
3

Face Poser: Interactive Modeling of 3D Facial Expressions
Using Facial Priors

MANFRED LAU

Carnegie Mellon University and Microsoft Research Asia

JINXIANG CHAI

Texas A&M University

and

YING-QING XU and HEUNG-YEUNG SHUM

Microsoft Research Asia

This article presents an intuitive and easy-to-use system for interactively posing 3D facial expressions. The user can model and edit facial expressions by
drawing freeform strokes, by specifying distances between facial points, by incrementally editing curves on the face, or by directly dragging facial points in
2D screen space. Designing such an interface for 3D facial modeling and editing is challenging because many unnatural facial expressions might be consistent
with the user’s input. We formulate the problem in a maximum a posteriori framework by combining the user’s input with priors embedded in a large set of
facial expression data. Maximizing the posteriori allows us to generate an optimal and natural facial expression that achieves the goal specified by the user. We
evaluate the performance of our system by conducting a thorough comparison of our method with alternative facial modeling techniques. To demonstrate the
usability of our system, we also perform a user study of our system and compare with state-of-the-art facial expression modeling software (Poser 7).

Categories and Subject Descriptors: I.3.6 [Computer Graphics]: Methodology and Techniques—Interaction techniques; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation

General Terms: Algorithms, Design

Additional Key Words and Phrases: Facial modeling and animation, statistical models, 3D modeling interfaces, sketching interfaces, optimization

ACM Reference Format:

Lau, M. Chai, J., Xu, Y.-Q., and Shum, H.-Y. 2009. Face poser: Interactive modeling of 3D facial expressions using facial priors. ACM Trans. Graph. 29, 1,
Article 3 (December 2009), 17 pages. DOI = 10.1145/1640443.1640446 http://doi.acm.org/10.1145/1640443.1640446

1. INTRODUCTION

A long-standing challenge in computer graphics is to build an in-
teractive and easy-to-use system that allows a naı̈ve user to model
realistic facial expressions quickly and easily. Applications of such
a system include synthesizing natural facial expressions for char-
acters in films, games, or other virtual environments, and for facial
avatars in instant communication programs. Such a system is also
useful as a rapid prototyping tool: the user can efficiently create
3D face expressions for reviewing, discussions, or educational pur-
poses.

In this article, we present an intuitive and easy-to-use inter-
face for modeling and editing 3D facial expressions in real time.
Figure 1 illustrates the basic idea of our sketching interfaces. The

M. Lau is also with Microsoft Research Asia.
Authors’ addresses: M. Lau, Department of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213; J. Chai, Department
of Computer Science and Engineering, Texas A&M University, College Station, TX 77843; email: jchai@cs.tamu.edu; Y.-Q. Xu, H.-Y. Shum, Microsoft
Research Asia, 5/F, Beijing Sigma Center, No. 49, Zhichun Road, Hai Dian District, Beijing, China 100190.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2009 ACM 0730-0301/2009/12-ART3 $10.00

DOI 10.1145/1640443.1640446 http://doi.acm.org/10.1145/1640443.1640446

system starts with a 3D facial model in a neutral expression. The
user first selects a reference freeform stroke on the 2D screen space;
the user then draws a target freeform stroke to indicate a desired de-
formation for the reference stroke. Both strokes can be drawn any-
where in the 2D screen space and be viewed from any viewpoint.
The system automatically deforms the 3D facial model based on
the user’s input. The user can continue to refine the model until a
desired facial expression is achieved.

Building such an interface for 3D facial modeling is difficult be-
cause the information from the user is often ambiguous. In our sys-
tem, the user’s inputs are often a small set of freeform strokes, facial
points, or curves. This information is quite low-dimensional com-
pared to a typical facial model, which is commonly represented by
at least thousands of Degrees of Freedom (DoF). The user’s inputs,

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

3:2 • M. Lau et al.

Fig. 1. Our face poser system allows intuitive modeling and editing of 3D facial expressions in real time.

therefore, cannot be used to fully determine a natural facial con-
figuration because they will be consistent with many disparate so-
lutions. Some solutions might correspond to unnatural facial ex-
pressions and not be what the user intends to model. We eliminate
the ambiguity by imposing a prior embedded in a large database of
prerecorded face expressions. The prior describes the “likelihood”
function over facial expressions and measures how natural a face
expression is.

We formulate the facial modeling problem in a probabilistic
framework by combining the user’s inputs with the facial prior em-
bedded in precaptured facial expression data. We model the prior as
a mixture of factor analyzers [Ghahramani and Hinton 1997] and
learn the prior automatically from a prerecorded facial expression
database. Maximizing the posteriori (i.e., likelihood of the facial
expressions given the user’s input) generates a natural and most
likely facial expression that achieves the goal specified by the user.

We demonstrate the power and flexibility of this approach by in-
teractive modeling of 3D facial expressions with point constraints,
distance constraints, stroke constraints, and curve constraints. The
constraints are specified in the 2D screen space. We thereby avoid
the need for complex 3D interactions, which are common in mesh
editing software and can be cumbersome for a naı̈ve user. We have
found that a first-time user can learn to use the system easily and
quickly and be able to create desired facial expressions within min-
utes. Figure 1 shows some examples of facial expressions generated
by novices.

We demonstrate potential applications of our system in trajectory
keyframing, face expression transfer between different subjects,
and expression posing from photos. We evaluate the quality of
synthesized facial expressions by comparing against ground-truth
data. In addition, we perform a thorough comparison of our method
with alternative data-driven facial modeling techniques. Finally, we
evaluate the usability of our system by performing a user study and
comparing it against Poser 7.

1.1 Contributions

An initial version of our facial modeling framework has appeared
previously in Lau et al. [2007]. While this article uses the same
underlying probabilistic framework and the point/stroke constraints
described in that paper, this article is a major improvement over
the original one (approximately half of the material in this work
is new). More specifically, this article incorporates the following
major contributions/improvements over the original one.

—We have added three new constraints (fixed constraints, curve
constraints, and distance constraints) for facial modeling and
editing. These constraints were specifically added in response
to comments by the users who previously tested our system. We

show why each of these constraints is important by demonstrat-
ing what each one can do that others cannot. These constraints
all together contribute to a usable and complete system. In ad-
dition, they are all designed to fit within a unified probabilistic
framework.

—We have conducted a thorough comparison of our method
against state-of-the-art facial modeling techniques, including
blendshape interpolation, optimization with blendshapes, opti-
mization in the PCA subspace, optimization in the PCA subspace
with multivariate Guassian priors, and locally weighted regres-
sion. We compared cross-validation results for different types of
constraints, different numbers of constraints, and different error
measurements. These results not only evaluate the performance
of our whole system, they also justify our use of the MFA model.
Such a thorough comparison is also valuable to the whole facial
modeling and animation community.

—We have introduced two new applications for our system, includ-
ing facial expression transfer between different subjects and ex-
pression posing from photos.

—We have performed a user study to demonstrate the usability of
our method and to compare with state-of-the-art facial modeling
software (Poser 7). In addition, we have tested the system on two
additional facial models: “Yoda” and “Simon”.

2. BACKGROUND

In this section, we will discuss related work in sketching interfaces
for 3D object modeling. Because we use prerecorded facial data
in our system, we will also review research utilizing examples for
modeling.

Our work is inspired by sketch-based systems that interpret the
user’s strokes for creating and editing 3D models [Zeleznik et al.
1996; Igarashi et al. 1999]. Zeleznik and his colleagues [1996]
introduced a sketch-based interface to create and edit rectilinear
objects. Igarashi and his colleagues [1999] developed the first
sketching interface to interactively model and edit free-form ob-
jects. Recently, a number of researchers have explored sketch-based
interfaces for mesh editing [Nealen et al. 2005; Kho and Garland
2005]. For example, Nealen and his colleagues [2005] presented a
sketching interface for Laplacian mesh editing where a user draws
reference and target curves on the mesh to specify the mesh de-
formation. Kho and Garland [2005] demonstrated a similar inter-
face for posing the bodies and limbs of 3D characters. Yang and
his colleagues [2005] presented a 3D modeling system to con-
struct 3D models of particular object classes by matching the points
and curves of a set of given 2D templates to 2D sketches. How-
ever, direct application of previous sketch-based modeling tech-
niques in facial expression modeling might not work because facial

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

Face Poser: Interactive Modeling of 3D Facial Expressions Using Facial Priors • 3:3

expression is a fine-grained deformation and even the slightest de-
viation from the truth can be immediately detected.

