deformation, and this could degrade the overall animation
quality. If such an artifact is problematic, the user may wish to use
a denser volumetric mesh even with the additional computational
cost required due to the increased model complexity. For example,
if we wanted to make the creases shown in Figure 4 smaller, we
would have to use a denser volumetric mesh for the worm character.
Actually, for the Fatman model (Figure 15), we have already used a
relatively complex volumetric mesh compared to the other models
because the human skeleton is more complicated than the others,
and the output quality demanded for such a human-like character

Table II. Notation in Table I
symbol meaning type
λ(i) Index of the parent body of body i
µ(i) Index set of the child bodies of body i
{i} Coordinate frame attached to body i
joint i Joint connecting body i and its parent

body
P Index set of prescribed joints
qi Coordinates of joint i ℜni

τi Torque(or force) acting on joint i ℜni

Tλ(i),i Homogeneous transform from {λ(i)} to
{i}

SE(3)

Vi Generalized velocity of body i, viewed in
{i}

se(3) or ℜ6

V̇i Component-wise time derivative of Vi se(3) or ℜ6

Si Jacobian of Tλ(i),i , i.e.,
T−1
λ(i),i

Ṫλ(i),i = Siq̇i

ℜ6×ni

Ji Generalized inertia of body i, viewed in
{i}

ℜ6×6

Fi Generalized force transmitted to body i
from its parent through the connecting
joint i, viewed in {i}

dse(3) or ℜ6

F ext
i Generalized external force acting on body

i from environment, viewed in {i}
dse(3) or ℜ6

Ĵi, Bi Articulated inertia of body i and corre-
sponding bias force

ℜ6×6, ℜ6

ηi, βi Temporary variables for efficient compu-
tation

ℜ6, ℜ6

g Magnitude and direction of gravity ℜ3

AdT AdT =

[
R 0

[p]R R

]
where T =

(R, p) ∈ SE(3), R ∈ SO(3), p ∈
ℜ3 and [·] denotes the skew-symmetric
matrix representation of a 3-dimensional
vector.

ℜ6×6

adV adV =

[
[w] 0
[v] [w]

]
where V =

(w, v) ∈ se(3) or ℜ6

ℜ6×6

Ad∗T Ad∗T = (AdT)T ℜ6×6

ad∗V ad∗V = (adV)T ℜ6×6

is generally very high. In such cases with a relatively large number
of finite elements, we need an additional speedup for achieving fast
simulation at interactive rates. We address this issue by implement-
ing parallel computation on the GPU, which will be discussed in
the next section.

6. PARALLEL COMPUTING

The simulation speed can be increased further by carrying out
many calculations simultaneously. However, there are limits in the
amount of speedup that can be obtained using parallelization. In
this section we explain our parallel implementation of the algo-
rithms presented in this paper and discuss the issues limiting com-
putational performance.

In the skeleton-driven deformable body system, many parts of
the computation are parallelizable such as the elastic force com-
putation and solving the equations of motion of the particle sys-
tem. The overall performance, however, significantly depends on
the computational structure, so we need to design the parallel struc-
ture carefully to get a maximum speedup. Figure 12 shows an ex-
ample of our computational structure for elastic forces where the

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fast Simulation of Skeleton-driven Deformable Body Characters • 13

Table III. Speedup by Parallel Computing
Complexity of vol. mesh (Starfish) coarse moderate fine very fine

GPU CPU GPU CPU GPU CPU GPU CPU

Calc. time
per time step

(msec)

Update fixed nodes and surf. 0.117 0.094 0.130 0.103 0.130 0.117 0.159 0.175
Transform contact forces a 0.300 0.047 0.106 0.048 0.075 0.053 0.061 0.075
Compute elastic forces 0.123 0.088 0.252 1.558 0.355 4.105 0.945 17.611
Compute damping forces 0.011 0.002 0.016 0.042 0.019 0.088 0.044 0.319
Solve particle dynamics 0.009 0.003 0.013 0.031 0.014 0.069 0.030 0.248
Transmit nodal forces to bones 0.061 0.003 0.067 0.063 0.072 0.134 0.106 0.503
Solve skeleton dynamics (CPU) 0.118
Update skeleton kinematics (CPU) 0.049
Collision detection (CPU) 0.034
Total computation time (msec) 0.823 0.437 0.784 2.047 0.865 4.767 1.547 19.132

Speedup by parallel computing on GPU 0.5x 2.6x 5.5x 12.4x

Simulation
(free falling)

Step size for integration b (msec) 3.0 1.0 0.5 0.2
Calc. time for 1 sec simul. (sec) 0.27 0.15 0.78 2.05 1.73 9.53 7.73 95.66

Model info.

Total DOF 260 3365 7262 26741
Num. of nodes in vol. mesh 78 1113 2412 8905
Num. of elements in vol. mesh 200 3428 9014 37573
Num. of nodes in surf. mesh 1162
DOF of skeleton (num. of bones) 26 (16)

The speedup gained from parallel computation depends on the complexity of the model. This table shows the relationship between the speedup ratio and the
complexity of the volumetric mesh in the starfish character. We used four volumetric mesh models (coarse, moderate, fine, very fine) shown in Figure 13 for
the comparison.
a. The calculation time for contact force transformation on our GPU implementation decreases as volume mesh complexity increases, and this is because we
used the same surface model in the experiment. More specifically, the average number of surface nodes corresponding to each volumetric node decreases as
volume mesh complexity increases in our experimental setup.
b. For comparison purpose, the step sizes for integration shown here are maximum values with which a free-fall simulation becomes stable. The test was
performed on a desktop machine with a 2.8GHz Intel Core2 Quad CPU and NVIDIA GeForce GTX 280 GPU.

Memory

(nodal posi!ons)

Threads

(elements)

Memory

(temporal)

Memory

(elas!c forces

on nodes)

Threads

(nodes)

Coalesced

wri ng
Coalesced

wri ng

Memory

(elas!c forces

on nodes)

Memory

(nodal posi!ons)

Threads

(elements)

Fig. 12. Parallel Computation of Elastic Forces: In the task, the input is
the nodal positions and the output is the elastic forces acting on the nodes.
(Left) An ideal parallel structure for computing the elastic forces acting
the nodes. However, this cannot be realized because of concurrent memory
access during writing. (Right) Our implementation consists of two parallel
processes to avoid the concurrent memory accessing problem and to achieve
coalesced memory access in writing.

inputs are the nodal positions and the outputs are the elastic forces
acting on the nodes. Because we compute the nonlinear strain and
stress per element as explained in Section 3, the calculation can be
parallelized at the element level (Figure 12, left). In this case, how-
ever, because we need to sum up the elastic forces exerted by ad-
jacent elements to obtain the net elastic force acting on each node,
multiple threads running in parallel at the element level may ac-
cess the same memory address assigned to nodal force for sum-

Fig. 13. Starfish models with different complexity of the volumetric
mesh used in Table III (coarse, moderate, fine, very fine): The coarse
mesh (upper left) was designed manually while the others (moderate, fine,
very fine) were generated using NETGEN [1997]. In the coarse mesh
model, we assumed that the elastic material fills only the inside of the sur-
face so the nodal mass and the element volume ratio were obtained as de-
scribed in Section 4.3. For the other models, however, their elements were
assumed to be fully filled with the material for convenience’ sake in model-
ing. See Figure 15 for more information on the surface mesh and the skele-
ton of the starfish character.

mation of the elastic forces. Such concurrent memory access for
writing may cause unexpected problems such as data loss. In our
implementation we avoided the problem by splitting the task into
two parallel processes – the elastic force computation at the ele-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

14 • Junggon Kim et al.

ment level and the force summation at the node level – and us-
ing a temporary memory space for the data flow between the two
processes (Figure 12, right). There is another issue related to the
speed of memory access that must be considered when designing
the structure. Because we need a large memory space for saving
information related to the elements and the nodes, we use a global
memory region in which large chunks of memory can be allocated
but the memory accessing is slow in general. The global memory
can be accessed most efficiently when the access pattern has been
specially designed in a coalesced way, and if it is not coalesced,
the memory access could be extremely slow especially for writ-
ing. It would be most desirable to design processes to always have
coalesced memory access for both reading and writing, but this is
impossible because the sizes of input and output data are differ-
ent so that at least one of the reading and writing accesses cannot
be coalesced. Because the non-coalesced memory access is more
critical in writing than reading, we designed the structure of our
parallel computation to have a coalesced memory access for writ-
ing to increase the overall performance (Figure 12, right). Using
this methodology we parallelize the following:

—Updating the positions of the surface vertices: We use a single
parallel process running at the vertex level to obtain the position
of each vertex from neighboring nodal positions.

—Computing the nodal forces equivalent to the surface contact
forces acting on the vertices: We use two parallel processes for
this task. The first process runs at the vertex level, and for each
vertex, it computes forces acting on the neighboring nodes that
are equivalent to the contact force at the vertex. The second pro-
cess runs at the node level, and for each node, it sums up the
forces acting on the node which have been computed by the first
process.

—Computing the elastic forces acting on the nodes (described
above and shown in Figure 12).

—Computing the damping forces acting on the nodes, and calcu-
lating the forces and moments to be transmitted to the bones in
the skeleton: We designed two parallel processes to accomplish
the task. The first process runs at the node level. If the node is
a free particle, it first computes the damping force acting on the
node. Then, the process computes the force and moment to be
transmitted to the skeleton for each node. We transmit the damp-
ing forces acting on the free particles to their reference bones,
and the contact and elastic forces on the fixed particles to the
bones to which the nodes are attached. The forces and moments
to be transmitted to the bones are computed with respect to a
local frame attached to each bone. The second process runs at
the bone level, and for each bone, it sums up the forces and mo-
ments transmitted from the neighboring free nodes and the fixed
nodes attached to the bone. The net force and moment acting on
each bone will be sent to the CPU memory for the solution of the
skeleton dynamics.

—Solving the equations of motion for the particle system: A sin-
gle process runs at the node level for the task. For each node, it
calculates the nodal acceleration using the forces (contact, elas-
tic, damping, and the gravitational forces) and obtains the nodal
velocity and position in the next time step with the mixed Euler
integration.