We present an easy-to-use sketching interface for 3D facial mod-
eling and editing. Chang and Jenkins [2006] recently presented a
similar sketching interface for facial modeling. However, their in-
terface works only for strokes drawn as lines on the screen. Our
stroke interface is more general, allowing for drawing any line,
curve, shape, or region on the screen from any viewpoint. More
importantly, our system learns facial priors from a large set of pre-
recorded facial expression data and uses them to remove the mod-
eling ambiguity.

Our work builds upon the success of example-based facial mod-
eling systems. Previous systems are often based on weighted com-
binations of examples in the original space [Parke 1972; Lewis et al.
2000; Sloan et al. 2001] or eigen-space [Blanz and Vetter 1999;
Blanz et al. 2003]. These systems first compute weights from user-
specified constraints or image data and then use the weights to lin-
early interpolate example data.

Zhang and his colleagues [2004] developed an example-based
system for facial expression editing by interactively dragging
points on the face. Their face model is represented as a linear com-
bination of preacquired 3D face scans. Several researchers [Joshi
et al. 2003; Zhang et al. 2003] also proposed to segment a face
model into multiple regions and represented each subregion as a
convex linear combination of blend shapes. Recently, Meyer and
Anderson [2007] applied Principle Component Analysis (PCA) to
a number of facial deformation examples and used them to se-
lect a small number of key points for facial deformation control.
Example-based approaches have also been applied to edit skeletal
mesh structures. For example, Sumner and Popovic [2005] and Der
and his colleagues [2006] learned a reduced deformable space from
a small set of example shapes, and used an inverse kinematics ap-
proach to optimize the mesh in a reduced deformable space. Their
system allows the user to interactively deform a skeletal model by
posing just a few vertices. Most recently, Feng and his colleagues
[2008] combined a deformation regression method based on kernel
Canonical Correlation Analysis (CCA) and a Poisson-based trans-
lation solving technique for easy and fast example-based deforma-
tion control.

An alternative way to compute the weights of examples is
to reconstruct them directly from images or video [Blanz and
Vetter 1999; Pighin et al. 1999; Blanz et al. 2003]. Blanz and
his colleagues [2003] and Blanz and Vetter [1999] built a mor-
phable model from 3D scans via Principal Component Analy-
sis (PCA) [Bishop 1996] and applied the morphable model to
reconstruct a 3D model from a single image. Pighin and his col-
leagues [1999] demonstrated that they can estimate the weights
of 3D morphed face models directly from images or video. Chai
and his colleagues [2003] presented a real-time vision-based per-
formance interface for facial animation, which transforms a small
set of automatically tracked facial features into realistic facial an-
imation by interpolating the closest examples in a database at
runtime.

The main difference between our work and previous example-
based modeling systems is that we automatically learn a nonlinear
probabilistic distribution function from a large set of prerecorded
facial expression data. With a collection of locally linear submod-
els, our model (mixture of factor analyzers) can efficiently capture a
nonlinear structure that cannot be modeled by existing linear mod-
els such as blendshapes or eigen-shapes. In addition, we formulate
the facial modeling problem in a probabilistic framework by com-
bining the user’s inputs with the priors. This enables us to use a
wide variety of intuitive constraints for facial modeling and edit-

ing, a capability that has not been demonstrated in previous facial
modeling systems.

A number of researchers have also developed statistical models
to solve the inverse kinematics problem for articulated human char-
acters. For example, Grochow et al. [2004] applied a global non-
linear dimensionality reduction technique to human motion data
and used the learned statistical pose model to compute poses from
a small set of user-defined constraints. GPLVM works well for a
small set of example data. However, its performance deteriorates
rapidly as the size and heterogeneity of the database increases. Lo-
cal statistical models are sufficient if the user provides continu-
ous control signals (the performance animation problem). Recently,
Chai and Hodgins [2005] constructed a series of local statistical
pose models at runtime and reconstructed full body motion from
continuous, low-dimensional control signals obtained from video
cameras. Online local models are more appropriate for creating an-
imations (a sequence of poses) from constraints that are known in
advance, for example, when only the hand position will be con-
strained. They are not appropriate for our application because the
user’s input is not predefined and could be enforced at any facial
points. We significantly extend the idea by constructing a statisti-
cal model from a large set of facial expression data and using it for
interactive facial modeling and editing.

3. OVERVIEW

The main idea of our approach is that facial priors learned from pre-
recorded facial expression data can be used to create natural facial
expressions that match the constraints specified by the user. The
combination of the facial priors and the user-defined constraints
provide sufficient information to produce 3D facial expressions
with natural appearances.

3.1 Data Preprocessing

We set up a Vicon motion capture system [Vicon Systems 2007]
to record facial movements by attaching 55 reflective markers to
the face of a motion capture subject. We captured the subject per-
forming a wide variety of facial actions, including basic facial ex-
pressions such as anger, fear, surprise, sadness, joy, and disgust, as
well as other common facial actions such as speaking and singing.
We scanned the 3D model of the subject and then converted the
recorded marker motions into a set of deforming mesh models
[Chai et al. 2003]. We translated and rotated each frame of the
data to a default position and orientation because facial expression
models should be irrelevant of head poses. We collected data for
two subjects.

We denote a captured facial example in the database as x ∈ Rd ,
where x is a long vector stacking the 3D positions of all facial ver-
tices and d is three times the number of vertices in a facial model.
Let M be the total number of facial examples for each subject. We
first use Principal Component Analysis (PCA) [Bishop 1996] to
preprocess the captured data and obtain a reduced subspace repre-
sentation for x. We have

x = B·p + x, (1)

where the vector p ∈ Rr is a low-dimensional representation of a
facial model x ∈ Rd . The matrix B is constructed from the eigen-
vectors corresponding to the largest eigenvalues of the covariance
matrix of the data, and x is the mean of all the examples. Due to the
large dimensions of x, we perform PCA by an incremental SVD
method described by Brand [2002].

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

3:4 • M. Lau et al.

Fig. 2. System overview.

3.2 Problem Statement

We formulate our facial modeling problem in a Maximum A Pos-
teriori (MAP) framework. From Bayes’ theorem, the goal of MAP
is to infer the most likely facial model p given the user’s input c.
We have

arg maxp pr(p|c) = arg maxp
pr(c|p)pr(p)

pr(c)

∝ arg maxp pr(c|p)pr(p)
, (2)

where pr (c) is a normalizing constant, ensuring that the posteriori
distribution on the left-hand side is a valid probability density and
integrates to one.

In our implementation, we minimize the negative log of pr(p|c),
yielding the following energy minimization problem for facial ex-
pression modeling. We have

p̂ = arg minp − ln pr(c|p)︸ ︷︷ ︸ + − ln pr(p)︸ ︷︷ ︸
Elikelihood Eprior

, (3)

where the first term, Elikelihood, is the likelihood term that measures
how well a face model p matches the user-specified constraints c,
and the second term, Eprior, is the prior term that describes the prior
distribution of the facial expressions. The prior term is used to con-
strain the generated facial model to stay close to the training ex-
amples. Maximizing the posteriori produces a natural facial mesh
model that achieves the goal specified by the user.

3.3 System Components

The whole system contains three major components (see Figure 2).

User interaction. The user interaction step defines the likeli-
hood term of the facial modeling framework. The system starts
with a default facial model. The user interactively edits the facial
model using different kinds of constraints: point, distance, stroke,
and curve constraints. Furthermore, fixed constraints provide local
control over the selected regions of the face. All of these constraints
are specified in the 2D screen space. The interface allows the user
to iteratively apply these constraints until a desired solution is ob-
tained.

Facial priors. The system automatically learns a statistical
model from precaptured facial data in the reduced PCA subspace.
The constructed statistical model defines the prior term of the facial

modeling framework and is used to constrain the generated facial
expression to lie in the space of natural facial expressions.

Runtime optimization. The system solves the MAP problem at
runtime. More specifically, the system uses gradient-based opti-
mization techniques to automatically find a facial expression that
best satisfies the user-specified constraints while matching the sta-
tistical properties of the captured data.

The facial priors are learned offline, while the other two stages
are performed online based on the input from the user. We describe
these components in detail in the next three sections.

4. USER INTERACTION

Our system starts with a default 3D facial model. In our implemen-
tation, we start with the mean expression x. The user can interac-
tively edit facial expressions by specifying one or a combination of
these types of constraints: point constraints, distance constraints,
stroke constraints, and curve constraints.

For point constraints, the user can select any facial points and
specify their desired positions in the screen space. For distance
constraints, the user can select any two facial points and adjust the
desired distance between them. For stroke constraints, the user se-
lects a source freeform stroke on the screen and then draws a tar-
get freeform stroke to specify a desired deformation for the source
stroke. For curve constraints, the user first selects a source curve
by selecting and adjusting the control points of the curve. A tar-
get curve can then be incrementally edited by moving the control
points. For fixed constraints, the user selects points on the face that
should remain unchanged. This constraint must be used together
with any of the other ones, thereby allowing for local control of
the editing process. This section focuses on deriving the objective
functions and their derivatives for all of these constraints.

We first derive the mathematical relationship between a facial
model in the PCA subspace and the projection of a chosen vertex
in the 2D screen space. Let xi denote the 3D coordinates of the
i th vertex. Let yi denote the 2D projection of the i th vertex in the
screen space. We have

⎛
⎝ ui

vi
ωi

⎞
⎠ =

⎛
⎝ f 0 0 0

0 f 0 0
0 0 1 0

⎞
⎠ ·

⎛
⎜⎜⎜⎝

rT
1 t1

rT
2 t2

rT
3 t3

0 1,

⎞
⎟⎟⎟⎠ ·

(
xi
1

)
, (4)

where f is the focal length of the virtual camera, rT
i is the i th row

vector of the camera rotation matrix, and ti is the corresponding
camera translation component.

Let sw and sh denote the width and height of the 2D screen, re-
spectively. We further have

yi =
(

(ui
ωi

+ 1) · sw
2

(1 − vi
ωi

) · sh
2

)
=

⎛
⎜⎝

(
f rT

1 xi + f t1
rT

3 xi +t3
+ 1

)
· sw

2(
1 − f rT

2 xi + f t2
rT

3 xi +t3

)
· sh

2 .

⎞
⎟⎠ , (5)

We can “select” the i th vertex of x with

xi = Wi · x, (6)

where Wi is a 3 × 3N matrix, whose elements are zeros except

Wi (1 : 3, 3 ∗ i − 2 : 3 ∗ i) =
⎛
⎝ 1 0 0

0 1 0
0 0 1.

⎞
⎠ , (7)

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

Face Poser: Interactive Modeling of 3D Facial Expressions Using Facial Priors • 3:5

Fig. 3. Point constraints. (a) The user selects a 2D source pixel (blue) and a 2D target pixel (green) on the screen by raytracing techniques. (b) The problem
is to find a face mesh so that the selected 3D vertex projects back onto the corresponding target pixel.

Combining Eqs. (1), (5), and (6) together, the 2D projection (yi) of
the i th 3D facial vertex can be represented as a nonlinear function
of the subspace facial models p.

yi = gi (p)

=

⎛
⎜⎝

(
f rT

1 Wi (Bp+x)+ f t1
rT

3 Wi (Bp+x)+t3
+ 1

)
· sw

2(
1 − f rT

2 Wi (Bp+x)+ f t2
rT

3 Wi (Bp+x)+t3

)
· sh

2

⎞
⎟⎠ (8)

4.1 Point Constraints

Point constraints allow the user to change the positions of individ-
ual vertices on the mesh. This enables the user to have detailed
control over the final result. The user first selects a set of 3D source
vertices {xi |i = 1, . . . , N } and then specifies a corresponding set
of 2D target pixels {zi |i = 1, . . . , N } of where the vertices should
map to on the screen (Figure 3(a)). The user selects each 3D point
by picking a pixel in the 2D screen. We perform raytracing with
this pixel to choose the point on the mesh. Given these inputs, the
problem is to find a face model so that each selected 3D vertex
(xi) projects onto the corresponding 2D screen position (zi) in the
current camera view (Figure 3(b)).

Assuming Gaussian noise with a standard deviation of σpoint for
the i th point constraint zi , we can define the likelihood term for the
i th point constraint as follows.

E point = − ln pr(zi |p)

= − ln 1√
2π

exp −‖yi −zi ‖2

σ 2
point

∝ ‖gi (p) −zi ‖2

σ 2
point

(9)

A good match between the generated facial model (p) and the user’s
input (zi) results in a low value for the likelihood term.

4.2 Distance Constraints

This constraint allows the user to select two facial vertices xi and
x j , and edit the distance between them in the 2D screen space. This
is particularly useful for changing the width and height of the eyes
or mouth. Figure 4 shows an example of the user’s input. The user
selects the 3D vertices by selecting 2D pixels in the same way as
the point constraints. The current distances between the pairs of
vertices are displayed, and the user can dynamically adjust the dis-
tances.

Fig. 4. Distance constraints. As input, the user selects pairs of vertices and
specifies the distances between each pair.

Let d denote the user-defined target distance, and let xi and x j
map to yi and y j respectively. Similarly, we assume Gaussian noise
with a standard deviation of σdist for the distance constraint d, and
we define the following likelihood term for the distance constraints.

Edistance = − ln pr(d|p)

= − ln 1√
2π

exp
−(‖yi −y j ‖−d)2

σ 2
dist

∝ (‖gi (p)−g j (p)‖−d)2

σ 2
dist

(10)

4.3 Stroke Constraints

This constraint allows the user to select a group of 3D points
and specify where these points should collectively project to on
the screen. This is designed to allow the user to make large-scale
changes to the mesh with minimal user interaction. More specifi-
cally, the user first draws a 2D source stroke to select a set of 3D
points (xs’s) on the mesh. Then the user draws a 2D target stroke to
provide a region of pixels (z j ’s) where the 3D points should project
to. Figure 5 shows some examples of user-drawn strokes.

Given a source stroke in the 2D screen space, we need to find the
corresponding 3D points on the mesh efficiently. We raytraced the
pixels of the source stroke in a hierarchical manner. We first con-
sider the selected pixel region as blocks of 15 by 15 pixels, and find
the triangles that intersect with each block. We then consider these
blocks as 3 by 3 pixels, and find the triangles that intersect with

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

3:6 • M. Lau et al.

Fig. 5. Stroke constraints: different examples of source strokes (blue) and
target strokes (green).

each block. For each 3 by 3 block, we only test the triangles that
intersected with the corresponding 15 by 15 block. Finally, we ray-
traced each pixel by testing only the triangles in the corresponding
3 by 3 block. This process selects the xs’s on the mesh. This pro-
cess is necessary in order to allow for interactive selection of the
points on the mesh. Without this hierarchical selection, it can take
up to tens of seconds to select the points for each source stroke.

Since the selected 3D points on the mesh do not have to be the
original vertices of the mesh, we store the barycentric coordinates
of each xs . The position of each xs depends on the positions of the
three vertices of the triangle (xu , xv , xw) that it belongs to. When
the face mesh deforms, the position of each xs is recomputed as

xs = u · xu + v · xv + w · xw , (11)

where u, v , and w are the barycentric coordinates. For a given xs ,
these barycentric coordinates are fixed, while the vertices (xu , xv ,
xw) may deform.

Unlike point constraints, the stroke constraints do not provide
correspondence information between the individual pixels of the
source and target strokes. We could have estimated a correspon-
dence between the individual pixels of the two strokes and then
apply the point constraints approach to each pair of pixels. How-
ever, this is intuitively not what the user draws. Hence we decided
to project the set of 3D points on the mesh (xs’s) back to the 2D
screen for comparison with the target stroke (z j ’s).

Let the projected region of pixels be yi ’s. Let R be a constant
region that contains both yi ’s and z j ’s. For efficiency, we choose
the region R to be a joint region of yi ’s and z j ’s. Let Iy be a binary
image over the region R whose pixel values are zeros except the
projected region of pixels, yi ’s. Iy , therefore, depends on xs’s. We
further define Iz to be a binary image over the region R whose pixel
values are zero except the target stroke, z j ’s.