In our implementation, we chose the CUDA architecture from
NVIDIA to execute the massive computation for the deformable
body in parallel on the GPU (Graphics Processing Unit) because of
its easy integration with other non-parallelizable C/C++ modules.
In some parallelized tasks with non-coalesced memory reading, we

Surface ver�ces

Mesh elements

Mesh nodes

Bones

Parallel Computa�on

Data flow

Fig. 14. Data Flow in Parallel Computation: To implement parallel
computation for skeleton-driven deformable bodies, we need to handle data
flow between spaces with different sizes. For example, we need to imple-
ment two tasks having data flow between the surface vertices and the mesh
nodes – (a) transformation of the contact forces on the surface vertices into
the equivalent nodal forces, and (b) updating the positions and velocities of
the surface vertices from the nodal positions. Such a data flow between dif-
ferent spaces causes inefficiency in memory accessing and limits the overall
performance of parallel computation in our system.

texture a specific global memory range for caching to reduce the
memory access time for reading. We use traditional serial comput-
ing on CPU (Central Processing Unit) for the other computations
such as solving the skeleton dynamics, where the equations of mo-
tion for the bones are highly coupled by the joints. A point-triangle
collision detection algorithm running on CPU is used in our current
simulation system. Though the simple collision detection works
well for our test models, it could become a critical computational
bottleneck when the number of vertices on the surface model is
very large. Using parallelized collision detection algorithms, such
as [Govindaraju et al. 2003] and [Zhang and Kim 2007], would be
a good choice for such a case.

In the case of the dancing Fatmat example shown in Figure 1,
the parallel computation speeded up the simulation about 10 times
faster than the CPU only implementation, and in our experiments
we were able to achieve a speedup of a factor of up to 12 through
parallel computation. The speedup ratio depends on the complexity
of the model such as the number of elements, nodes, and bones, and
for comparison purpose, we show the computation times for four
different models of a starfish character in Table III, where we used
different model complexities for the volumetric mesh while using
the same surface and skeleton models (Figure 13). If the volumet-
ric mesh is too coarse, the parallel computation may decrease the
simulation speed because the profits gained from the parallelism
are less than the overhead such as relatively low clock speed and
slow memory access in the GPU. The speedup gained from paral-
lel computation increases as the complexity of the volumetric mesh
grows, which is expected because a model with more nodes and el-
ements can have more room to be accelerated by parallel computa-
tion. However, increasing model complexity, especially in the vol-
umetric mesh of the deformable body, requires us to use a smaller
step size for integration due to the small element size, and this leads
the overall simulation speed to become slow. Therefore, the model
reduction as well as our engineering decisions to effectively sup-
port such a reduced model (Section 3, 4 and 5) are still necessary to
achieve a fast simulation speed even in the parallel computing case.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fast Simulation of Skeleton-driven Deformable Body Characters • 15

Fig. 15. Test models: (Worm, fish and starfish) The wire frames are the fine surfaces of the deformable bodies, and the solid meshes represent the embedding
coarse volumetric meshes. The nodes fixed to bones are depicted as black spheres while the others are red ones. (Fatman, left) The wire frame represents the
coarse volumetric mesh embedding the fine solid surface of the character. (Fatman, right) The character’s skeleton and the mass distribution in the deformable
body are shown. The mass particles (spheres) are located at the coarse mesh nodes and the size of the spheres are proportional to the mass. The particles fixed
to bones are colored black while the others are green. See Table IV for more information on the models.

It might be possible to additionally increase the speed by op-
timizing the parallel computing structure, but the gain would be
limited because the data flow between the different size of spaces
inherently causes inefficiency in memory access for parallel com-
putation (Figure 14). See, e.g., de Farias et al. [2008] and Comas et
al. [2008] for parallel computation of deformable bodies (without
skeletons) where they achieved a few tens of speedup, and as far
as we know, there is no previous work on parallel computing for
skeleton-driven deformable body simulation.

7. RESULTS

Various kinds of simulations have been tested in our system with
the 3-dimensional skeleton-driven deformable body models shown
in Figure 15. The simulations with all the test models can run in
real time or near real time on a desktop machine with 2.8GHz Intel
Core2 Quad CPU and NVIDIA GeForce GTX 280 GPU. See Ta-
ble IV for detailed information on the simulation speed for the test
models.

In order to create physically plausible motions of the self-
propelling starfish, fish and worm characters in Figure 2, 3 and 10,
we used only internal forces, i.e., the torque or acceleration for the
active skeletal joints, to drive the overall character motions. The
secondary motions of the deformable bodies and the passive root
joints were obtained through two-way simulation where the soft
body motion affects the global skeleton motion and vice versa, and
no intentional external forces were used in the simulation. To ob-

tain desired character motions given the underactuated nature of
the physics model, we generated appropriate motor commands on
the active skeletal joints with a combination of direct control and
keyframe control as presented in Kim and Pollard [2011]. Using di-
rect control one can interactively control the character with a mouse
drag. The mouse cursor is regarded as a desired trajectory of a se-
lected bone and, at every time step, the desired position will be
transformed into an optimal joint command (acceleration or torque)
which can make the character follow the user input trajectory as
closely as physically possible. For keyframe control, we interpolate
given keyframes, or keyposes, with a B-spline to obtain an active
joint trajectory and advance the simulation using hybrid dynamics.

To make the acrobatic jump motion of the fish character in Fig-
ure 3(upper), we first guided the head with a mouse drag under
direct control in order to prepare the jump by bending the body.
Then, we used keyframe control to make a takeoff by giving a de-
sired final pose and the time for transition, and finally switched
into a free-fall simulation mode for landing where all of the skele-
tal joints are set to be passive. In Figure 3(lower) we guided the left
end of the worm character with direct control and then switched
into keyframe control, providing a final pose of circular shape to
get a rolling motion. To make a jump turn of the starfish character
in Figure 10, we set desired position and orientation for the center
part of the skeleton in direct control, and switched into freefall sim-
ulation for landing. Note that all the motions of the self-propelling
characters were generated by internal forces only and no intentional

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

16 • Junggon Kim et al.