Similarly, we assume Gaussian noise with a standard deviation
of σstroke for stroke constraints. The likelihood term for stroke con-
straints is

Estroke = ∑
r∈R

(Iy(yi) − Iz(r))2

σ 2
stroke

. (12)

4.3.1 Additional Distance Term for Stroke Constraints. Our
method of measuring the distance between the two strokes by com-
puting the intensity difference is efficient. However, if the two
strokes are far away from each other, the objective function in Eq.
(12) does not require the strokes to “move toward” each other (see
Figure 6). The energy value in Eq. (12) will reach a local minimum
without “moving” the strokes. There are many ways to solve this
problem. We can use a more sophisticated function to represent Iy
and Iz . For example, a signed distance function would allow the
strokes to “move toward” each other. But computing this function
at every iteration of the optimization would be time consuming. In-
stead we choose to add an additional likelihood term to minimize
the distance between the center of the pixels in the source stroke

Fig. 6. If the source and target strokes are originally far away from each
other, the objective function in Eq. (12) does not allow the two strokes to
“move toward” each other. This motivates the need for the additional dis-
tance term for stroke constraints.

and the center of the pixels in the target stroke. We have

Eextra = ‖
∑

yi
Ns

− z‖2

σ 2
extra

, (13)

where σextra is the standard deviation for the extra constraints, Ns
is the number of pixels in the source stroke, z is the center of the
pixels in the target stroke, and the summation is for all source pixels
yi , i = 1, . . . , Ns .

4.4 Incremental Editing: Curve Constraints

Stroke constraints do not allow for incremental editing of the user-
drawn strokes. This motivates curve constraints: the user can draw
and adjust control points of the source and target curves. This al-
lows for local and incremental editing of the curves and therefore
the solution mesh. More specifically, the user first selects and ad-
justs the Bezier control points of the source curve (Figure 7(a)). The
user then accepts the source curve and adjusts the control points to
form the target curve (Figure 7(b)). Given the source and target
curves, we can use the same framework to deform the face mesh
in many different ways. In our implementation, we consider the
curves as strokes and apply the same idea for stroke constraints to
generate the solution.

Curve constraints allow for local and incremental control com-
pared to stroke constraints. Local control is achieved since the
Bezier control points only change the local parts of the curve. We
also have incremental editing because we can continue to adjust the
control points of the curve until we have a desired outcome.

The user-selected control points deterministically define a curve.
These points are a subset of the Bezier control points defining the
curve and they lie on the curve. The other Bezier control points
do not lie on the curve. Bezier curves were chosen because the
user-selected control points can lie on the curve, and this leads
to a more intuitive interface. Moreover, Bezier control points can
generate smooth piecewise curves. We construct piecewise Bezier
curves such that the first and second derivatives of adjacent piece-
wise curves are the same. In addition, we construct the piecewise
curves so that the second derivatives of the start and end points of
the whole curve is zero. This is known as the “relaxed” property of
Bezier curves and allows us to deterministically generate the whole
curve from the user-selected points.

We take the user-selected points and compute the curve by first
computing the corresponding relaxed B-spline points and then the
relaxed Bezier points. We show the method with the example in

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

Face Poser: Interactive Modeling of 3D Facial Expressions Using Facial Priors • 3:7

Fig. 7. Curve constraints. (a) The white points are Bezier control points of the blue source curve. The user first selects and adjusts the positions of these
points on the 2D screen. (b) Once the user accepts the source curve, the same control points can be adjusted locally to form the target curve. (c) An example
to show the construction of the curve from the user-selected control points (large black points).

Figure 7(c). First, the user-selected points (S0, S3, S6, S9, S12) are
used to compute the B-spline points (B0, B1, B2, B3, B4).⎛

⎝ 4 1 0
1 4 1
0 1 4

⎞
⎠ ·

⎛
⎝ B1

B2

B3

⎞
⎠ =

⎛
⎝ 6S3 − S0

S6

6S9 − S12

⎞
⎠ (14)

Also, B0 = S0 and B4 = S12. The B-spline points are then used
to compute the Bezier points (the S′

i s that are not the user-selected
points) that are not on the curve. For example, B0 and B1 are tri-
sected to form S1 and S2. The Bezier points are then used to gener-
ate piecewise Bezier curves. For example, S0, S1, S2, and S3 are the
Bezier control points that generate the curve from S0 to S3.

4.5 Local Control: Fixed Constraints

If the user edits the mesh with one of the previous constraints, the
regions of the mesh that the user did not select are “soft” regions, in
the sense that they may change or stay the same depending on the
motion capture data. For example, if the eye region is selected and
changed, the mouth may also change even if those vertices were
not selected. We can use fixed constraints to allow some vertices to
maintain their positions as much as possible in the optimization. In
this case, the user can choose some of the vertices near the mouth
to be “fixed.”

More specifically, the user selects NF total number of fixed ver-
tices (xi ’s). Let xi original be the original 3D positions of these ver-
tices. Similarly, the likelihood term for the fixed constraints defined
on the i th vertex is

Efixed = ‖xi −xi original‖2

σ 2
fixed

, (15)

where σfixed is the standard deviation for the fixed constraints. We
can substitute Eqs. (1) and (6) here. Fixed constraints must be used
with at least one of the other constraints described before. The
overall objective function will have this term multiplied by a user-
defined weight added to it. The larger the weight is, the more these
vertices will try to stay in place.

5. FACIAL PRIORS

There might be many facial models that satisfy the user-defined
constraints. For example, when the user selects one facial vertex to

edit the whole model, there might be many results that are consis-
tent with this constraint. To remove ambiguities, we can constrain
the generated model to lie in the space of natural facial expressions
by imposing a prior on the generated model.

We model the prior as a Mixture of Factor Analyzers (MFA)
[Ghahramani and Hinton 1997] and construct the model automat-
ically from a prerecorded facial expression database. The MFA
model learns a Probability Density Function (P.D.F.) in the PCA
subspace that provides a facial prior to measure the naturalness of
facial expressions. The MFA model has also been successfully ap-
plied to model the prior for many high-dimensional nonlinear data
such as handwritten digits [Hinton et al. 1997] and images [Bishop
and Winn 2000].

A single Factor Analyzer (FA) assumes that an observed r-
dimensional variable p is generated as a linear transformation of
some lower q-dimensional latent variable τ ∼ N (0, I) plus addi-
tive Gaussian noise ω ∼ N (0, �). � is a diagonal matrix. The
generative model can be described as

p = Aτ + ω + μ. (16)

Here, A ∈ Rr×q is a factor loading matrix. μ is a mean vector. The
P.D.F. of the observed data in an FA model can be obtained by

pr(p; �) = N (μ, AAT + �). (17)

A Mixture of Factor Analyzers (MFA) is defined by a linear com-
bination of K factor analyzers and can be thought of as a re-
duced dimension mixture of Gaussians. The MFA model extracts
q-dimensional locally linear manifolds underlying the given high-
dimensional data. The P.D.F. of the observed data by a mixture of
factor analyzers is given by

pr(p; �) =
K∑

k=1

πkN
(
μk, Ak AT

k + �
)
, (18)

where πk is a mixing proportion (πk > 0 and
∑K

k=1 πk = 1).
The goal of our offline learning process is to automatically find
the model parameters � = {πk, μk, Ak, �|k = 1, . . . , K } from the
training data. We use an EM algorithm to fit a mixture of factor an-
alyzers. The detailed description of the EM algorithm can be found
in Ghahramani and Hinton [1997].

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

3:8 • M. Lau et al.

Fig. 8. Applications. (a) Trajectory keyframing: we use seven 2D target points (green) to generate the 3D model (blue points are corresponding 3D source
points). (b) Expression transfer: the facial expression model on the left is the source expression, and the one on the right is the transferred facial expression.
(c) Expression posing: the facial model on the right is created with the photo.

We minimize the negative log of pr (p), yielding the energy for-
mulation for the prior term.

Eprior = − ln
K∑

k=1

πkN
(
μk, Ak AT

k + �
)

(19)

A smaller Eprior value means that p is closer to the samples in the
motion data and therefore more natural. The inverse and determi-
nant of the covariance matrices are precomputed for each factor to
achieve a faster runtime.

6. RUNTIME OPTIMIZATION

During runtime, the system optimizes in the reduced PCA subspace
and finds the 3D face model (p) that best satisfies the user-defined
constraints (c).

The overall objective function is a combination of various forms
of the likelihood terms (Eqs. (9), (10), (12), (13), and (15)) and the
prior term (Eq. (19)):

arg min
p∈Rr

Epoint + Edistance + Estroke + Eextra + Efixed + Eprior (20)

Note that curve constraints are represented here as part of the stroke
constraints term. Each factor in the MFA model has a mean face
mesh. We initialize the optimization with the “best” mean among
all factors, by explicitly computing the “best” p.

arg minp∈{μ1,...,μK } Epoint + Edistance + Estroke + Eextra

+ Efixed + Eprior (21)

We analytically evaluate the Jacobian terms of the objective func-
tion (see Appendix) and minimize the function using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm in the GSL library
[Galassi et al. 2003]. The solution converges rapidly due to a good
starting point, a low-dimensional optimization space, and the ana-
lytical evaluation of the Jacobian terms.

7. APPLICATIONS

In order to explore the effectiveness of our system, we also tested
the system in the following applications.

Trajectory keyframing. Our optimization framework can be ap-
plied for trajectory keyframing. Given the 3D or 2D trajectories of
a few points, we can reconstruct the 3D facial expressions using
point constraints. If we just have the 2D trajectories, we also need
the camera viewpoint as input. Some examples are shown in Figure
8(a). When we generate many frames for an animation, we add a
smoothness term to minimize the change in velocity of the vertices
between consecutive frames.

Table I. Details of the Data We Used
First Subject Second Subject

M 7,790 10,036
d 51,333 49,503
r 20 15
K 30 20
q 10 6

M is the number of samples, d is the number of original di-
mensions (d equals 3 times the number of vertices), r is the
number of reduced dimensions in the PCA step, K is the
number of factors, and q is total number of dimensions for
the latent variable τk in each factor of the MFA model.

Expression transfer. We can apply our system to transfer facial
expression from one subject (e.g., “A”) to another (e.g., “B”). More
specifically, we extract a set of distance constraints from subject
“A” and use them as well as the facial prior of subject “B” to gen-
erate a corresponding facial expression for subject “B”. Figure 8(b)
shows some examples. These results are generated with three dis-
tance constraints, controlling the height of the mouth and eyes.
Since the meshes are different for the two subjects, we scale the
target distances between subjects by measuring the minimum and
maximum of key features of the face. The results show that face ex-
pressions can be realistically transferred between different subjects.

Expression posing from photos. We can take photos of a human
face and recreate their expressions with our system. Figure 8(c)
shows an example. In this case, our system may not achieve de-
tailed correspondences between the photo and facial model, but it
allows for quick prototyping of a 3D face model.

8. RESULTS

Table I shows the details of the main datasets that we used. For
the first subject, the 3D face model has 17,111 vertices and 34,168
faces. For the second subject, the 3D model has 16,501 vertices
and 32,944 faces. The number of reduced dimensions for the first
subject and second subject are 20 and 15, respectively, by keeping
99% of the energy in the largest eigenvalues from PCA.

8.1 User Interaction

Our system can generate a variety of facial expressions. The accom-
panying video shows live screenshots of the interactive system.

Point constraints. The user can select a facial point and interac-
tively drag it into a desired position in 2D screen space (see video
for example). Even though the facial points are in 3D, this “drag-
ging” in 2D screen space is still natural and generates good results.
We can achieve a more detailed result if we increase the number of

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

Face Poser: Interactive Modeling of 3D Facial Expressions Using Facial Priors • 3:9

Fig. 9. If there are many constraints, some of them may conflict or “fight”
with each other, since the system also tries to generate natural results. The
inputs are shown on the left, and the synthesized result is on the right.

Fig. 10. Distance constraints. We can move between adjacent results in-
teractively with just one mouse click. The mouth’s height measured by the
number of pixels is shown beside each model.

Fig. 11. Stroke and point constraints. (a) Original mesh: the user draws
point and stroke constraints directly on the screen. The source points/strokes
are in blue and target points/strokes are in green. (b) Result: the face model
is deformed to satisfy the constraints.

constraints. In general, as the number of point constraints increases,
the results are more accurate (see Section 9). However, if there are
constraints that do not match any natural facial expressions repre-
sented by our statistical model, the solution will fail to satisfy all
the constraints (Figure 9).

Distance constraints. Figure 4 shows a slide bar interface
for controlling the distances between pairs of points. Distance
constraints are particularly useful for interactively changing the
height and width of the mouth and eyes. Figure 10 shows results
that distance constraints can more easily generate compared to
other constraints. Even though we can create an “opened” mouth
with other constraints, other constraints cannot iteratively and in-
teractively generate these types of solutions.

Stroke constraints. This constraint can be used to efficiently
make large-scale changes to the face model. Figure 11 shows an ex-
ample where we draw strokes to “raise” the cheek regions to create
a smiling expression. The point constraints are used in this case to
fine-tune the corners of the mouth. The users have reported that the
sketching interface allows them to draw certain features of the face
such as an eyebrow more easily (Figure 1(left)). Although some
results might also be achieved with point constraints, such a pen-
based sketching interface is more intuitive and more efficient than
selecting a large number of points on the screen (with point con-

Fig. 12. Curve constraints. The top row shows the inputs and the bottom
row shows the results. Each column is a different example. The source
curves are the same in all four cases. Different shapes of the mouth can
be obtained by curve constraints.

Fig. 13. Local control of the face. (Left) Without fixed constraints: only
point constraints are selected in (a) and the result is shown in (b). (Right)
With fixed constraints: fixed constraint (red vertices) are added in (c) and
the result is shown in (d), where the eyes are closed as before while the
mouth remains open.

straints). Figure 5 shows different examples of strokes that can be
drawn easily with simple click-and-drag operations of the mouse.

Incremental editing: curve constraints. Curve constraints can
handle local and incremental edits. Local changes can be made
because the Bezier control points have a local control over the
curve. We can make incremental edits to these points until a desired
outcome is achieved. Figure 12 shows some examples. While the
strokes in stroke constraints cannot be edited incrementally, curve
constraints allow for these types of changes.

Local control: fixed constraints. Figure 13 shows the use of this
constraint for local or regional control of the face. If the user is
already satisfied with certain parts of the face, those parts can be
selected to be “fixed” while the rest of the face is being edited. Us-
ing just the other constraints cannot provide such regional control
over the whole face. The user can dynamically adjust the weight
of the fixed constraint term (1/σ 2

fixed) in the optimization, thereby
choosing a spectrum of possibilities that trade off between satisfy-
ing the “fixed” vertices and satisfying the other constraints.

8.2 Computation Time

The computation time of our method is efficient (see Figure 14).
For example, the runtime for stroke constraints with 900 pixels
(about the size of a stroke drawn on the eyebrow) is about 0.35
seconds. For fixed constraints, we measure the time with 5 point
constraints together with different numbers of “fixed” points. These
experiments were done on a Pentium 4 3GHz machine with 1GB
RAM. Each value is an average over 5 trials.

As the number of constraints (points, distances, pixels, or fixed
points) increases, the computation time increases linearly. This is
expected as the optimization (and also Jacobian) term is a sum-
mation of the objective value for each constraint. In addition, the
execution time of the system does not depend on the number of

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

3:10 • M. Lau et al.

Fig. 14. Computation time for each constraint. As the number of constraints increases, the computation time increases linearly.

Fig. 15. These results show that our method works on a variety of face data. (Left) We can edit a 3D yoda model by sketching on the 2D screen. (Right) Our
system works with the “Simon” head model from the Poser 7 software.

samples in the database because the MFA model is learned offline.
Hence our method scales well to the size of the database.

8.3 Additional Test Data

Our method is not dependent on the number of vertices or the mesh
structure. This section shows that our method works on different
types of face data. Specifically, we have tested our system with a
yoda head model and the “Simon” head model from the Poser 7
software.

We acquired a yoda head model (see Figure 15(left)), and man-
ually created a number of different face expressions using the pop-
ular Maya software. Since we do not have any motion data avail-
able for this yoda model, we created thirty examples with Maya
ourselves. The limitation is that we cannot create poses that are far
from these original examples. The purpose is therefore to show that

our method does work on mesh structures that are quite different
from human head models, and our method does work surprisingly
well even with a limited amount of data. The yoda model has 6,916
vertices and 13,788 faces. We reduced the number of dimensions
from 20,748 (three times the number of vertices) to just 5 using
PCA (keeping greater than 98% of energy).