Table IV. Simulation Speed
Model Calc. time (sec) for 1sec simul.a h (msec) e dof sdof vnodes velems snodes

Fatman 1.33b (GPU)c 0.5 4887 60 2121 8619 34362f

Starfish 0.49d (CPU) 1.0 260 26 78 200 1162
Fish 0.50 (CPU) 1.0 258 9 107 415 958

Worm 0.57 (CPU) 1.0 543 9 224 714 262
This table shows the calculation time for running a 1 sec simulation with the test models in Figure 15, corresponding step size for
integration, and model information such as total DOFs of the models (dof), the DOFs of the skeletons (sdof), the numbers of the
nodes (vnodes) and elements (velems) in the coarse volumetric mesh, and the number of nodes (snodes) in the fine surface mesh.
The test was performed on a desktop machine with a 2.8GHz Intel Core2 Quad CPU and NVIDIA GeForce GTX 280 GPU.
a. The averaged computation times were measured in the simulations for the dancing Fatman (Figure 1, 60 sec), the jump-turning
starfish (Figure 10, 2 sec), the jumping fish (Figure 3 (upper), 4 sec) and the rolling worm (Figure 3 (lower), 4 sec) with the step
sizes shown in the table, and the corresponding animations are shown in the accompanying video. The data only accounts for
the computation times for the open-loop physics simulation with given input commands (e.g., the accelerations or torques of the
active joints in two-way simulation), and does not include the cost for computing the commands in case of using a high level
controller to guide the simulation in a desired way. High quality rendering, which was done in off-line, is not also considered in
the calculation times. If needed to control the characters interactively during the simulation, we used a simple mesh grid rending,
as shown in Figure 15, which is updated at about 60 frames per second.
b. The average computation time for running the same dancing Fatman simulation in our CPU only implementation was 13.24
sec per 1 sec simulation, so we got an additional speedup of a factor of 10 by using parallel computation.
c. (GPU) and (CPU) denote the elapsed times measured in our parallel implementation using GPU and our CPU only implemen-
tation respectively.
d. For reference, the average calculation time for the example of the escaping starfish (Figure 2, 17 sec) was 0.94 sec per 1 sec
simulation. In the example, interaction between the character and the movable obstacle must be handled in the simulation, and in
our test, more than 40% of the calculation time was spent in collision checking with a simple point-triangle collision detection
algorithm, which could be improved by using an advanced collision detection algorithm.
e. The values shown here are the fixed step sizes used in the simulations. For reference, we were able to double the step size
for the worm and starfish examples, but we could not double the step size for the Fatman and fish examples without driving the
simulation into instability.
f. We did not perform collision checking in the dancing Fatman simulation.

external forces, or the hand of God [van de Panne and Lamouret
1995], were used in the simulations.

An example of more complicated interaction between a character
and a changeable environment is shown in Figure 2 where a starfish
has been trapped and is trying to escape by attempting various trials
such as hitting the obstacle with a jump and lifting up the obstacle’s
edge with its arm. We used direct control to guide the character mo-
tion to achieve these motions. Note that all interactions between the
character, the obstacle, and the ground are automatically handled
through the contact mechanism in the two-way simulation, and the
motor command on the character’s active joints, which is generated
by the direct controller, is the only input of the simulation system.

Our system can also handle one-way simulation within its uni-
fied framework by simply changing the property of the joints. For
example, when a global skeletal motion is given as in the case of
the dancing Fatman in Figure 1, we simply set all of the skeletal
joints to be prescribed, which means all the skeletal joints including
the root joint will exactly follow the given trajectory and they will
not be affected by the secondary motions of the deformable body.
To create the dancing motion of the Fatman character, we drove
the skeleton using a captured human motion data, which had been
modified to fit the character’s skeleton. The jiggling motion of the
deformable body was obtained in almost real time in our system.

The effect of the selective diagonalization technique (Sec-
tion 3.3) on the simulation speedup is shown in Table V. As men-
tioned before, the technique is more effective when the number of
finite elements is large. For example, when equipped with an ex-
isting general SVD algorithm4, the selective diagonalization tech-

4We tested with an SVD algorithm for m× n matrices obtained from Nu-
merical Recipes in C. For reference, it has been reported that an approxi-
mate estimate of the computational cost of such an iterative SVD algorithm

Table V. Speedup by Selective Diagonalization
Model speedup factor

(type of motion) with SVDm×n with SVD3×3

Fatman (dancing) 1.44 1.19
Fish (escaping) 1.33 1.17
Worm (rolling) 1.43 1.23

coarse 1.68 1.16
Starfish moderate 3.31 1.67

(free-falling) fine 3.60 1.78
very fine 3.42 1.72

This table shows the effect of the selective diagonalization technique in Sec-
tion 3.3 on the simulation speedup. The speedup factor represents the ratio of
the elapsed simulation times without and with the technique. The effectiveness
of the technique varies depending on the type of motion, complexity of the fi-
nite element model, and the choice of SVD algorithm for the diagonalization
of the element deformation. For example, the technique boosted the simula-
tion speed by a factor of more than 3 when we tested with the finely meshed
starfish model (shown in Figure 13), equipped with an existing general SVD
algorithm. On the other hand, the same technique could only increase the com-
putation speed by 16% when tested with the coarsely meshed starfish model
and a fast dedicated SVD algorithm. See the footnotes 4 and 5 for the SVD
algorithms we tested with.

nique boosted the simulation of the fine mesh starfish model shown
in Figure 13 by a factor of more than 3 in the time required for the
entire dynamics simulation, but resulted in a speedup of about 70%
for the coarse mesh starfish model. The effectiveness of the tech-
nique highly depends on the choice of SVD algorithm for the diag-
onalization of the element deformation. When we tested with our

for general m × n matrices is 4m2n + 8mn2 + 9n3 flops [Golub and
Van Loan 1996].