In addition, we tested our system with the “Simon” head model
(see Figure 15(right)) from the Poser 7 software. We directly ex-
ported the mesh and texture from this software. For the head model,
we did not use the eyeballs, tongue, and teeth that are in the orig-
inal Poser 7 model. We created thirty examples of different types
of face expressions with the face morphs available in Poser 7. We
also triangulated each of these meshes in Maya. Since the original
thirty examples are created with the face morphs in Poser 7, one ini-
tial concern was that the expressions that we can create with these
examples in Face Poser would already be similar to the expressions

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

Face Poser: Interactive Modeling of 3D Facial Expressions Using Facial Priors • 3:11

that can be created in Poser 7. Our comparison of the resulting 3D
models in Figure 22 might therefore be unfair. However, we found
that our Face Poser system is able to interpolate, extrapolate, and/or
blend between the original samples. Thus, this was not a major is-
sue. The “Simon” head model that we use has 8,562 vertices and
16,952 faces. We reduced the number of dimensions from 25,686
(three times the number of vertices) to just 5 using PCA (keeping
greater than 99% of energy).

9. EVALUATION

In this section, we provide a thorough comparison of our method
against alternative data-driven techniques: blendshape interpolation
(Interp-all), optimization with blendshapes (Opt-blend), optimiza-
tion in the PCA subspace (PCA), optimization in the PCA subspace
with a multivariate Gaussian distribution for facial priors (Proba-
bilistic PCA or PPCA), and locally weighted regression (LWR).
We compare cross-validation results for different types of user con-
straints, for different numbers of each constraint, and for different
error measurements.

9.1 Explanation of Other Techniques,
Cross-Validation, 3D and 2D Error

We compare the MFA model used in this work against other meth-
ods. The alternative techniques can be classified into two groups.

Interpolation. “Interp-all” takes all the examples in the
database, uses the objective function (i.e., Eq. (9) for point con-
straints) to compute an appropriate weight for each example, and
blends the examples with the computed weights [Parke 1972; Lewis
et al. 2000; Sloan et al. 2001]. “LWR” extends the idea of “Interp-
all” by considering closest examples in the database [Chai et al.
2003]. It finds k examples that are closest to the user’s input
and performs a locally weighted regression based on the closest
examples.

Optimization. “Opt-blend” represents the solution as a weighted
combination of examples in the database and optimizes the weights
based on user-defined constraints [Zhang et al. 2004]. “PCA” sig-
nificantly reduces the solution space of “opt-blend” by performing
an optimization in the PCA subspace [Blanz and Vetter 1999; Blanz
et al. 2003]. “PPCA” further reduces the solution space by incorpo-
rating a “Gaussian” prior term into the objective function. “PPCA”
assumes that the examples in the database are represented by a mul-
tivariate Gaussian distribution. All optimization methods start with
the same initial pose.

For cross-validation tests, we use new face models as testing
data. We start from a neutral pose and select the source constraints
(points, distances, strokes). The corresponding target constraints
are automatically generated based on the ground-truth test data. For
example, if 3D point x is chosen and it maps to the 2D pixel y for
the test data, y is used as the target constraint for the original neutral
pose. Given the source and target, we can then generate the solution
and compare it against the ground-truth data (i.e., the test data).

The 3D error is the average of the Euclidean distances between
each vertex of the ground-truth mesh and the synthesized mesh. For
point constraints, the 2D error is the difference between the pro-
jected pixel (from the selected source vertex) and the target pixel.
If there is more than one pair of source vertices and target pix-
els, we average these differences. This is essentially Eq. (9) with
p being the solution mesh. The 2D error for the other constraints
are computed similarly by their respective optimization objective

functions. Each value reported for 3D error, 2D error, and runtime
is an average over 10 trials.

9.2 Comparison of 3D Reconstruction Error

The left side of Figure 16 shows the comparison results of 3D errors
for point, distance, and stroke constraints, respectively. As the num-
ber of constraints increases (in all cases), the 3D error decreases.
This is because the increase in the number of constraints provides
more information about the ground-truth sample. This leads to a
more accurate result in the solution mesh compared to the ground
truth, and therefore the 3D error decreases.

“Opt-blend” and “Interp-all” do not produce good results be-
cause the solution depends on all the samples in the database. PCA
produces a larger error because the number of user-specified con-
straints is usually small even when compared to the reduced dimen-
sions of the PCA subspace. Hence the constraints are not sufficient
to fully determine the weights of p. PPCA can remove the mapping
ambiguity from the low-dimensional constraints to the reduced sub-
space dimensions by the facial prior. However, the face models are
not as well approximated by a multivariate Gaussian distribution.
For LWR, the model provided by the k closest samples are usually
not sufficient because they do not provide any temporal coherence.
Our method (MFA) produces a smaller 3D error both across the
three types of constraints and across the different number of points,
distances, and pixels for each constraint.

LWR and PCA tend to be closest to our method in terms of the
cross-validation 3D errors. We therefore present some visual results
of these two techniques compared with our method. Figures 17,
18, 19, and 20 show the side-by-side comparisons for different ex-
amples: MFA can produce better perceptual results than LWR and
PCA.

9.3 Comparison of 2D Fitting Error

The right side of Figure 16 shows the comparison results of 2D fit-
ting errors for point, distance, and stroke constraints, respectively.
As the number of constraints increases (in all cases), the 2D error
remains approximately the same. This is because the 2D error is
an average over the number of points, distances, and pixels for the
three types of constraints.

LWR and PCA also tend to be closest to our method in terms of
the 2D errors. We again refer to Figures 17, 18, 19, and 20 to show
MFA can produce better visual results than LWR and PCA.

In particular, the 2D error for PCA is usually smaller than MFA.
This is because PCA exactly tries to minimize this error without
considering how natural the result might be. Figure 21 shows an ex-
ample where PCA has a zero 2D error, but it produces an unnatural
result. For the same inputs, MFA has a 2D error that is relatively
large, but it produces a natural solution. Therefore, even though
PCA can have a lower 2D error than MFA, the visual solutions that
it produces may not be desirable.

9.4 Comparison of Runtime

We show a comparison of the runtime of point, distance, and stroke
constraints for all the techniques (Table II). We use 4 points, 4 dis-
tances, and 450 pixels for each constraint, respectively. The runtime
for MFA is comparable to PCA and PPCA, while being signifi-
cantly better than the other three techniques.

“Interp-all” and LWR are very inefficient since these methods
have to iterate through every sample in the database. “Opt-blend” is
even more inefficient because the number of parameters in the op-
timization problem is equal to the total number of samples. PPCA,

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

3:12 • M. Lau et al.

Fig. 16. Comparison with other techniques. (Top) Point constraints. (Middle) Distance constraints. (Bottom) Stroke constraints. Figures in the left and right
show 3D and 2D errors, respectively.

PCA, and MFA optimize in a low-dimensional space and are much
more efficient. These three methods learn the models of the data
offline, and therefore can scale to the size of the database. MFA is
slightly slower than PPCA and PCA; this might be due to the more
complex model that is used by MFA to represent the data.

9.5 User Study

The goal of our user study is: (i) to compare our system with a
common existing software tool for creating and editing face expres-
sions; and (ii) to ask users to identify any main strengths and weak-
nesses of our system that we may not be aware of. We compared
our system with “Poser 7”. This software tool is used by anima-
tors and artists for animating, modeling, and rendering human-like
figures. For the purpose of face modeling, this software allows the
user to adjust face morphs to edit specific parts of the face. For ex-
ample, one can set the value for “Smile” from 0.0 to 1.0 to create a
smiling expression on the face.

For the user study, we first briefly show each user the functions
of both Poser 7 and our Face Poser system. We then give the users
examples of face expressions, and ask them to create these expres-
sions (starting from a neutral expression) using both systems. These
examples are in the form of images or photos of faces. Figure 22(a)
shows some examples. These are meant to serve as a guideline for
the users. We decided to give these images or photos as guidelines
instead of specific descriptions such as “happy” or “surpise”, since
different people may have different interpretations of these terms.
We tested fifteen users, and each user has either little or no previous
experience with 3D modeling. We asked each user to create these
expressions: joy, angry, digust, fear, and surprise. Figure 22(b) and
(c) show examples of models created by users. After creating each
expression with each system, we asked the user to provide a score
(from 1 to 9) of how easy it is to create that expression with that
system. We also recorded the time it took the user to create each
expression.

The results show that the 3D models created by the users with
either Poser 7 or Face Poser are similar. This can be seen in

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

Face Poser: Interactive Modeling of 3D Facial Expressions Using Facial Priors • 3:13

Fig. 17. A side-by-side comparison of cross-validation results for point constraints. (a) Ground truth. (b) MFA. (c) LWR.

Fig. 18. A side-by-side comparison of cross-validation results for point constraints. (a) Ground truth. (b) MFA. (c) PCA.

Fig. 19. A side-by-side comparison of cross-validation results for stroke constraints. (a) Ground truth. (b) MFA. (c) LWR.

Fig. 20. A side-by-side comparison of cross-validation results for stroke constraints. (a) Ground truth. (b) MFA. (c) PCA.

Fig. 21. A side-by-side comparison of results for MFA and PCA. The same inputs are used in both cases. (a) MFA has a larger 2D error, but the solution is
natural. (b) PCA has a zero 2D error, but the result is not natural.

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

3:14 • M. Lau et al.

Fig. 22. Example inputs and results from the user study. The top row shows the case for “disgust” expressions, and the bottom row shows the case for
“surprise” expressions. Parts (a) show the images or photo shown to the users. Parts (b) and (c) show the 3D models created by users with Face Poser and
Poser 7, respectively.

Table II. Comparison of Runtime for Different
Techniques and Different Constraints

Time (ms) for Each Constraint
Point Distance Stroke

Opt-blend 73,741 72,526 142,836
Interp-all 63,539 68,648 78,187
PPCA 59 84 92
PCA 58 78 104
LWR 30,086 32,057 51,797
MFA 114 147 159

Figure 22(b) and (c). The “easiness score” and “time to create
each expression” are averaged over seventy-five cases (fifteen users
and five expressions each). Figure 23(left) shows the average eas-
iness score provided by the users for each system. For Poser 7,
the average score is 5.6 and the standard deviation is 1.6. For Face
Poser, the average score is 7.3 and the standard deviation is 1.3.
Figure 23(right) shows the average time to create each expression
for each system. For Poser 7, the average time is 4.0 minutes and
the standard deviation is 1.2. For Face Poser, the average score is
2.4 minutes and the standard deviation is 1.2. At the end of each
user session, we asked each user to provide qualitative comments
about the strengths and weaknesses of each system. The following
is a summary of these comments.

—Poser 7. If the user knows the morph parameters well, this sys-
tem is useful. However, some morph parameters are not intuitive.
It is difficult to know what values to set for some of the morphs,
and the editing process is sometimes based on a series of trial-

and-error. There are many morph parameters: the advantage is
that it is possible to make many types of changes, while the dis-
advantage is that it might be confusing to decide which sets of
morphs should be used.

—Face Poser. This method takes less time to create or edit a face
expression. It is nice that there are no menus, and one only needs
to sketch “on the 3D model.” It is sometimes difficult to make
changes to some specific parts of the face. It is good that we do
not have to know what the morphs do in advance.

Our results show that if an animator already has expertise with 3D
face modeling and is trying to edit face expressions on a specific 3D
model, then the Poser 7 system would be a good choice. The rea-
son is that the morphs can be defined in advance for that specific 3D
model, and the animator can spend time to adjust the morphs until
the desired deformation is achieved. However, if a user is someone
who has little or no experience with 3D modeling and he/she needs
to edit face expressions on one or more models that is unfamiliar to
him/her, then our Face Poser system would be a good choice. The
reason is that the sketching interface is fast and requires almost no
learning time. After just one demonstration of the sketching inter-
face, users can immediately sketch new expressions on their own.

10. DISCUSSION

We have presented an approach for generating facial models from
different kinds of user constraints (point, distance, stroke, curve,
fixed) while matching the statistical properties of a database of

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

Face Poser: Interactive Modeling of 3D Facial Expressions Using Facial Priors • 3:15

Fig. 23. Comparison with Poser 7. (Left) We asked the users to give a score (1-9) of how easy it is to create each expression with each system. This graph
shows the results of these scores. (Right) We recorded the time it takes the users to create each expression with each system. This graph shows the timing
results.

example models. The system first automatically learns a statisti-
cal model from example data and then enforces this as a prior to
generate/edit the model. The facial prior, together with user-defined
constraints, comprise a problem of maximum a posteriori estima-
tion. Solving the MAP problem in a reduced subspace yields an
optimal, natural face model that achieves the goal specified by the
user.

The quality of the generated model depends on both facial priors
and user-defined constraints. Without the use of the facial priors,
the system would not generate natural facial expressions unless the
user accurately specifies a very detailed set of constraints. One lim-
itation of the approach, therefore, is that an appropriate database
must be available. If a facial expression database does not include
highly detailed facial geometry such as wrinkles, our system will
not generate wrinkles on the face model.

The quality of the generated facial model also depends on the
naturalness of the constraints. Constraints are “natural” when there
exists at least one natural facial model consistent with them. The
user might not create a natural facial expression if the constraints
do not match any natural expression in the database or if the con-
straints are not consistent with each other.

The appearance of the final facial model is also influenced by the
weight of the facial prior term, which provides a trade-off between
the prior and the user-defined constraints. Instead of choosing a
fixed weight, we allow the user to choose this weight dynamically;
we can provide this capability because of the speed of the system.

The system allows for a “click done” mode and a “dragging”
mode to create and edit a facial model. The user can choose the
desired constraints and then click a button to generate the solution
with the current constraints. This allows for placing multiple points
and/or strokes in one optimization step. This can lead to large-scale
changes, but all the constraints may not be satisfied if they come in
conflict with allowing for natural poses. The “dragging” mode pro-
vides a manipulation interface where the user can see the changes
continuously. It allows for more detailed changes over the local re-
gion of the dragged point.

Our system allows the user to generate facial models from var-
ious types of user-defined constraints. Any kinematic constraints
can be integrated into our statistical optimization framework as
long as the constraints can be expressed as a function of 3D po-
sitions of vertices.

We tested our system with a keyboard/mouse interface and an
electronic pen/tablet interface. The system is simple and intuitive,

and appeals to both beginning and professional users. Our system
greatly reduces the time needed for creating natural face models
compared to existing 3D mesh editing software. The system can
work with other types of input devices. For example, the user can
specify the desired facial deformation by dragging multiple facial
points on a large touch screen or tracking a small set of facial points
using a vision-based interface.

A possible future extension is to model the face as separate re-
gions, generate each region separately, and blend the regions back
together. This might allow for fine-grained control over local ge-
ometry and improve the generalization ability of our model.

APPENDIX: JACOBIAN EVALUATION

In this section, we show the derivations of the Jacobian terms. Their
corresponding optimization terms are shown in the “User Interac-
tion” section.

The Jacobian matrix Ji (p) can be evaluated as follows. We have

Ji (p) = ∂yi
∂p ,

= ∂yi
∂xi

· ∂xi
∂p ,

(22)

where the first Jacobian term can be computed as

∂yi
∂xi

=
⎛
⎝ sw

2 · f rT
1 ·(rT

3 xi +t3)−rT
3 ·(f rT

1 xi + f t1)

(rT
3 xi +t3)2

− sh
2 · f rT

2 ·(rT
3 xi +t3)−rT

3 ·(f rT
2 xi + f t2)

(rT
3 xi +t3)2

⎞
⎠ (23)

and the second Jacobian term is

∂xi
∂p

= Wi · B. (24)

The Jacobian matrix for E point is

∂ E point
∂p

= ∂(‖gi (p)−zi ‖2)
∂p

= ∂‖yi −zi ‖2

∂yi
· ∂yi

∂p

= 2(yi − zi)T · Ji (p).

(25)

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

3:16 • M. Lau et al.

The Jacobian matrix for Edistance can be computed as follows.