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fast Simulation of Skeleton-driven Deformable Body Characters • 17

own implementation of a fast dedicated SVD algorithm5, which is
about four times faster than the general one, we obtained a speedup
by a factor of 15% to 80% depending on the model complexity and
the type of motion.

8. CONCLUSION

We have introduced a fast physics simulation system for skeleton-
driven deformable body characters. Our approach can handle both
one-way and two-way simulations within a unified framework. We
can create physically plausible realistic character motions through
a two-way simulation where the skeleton with passive root joint,
the particle system representing the deformable body, and the envi-
ronment interact with each other in the solution of fully nonlinear
dynamics equations. Secondary jiggling motions of the deformable
body driven by a global skeletal motion can also be easily computed
through a one-way simulation.

The simulation speed in our system is fast enough to be used
with an interactive user interface system such as that shown in
Kim and Pollard [2011]. Most of the skeleton-driven deformable
body characters tested in the paper can be simulated in real-time.
Also, our formulation, which takes the fine character surface into
account, preserves the original mechanical properties of the de-
formable body as much as possible even in the low-dimensional
representation, which will improve the physical fidelity of pro-
duced animations.

Detailed discussions on our engineering decisions for speed,
modeling accuracy and stability have been presented in the paper.
We chose an embedding mesh representation to reduce model size.
We use mass lumping for deformable bodies and a hybrid dynamics
algorithm for skeletons to make the overall computation per time
step linear in the model size. We also implemented parallel com-
putation which is quite effective for complicated models like our
Fatman character. We use nonlinear finite elements for better han-
dling of large deformation in the simulation. Though we chose a
coarse volumetric mesh to represent the motions of the deformable
body for speedup, we also consider the fine surface of the charac-
ter to increase the modeling accuracy by capturing the mechanical
properties of the deformable body as correctly as possible and by
evaluating the contact forces directly at vertices of the fine surface
mesh. The element stiffness is maintained within given boundaries
by using our selective diagonalization technique, and this helps the
simulation to remain stable. If the trajectory of some or all of the
skeletal joints are given, we can drive the character using a hybrid
simulation with no servo controller for the prescribed joints, and
this also improves the stability of the simulation.

Our choices for fast fully dynamic simulation of skeleton-driven
deformable body characters includes nonlinear material and ex-
plicit integration, and this is quite different from the usual choice
for fast elastic body simulation in computer graphics, i.e., the com-
bination of linear material and implicit, or semi-implicit, integra-
tion. One of the main reasons for choosing a linear material in
many existing techniques for elastic body simulation would be that

5We also tested with our own implementation of a fast SVD algorithm for
3 × 3 matrices based on an efficient solution for eigenvalues of symmet-
ric 3 × 3 matrices proposed in [Smith 1961]. The SVD algorithm requires
up to 152 multiplications in the implementation. Though the solution for
the eigenvalues was originally intended for an application requiring mod-
erate accuracy and its numerical robustness has not been well investigated
[Smith 1961], it suffices for our simulation examples. For reference, the
diagonalization in (4) requires an additional 25 multiplications (in our im-
plementation) to make sure that U and V are pure rotations.

it produces a constant local stiffness matrix and this can lead to a
symmetric positive definite (SPD) matrix system for implicit inte-
gration which can be solved efficiently by, e.g., conjugate gradient
iteration. However, in the case of our skeleton-driven deformable
body system, because the elastic forces in the soft body are nonlin-
early dependent on the joint coordinates of the skeleton through the
(hard constrained) fixed nodes, the matrix system for implicit inte-
gration is not SPD any more and is expensive to solve. Moreover,
in order to build the matrix system for implicit integration, we need
to differentiate the fully nonlinear dynamics equations of the skele-
ton as well as the elastic forces at every time step, which is also
computationally expensive. We chose explicit integration to avoid
such problems in our skeleton-driven deformable body simulation
system. Because explicit integration does not require local stiffness
matrices for the finite elements, we can choose nonlinear elements
to increase accuracy at very little cost. One demerit of explicit inte-
gration is that it requires very tiny step size when the finite elements
are small, and this could make the simulation speed extremely slow.
Mesh embedding, which is also one of our choices, addresses this
problem by reducing the number of nodes and elements in the vol-
umetric mesh of the deformable body and by making the element
size large enough to be used in explicit integration with a reason-
able step size.

Though the mixed Euler integrator we chose in our current im-
plementation works well in our experiments with a reasonable step
size, such an explicit integrator may limit the flexibility of our sys-
tem in choosing the simulation resolution especially when the user
wants to play with a character having a small size but with a com-
plicated geometry and skeleton. In fact, a naı̈ve implementation of
an implicit or semi-implicit integrator can be easily added to our
simulation framework. However, as explained above, we need to
find a way to efficiently solve the non-SPD matrix system for the
implicit integration, which would be challenging future work. Per-
haps using parallel computation could be one possible way to ob-
tain a fast solution for such a nontrivial matrix system. Finding an
approximate but efficient solution would be another direction to
explore as Galoppo et al.[2007] did in their skin-layer deformation
based method. Releasing the hard constraints to produce a SPD
system for implicit integration and enforcing the constraints later
using pre/post-stabilization as in Shinar et al. [2008] would also be
an interesting extension.

In our current system we use barycentric coordinates to map the
fine character surface onto the coarse volumetric mesh representa-
tion of the deformable body. Though this linear mapping is simple
to implement and fits nicely in our simulation system, it creates a
first-order discontinuity in the surface across the element bound-
ary which may degrade the quality of the output animation. Cur-
rently we use a filter to smooth out the resulting artifacts when we
render the video in a commercial animation tool, but this is not a
fundamental solution to the problem because it will blur out fine
geometric detail on the character surface. One possible way to treat
the problem would be rerendering the surface for video produc-
tion with an optimized mapping rule minimizing discontinuity such
as the modified barycentric interpolation by Huang et al. [2008].
Such a manipulation of the simulated results, however, would break
physics in the character motions and this could also degrade the ani-
mation quality. It would be interesting future work to incorporate an
advanced mapping rule such as the harmonic coordinates by Joshi
et al. [2007] into the physics formulation to replace the barycentric
coordinates used in our current framework.

Volume preservation, which is not considered in our formulation,
can also be a critical issue in some particular applications such as
a surgery simulation involving highly incompressible soft bodies,

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

18 • Junggon Kim et al.

so incorporating existing volume conservation techniques such as
that of Irving et al. [2007] in our formulation would also be a good
extension.

ACKNOWLEDGMENTS
This research was partially supported by NSF award CCF-
0702443. The authors gratefully acknowledge Moshe Mahler for
help with Maya modeling and rendering. We also thank Sangil Park
for providing motion-captured data for the dancing Fatman exam-
ple, Jun-sik Kim for advice on the implementation of the parallel
computation, and the graphics group at Carnegie Mellon for their
helpful comments.

REFERENCES

ALBRO, J. V., SOHL, G. A., BOBROW, J. E., AND PARK, F. C. 2000. On
the computation of optimal high-dives. In Proceedings of the 2000 IEEE
International Conference on Robotics and Automation. IEEE, 3958–
3963.

BARAFF, D. 1996. Linear-time dynamics using lagrange multipliers. In
SIGGRAPH ’96: Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques. ACM, New York, NY, USA,
137–146.

BARAFF, D. AND WITKIN, A. 1998. Large steps in cloth simulation. In
SIGGRAPH ’98: Proceedings of the 25th annual conference on Computer
graphics and interactive techniques. ACM, New York, NY, USA, 43–54.

BARBIČ, J. AND JAMES, D. L. 2005. Real-time subspace integration for St.
Venant-Kirchhoff deformable models. ACM Transactions on Graphics
(SIGGRAPH 2005) 24, 3 (Aug.), 982–990.

BARGTEIL, A. W., WOJTAN, C., HODGINS, J. K., AND TURK, G. 2007.
A finite element method for animating large viscoplastic flow. ACM
Trans. on Graphics (SIGGRAPH 2007) 26, 3.

BASAR, Y. AND WEICHERT, D. 2000. Nonlinear Continuum Mechanics
of Solids. Springer.

BONET, J. AND WOOD, R. D. 1997. Nonlinear continuum mechanics for
finite element analysis. Cambridge University Press.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust treatment
of collisions, contact and friction for cloth animation. ACM Trans. on
Graphics (SIGGRAPH 2002) 21, 3.

BRO-NIELSEN, M. AND COTIN, S. 1996. Real-time volumetric deformable
models for surgery simulation using finite elements and condensation. In
Computer Graphics Forum. 57–66.

CAPELL, S., BURKHART, M., CURLESS, B., DUCHAMP, T., AND

POPOVIĆ, Z. 2005. Physically based rigging for deformable characters.
In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation. ACM, New York, NY, USA, 301–
310.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND POPOVIĆ, Z.
2002a. Interactive skeleton-driven dynamic deformations. ACM Trans.
on Graphics (SIGGRAPH 2002) 21, 3.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND POPOVIĆ, Z.
2002b. A multiresolution framework for dynamic deformations. In SCA
’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium
on Computer animation. ACM, New York, NY, USA, 41–47.

CHOI, K.-J. AND KO, H.-S. 2002. Stable but responsive cloth. ACM
Trans. on Graphics (SIGGRAPH 2002) 21, 3.

CHOI, M. G. AND KO, H.-S. 2005. Modal warping: real-time simulation
of large rotational deformation and manipulation. IEEE Transactions on
Visualization and Computer Graphics 11, 91–101.

COMAS, O., TAYLOR, Z. A., ALLARD, J., OURSELIN, S., COTIN, S.,
AND PASSENGER, J. 2008. Efficient nonlinear fem for soft tissue mod-
elling and its gpu implementation within the open source framework
sofa. In ISBMS ’08: Proceedings of the 4th international symposium on
Biomedical Simulation. Springer-Verlag, Berlin, Heidelberg, 28–39.