∂ Edistance
∂p

= ∂(‖yi −y j ‖−d)2

∂p

= 2(‖yi − y j‖ − d) · 1

2
√

(yi −y j)T (yi −y j)
· ∂(yi −y j)T (yi −y j)

∂p

= (‖yi −y j ‖−d)√
(yi −y j)T (yi −y j)

·
(

2(yi − y j)T · ∂(yi −y j)
∂p

)
= 2(‖yi −y j ‖−d)(yi −y j)T√

(yi −y j)T (yi −y j)
· (Ji (p) − Jj (p))

(26)

The Jacobian matrix for Estroke can be evaluated as

∂ Estroke
∂p

= 2 · ∑
r∈R

[
(Iy (yi)−Iz (r))

σ 2
stroke

·
(

∂ Iy (yi)
∂yi

· ∂yi
∂xs

· ∂xs
∂p

)]
, (27)

where the partial derivative ∂ Iy (yi)
∂yi

is the image gradient computed
by the Sobel operator [Duda and Hart 1973]. We use Eq. (23) to
compute the partial derivative ∂yi

∂xs
.

Finally based on Eq. (11), ∂xs
∂p

can be computed as

∂xs
∂p

= u · ∂xu
∂p

+ v · ∂xv
∂p

+ w · ∂xw
∂p

, (28)

where the partial derivatives on the right side of this equation can
be substituted with Eq. (24).

The Jacobian matrix for Eextra is

∂ Eextra
∂p

= 2
σ 2

extra
·
(∑

yi
Ns

− z

)T
·

∂

(∑
yi

Ns

)
∂p

= 2
σ 2

extra Ns
·
(∑

yi
Ns

− z

)T
· ∑ (

∂yi
∂xs

· ∂xs
∂p

)
,

(29)

where ∂yi
∂xs

can be evaluated with Eq. (23) and ∂xs
∂p

can be evaluated
with Eq. (28).

The Jacobian matrix for Efixed is

∂ Efixed
∂p

= (xi −xi original)
T

σ 2
fixed

· Wi B. (30)

The Jacobian matrix of the prior term Eprior can be computed as
follows.

∂ Eprior

∂p
=

∑
k

πkN
(
μk, Ak AT

k + �k

)
(p − μk)T

(
Ak AT

k + �k

)−1

∑K
k=1 πkN

(
μk, Ak AT

k + �k

)
(31)

REFERENCES

BISHOP, C. M. AND WINN, J. M. 2000. Non-Linear bayesian image
modeling. In Proceedings of the European Conference on Computer Vi-
sion (ECCV). 3–17.

Bishop, C. 1996. Neural Network for Pattern Recognition. Cambridge
University Press.

BLANZ, V. AND VETTER, T. 1999. A morphable model for the synthe-
sis of 3d faces. In Proceedings of the ACM SIGGRAPH International
Conference on Computer Graphics and Interactive Techniques. 187–
194.

BLANZ, V., BASSO, C., POGGIO, T., AND VETTER, T. 2003. Reani-
mating faces in images and video. Comput. Graph. Forum. 22, 3, 641–
650.

BRAND, M. 2002. Incremental singular value decomposition of uncer-
tain data with missing values. In Proceedings of the European Conference
on Computer Vision (ECCV). 707–720.

CHAI, J. AND HODGINS, J. 2005. Performance animation from low-
dimensional control signals. ACM Trans. Graph. 24, 3, 686–696.

CHAI, J., XIAO, J., AND HODGINS, J. 2003. Vision-Based con-
trol of 3D facial animation. In Proceedings of the ACM SIGGRAPH/
Eurographics Symposium on Computer Animation. 193–206.

CHANG, E. AND JENKINS, O. C. 2006. Sketching articulation and
pose for facial animation. In Proceedings of the ACM SIGGRAPH/
Eurographics Symposium on Computer Animation. 271–280.

DER, K. G., SUMNER, R. W., AND POPOVIC, J. 2006. Inverse kine-
matics for reduced deformable models. ACM Trans. Graph. 25, 3, 1174–
1179.

DUDA, R. AND HART, P. 1973. Pattern Classification and Scene Anal-
ysis. John Wiley and Sons.

FENG, W.-W., KIM, B.-U., AND YU, Y. 2008. Real-Time data driven
deformation using kernel canonical correlation analysis. ACM Trans.
Graph. 27, 3, Article no. 91.

GALASSI, M., DAVIES, J., THEILER, J., GOUGH, B., JUNGMAN, G.,
BOOTH, M., AND ROSSI, F. 2003. GNU Scientific Library Reference
Manual, Revised 2nd Ed. Network Theory Ltd.

GHAHRAMANI, Z. AND HINTON, G. E. 1997. The EM algorithm for
mixtures of factor analyzers. Tech. rep. CRG-TR-96-1.

GROCHOW, K., MARTIN, S. L., HERTZMANN, A., AND POPOVIC, Z.
2004. Style-Based inverse kinematics. ACM Trans. Graph. 23, 3, 522–
531.

HINTON, G. E., DAYAN, P., AND REVOW, M. 1997. Modeling the
manifolds of images of handwritten digits. IEEE Trans. Neural Netw. 8,
1, 65–74.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: A
sketching interface for 3D freeform design. In Proceedings of the ACM
SIGGRAPH International Conference on Computer Graphics and Inter-
active Techniques. 409–416.

JOSHI, P., TIEN, W. C., DESBRUN, M., AND PIGHIN, F. 2003. Learn-
ing controls for blendshape based realistic facial animation. In Proceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Aimation. 187–192.

KHO, Y. AND GARLAND, M. 2005. Sketching mesh deformations. In
Proceedings of the ACM Symposium on Interactive 3D Graphics and
Games. 147–154.

LAU, M., CHAI, J.-X., XU, Y.-Q., AND SHUM, H.-Y. 2007. Face
poser: Interactive modeling of 3D facial expressions using model priors.
In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on
Computer Animation. 161–170.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose space defor-
mation: A unified approach to shape interpolation and skeleton-driven
deformation. In Proceedings of the ACM SIGGRAPH International Con-
ference on Computer Graphics and Interactive Techniques. 165–172.

MEYER, M. AND ANDERSON, J. 2007. Key point subspace accelera-
tion and soft caching. ACM Trans. Graph. 26, 3, Article no. 74.

NEALEN, A., SORKINE, O., ALEXA, M., AND COHEN-OR, D. 2005.
A sketch-based interface for detail-preserving mesh editing. ACM Trans.
Graph. 24, 3, 1142–1147.

PARKE, F. I. 1972. Computer generated animation of faces. In Proceed-
ings of the ACM National Conference. 1, 451–457.

PIGHIN, F., SZELISKI, R., AND SALESIN, D. 1999. Resynthesizing
facial animation through 3D model-based tracking. In Proceedings of the
International Conference on Computer Vision. 143–150.

SLOAN, P.-P., ROSE, C., AND COHEN, M. F. 2001. Shape by example.
In Proceedings of the ACM Symposium on Interactive 3D Graphics. 135–
143.

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

Face Poser: Interactive Modeling of 3D Facial Expressions Using Facial Priors • 3:17

SUMNER, R. W., ZWICKER, M., GOTSMAN, C., AND POPOVIC, J.
2005. Mesh-Based inverse kinematics. ACM Trans. Graph. 24, 3, 488–
495.

VICON SYSTEMS. 2007. http://www.vicon.com.
YANG, C., SHARON, D., AND VAN DE PANNE, M. 2005. Sketch-

Based modeling of parameterized objects. In Proceedings of the 2nd Eu-
rographics Workshop on Sketch-Based Interfaces and Modeling.

ZELEZNIK, R. C., HERNDON, K. P., AND HUGHES, J. F. 1996.
Sketch: An interface for sketching 3D scenes. In Proceedings of the ACM

SIGGRAPH International Conference on Computer Graphics and Inter-
active Techniques. 163–170.

ZHANG, Q., LIU, Z., GUO, B., AND SHUM, H. 2003. Geometry-
Driven photorealistic facial expression synthesis. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer An- imation.
177–186.

ZHANG, L., SNAVELY, N., CURLESS, B., AND SEITZ, S. M. 2004.
Spacetime faces: High resolution capture for modeling and animation.
ACM Trans. Graph. 23, 3, 548–558.

Received January 2008; revised April 2009; accepted August 2009

ACM Transactions on Graphics, Vol. 29, No. 1, Article 3, Publication date: December 2009.