DE FARIAS, T. S. M., ALMEIDA, M. W. S., TEIXEIRA, J. M. X., TE-
ICHRIEB, V., AND KELNER, J. 2008. A high performance massively
parallel approach for real time deformable body physics simulation. In
Proc. 20th International Symposium on Computer Architecture and High
Performance Computing SBAC-PAD ’08. 45–52.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D. 1997. Dy-
namic free-form deformations for animation synthesis. IEEE Transac-
tions on Visualization and Computer Graphics 3, 3, 201–214.

FEATHERSTONE, R. 1983. The calculation of robot dynamics using
articulated-body inertias. The International Journal of Robotics Re-
search 2, 1, 13–30.

FEATHERSTONE, R. 1987. Robot dynamics algorithms. Kluwer.

GALOPPO, N., OTADUY, M. A., MECKLENBURG, P., GROSS, M., AND

LIN, M. C. 2006. Fast simulation of deformable models in contact us-
ing dynamic deformation textures. In ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, M.-P. Cani and J. O’Brien, Eds. Eu-
rographics Association, Vienna, Austria, 73–82.

GALOPPO, N., OTADUY, M. A., TEKIN, S., GROSS, M., AND LIN, M. C.
2007. Soft articulated characters with fast contact handling. Computer
Graphics Forum (Proc. of Eurographics 2007) Vol.26, 3.

GOLUB, G. H. AND VAN LOAN, C. F. 1996. Matrix Computations, 3rd
ed. The Johns Hopkins University Press.

GOVINDARAJU, N. K., REDON, S., LIN, M. C., AND MANOCHA, D.
2003. Cullide: interactive collision detection between complex models
in large environments using graphics hardware. In HWWS ’03: Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware. Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, 25–32.

GROSSMAN, R. L., NERODE, A., RAVN, A. P., AND RISCHEL, H., Eds.
1993. Hybrid Systems. Lecture Notes in Computer Science, vol. 736.
Springer.

HAUSER, K. K., SHEN, C., AND O’BRIEN, J. F. 2003. Interactive de-
formation using modal analysis with constraints. In Graphics Interface.
CIPS, Canadian Human-Computer Commnication Society, A K Peters,
247–256.

HUANG, J., CHEN, L., LIU, X., AND BAO, H. 2008. Efficient mesh de-
formation using tetrahedron control mesh. In SPM ’08: Proceedings of
the 2008 ACM symposium on Solid and physical modeling. ACM, New
York, NY, USA, 241–247.

IRVING, G., SCHROEDER, C., AND FEDKIW, R. 2007. Volume conserving
finite element simulations of deformable models. ACM Trans. on Graph-
ics (SIGGRAPH 2007) 26, 3.

IRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible finite elements
for robust simulation of large deformation. In SCA ’04: Proceedings of
the 2004 ACM SIGGRAPH/Eurographics symposium on Computer an-
imation. Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, 131–140.

JAMES, D. L. AND PAI, D. K. 1999. ArtDefo-accurate real time de-
formable objects. In SIGGRAPH ’99: Proceedings of the 26th annual
conference on Computer graphics and interactive techniques, A. Rock-
wood, Ed. ACM Press, N.Y., 65–72.

JAMES, D. L. AND PAI, D. K. 2002. Dyrt: dynamic response textures for
real time deformation simulation with graphics hardware. ACM Trans.
on Graphics (SIGGRAPH 2002) 21, 3.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Fast Simulation of Skeleton-driven Deformable Body Characters • 19

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND SANOCKI, T. 2007.
Harmonic coordinates for character articulation. ACM Trans. on Graph-
ics (SIGGRAPH 2007) 26, 3.

KHAREVYCH, L., MULLEN, P., OWHADI, H., AND DESBRUN, M. 2009.
Numerical coarsening of inhomogeneous elastic materials. ACM Trans.
on Graphics (SIGGRAPH 2009) 28, 3.

KIM, J. AND POLLARD, N. S. 2011. Direct control of simulated non-
human characters. IEEE Computer Graphics and Applications 31, 4.

KIM, T. AND JAMES, D. 2009. Skipping steps in deformable simulation
with online model reduction. ACM Trans. on Graphics (SIGGRAPH Asia
2009) 28, 5.

LEE, S.-H., SIFAKIS, E., AND TERZOPOULOS, D. 2009. Comprehensive
biomechanical modeling and simulation of the upper body. ACM Trans.
on Graphics 28, 4, 1–17.

MÜLLER, M., DORSEY, J., MCMILLAN, L., JAGNOW, R., AND CUTLER,
B. 2002. Stable real-time deformations. In SCA ’02: Proceedings of the
2002 ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion. ACM, New York, NY, USA, 49–54.

MÜLLER, M. AND GROSS, M. 2004. Interactive virtual materials. In
GI ’04: Proceedings of Graphics Interface 2004. Canadian Human-
Computer Communications Society, School of Computer Science, Uni-
versity of Waterloo, Waterloo, Ontario, Canada, 239–246.

MURRAY, R. M., LI, Z., , AND SASTRY, S. S. 1994. A Mathematical
Introduction to Robotic Manipulation. CRC Press.

NEALEN, A., MÜLLER, M., KEISER, R., BOXERMAN, E., AND CARL-
SON, M. 2006. Physically based deformable models in computer graph-
ics. Comput. Graph. Forum 25, 4, 809–836.

NESME, M., KRY, P. G., JEŘÁBKOVÁ, L., AND FAURE, F. 2009. Pre-
serving topology and elasticity for embedded deformable models. ACM
Trans. on Graphics (SIGGRAPH 2009) 28, 3.

NESME, M., PAYAN, Y., AND FAURE, F. 2006. Animating shapes at ar-
bitrary resolution with non-uniform stiffness. In Eurographics Workshop
in Virtual Reality Interaction and Physical Simulation (VRIPHYS). Euro-
graphics, Madrid.

O’BRIEN, J. F., BARGTEIL, A. W., AND HODGINS, J. K. 2002. Graphical
modeling and animation of ductile fracture. ACM Trans. on Graphics
(SIGGRAPH 2002) 21, 3.

O’BRIEN, J. F. AND HODGINS, J. K. 1999. Graphical modeling and ani-
mation of brittle fracture. In SIGGRAPH ’99: Proceedings of the 26th an-
nual conference on Computer graphics and interactive techniques. 137–
146.

PARK, F. C., BOBROW, J. E., AND PLOEN, S. R. 1995. A lie group
formulation of robot dynamics. International Journal of Robotics Re-
search 14, 6, 609–618.

PENTLAND, A. AND WILLIAMS, J. 1989. Good vibrations: modal dy-
namics for graphics and animation. In SIGGRAPH ’89: Proceedings of
the 16th annual conference on Computer graphics and interactive tech-
niques. ACM, New York, NY, USA, 215–222.

RATHOD, H. T., VENKATESUDU, B., AND NAGARAJA, K. V. 2005. Gauss
legendre quadrature formulas over a tetrahedron. 22, 1, 197–219.

ROCCHINI, C. AND CIGNONI, P. 2000. Generating random points in a
tetrahedron. Journal of Graphics Tools 5, 4, 9–12.

SCHÖBERL, J. 1997. NETGEN: An advancing front 2D/3D-mesh genera-
tor based on abstract rules. Comput. Visual Sci. 1, 41–52.

SEDERBERG, T. W. AND PARRY, S. R. 1986. Free-form deformation of
solid geometric models. SIGGRAPH Computer Graphics (SIGGRAPH
1986) 20, 4, 151–160.

SHI, X., ZHOU, K., TONG, Y., DESBRUN, M., BAO, H., AND GUO, B.
2008. Example-based dynamic skinning in real time. ACM Trans. on
Graphics (SIGGRAPH 2008) 27, 3.

SHINAR, T., SCHROEDER, C., AND FEDKIW, R. 2008. Two-way cou-
pling of rigid and deformable bodies. In SCA ’08: Proceedings of the
2008 ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion. ACM.

SIFAKIS, E., SHINAR, T., IRVING, G., AND FEDKIW, R. 2007. Hy-
brid simulation of deformable solids. In SCA ’07: Proceedings of the
2007 ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion, M. Gleicher and D. Thalmann, Eds. Eurographics Association, 81–
90.

SMITH, O. K. 1961. Eigenvalues of a symmetric 3 × 3 matrix. Communi-
cations of the ACM 4, 4, 168.

STERN, A. AND DESBRUN, M. 2006. Discrete geometric mechanics for
variational time integrators. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Courses. ACM, New York, NY, USA, 75–80.

SULEJMANPAŠIĆ, A. AND POPOVIĆ, J. 2005. Adaptation of performed
ballistic motion. ACM Trans. on Graphics 24, 1, 165–179.

TERAN, J., BLEMKER, S., HING, V. N. T., AND FEDKIW, R. 2003. Fi-
nite volume methods for the simulation of skeletal muscle. In SCA ’03:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation. Eurographics Association, Aire-la-Ville, Switzer-
land, Switzerland, 68–74.

TERAN, J., SIFAKIS, E., IRVING, G., AND FEDKIW, R. 2005. Robust qua-
sistatic finite elements and flesh simulation. In SCA ’05: Proceedings of
the 2005 ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation. ACM Press, New York, NY, USA, 181–190.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K. 1987.
Elastically deformable models. In SIGGRAPH ’87: Proceedings of
the 14th annual conference on Computer graphics and interactive tech-
niques. ACM, New York, NY, USA, 205–214.

TERZOPOULOS, D. AND WITKIN, A. 1988. Physically based models with
rigid and deformable components. IEEE Computer Graphics and Appli-
cations 8, 6 (Nov.), 41–51.

TURNER, R. AND THALMANN, D. 1993. The elastic surface layer model
for animated character construction. In Proceedings of Computer Graph-
ics International ’93. SpringerVerlag, 399–412.

VAN DE PANNE, M. AND LAMOURET, A. 1995. Guided optimization
for balanced locomotion. In Computer Animation and Simulation ’95,
D. Terzopoulos and D. Thalmann, Eds. Springer-Verlag, 165–177.

WOJTAN, C. AND TURK, G. 2008. Fast viscoelastic behavior with thin
features. ACM Trans. on Graphics (SIGGRAPH 2008) 27, 3.

ZHANG, X. AND KIM, Y. J. 2007. Interactive collision detection for de-
formable models using streaming AABBs. IEEE Transactions on Visual-
ization and Computer Graphics 13, 2, 318–329.

ZORDAN, V. B. AND HODGINS, J. K. 2002. Motion capture-driven simu-
lations that hit and react. In SCA ’02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. ACM, New
York, NY, USA, 89–96.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

