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Figure 1: Left: twelve examples of drawings of Angelina Jolie, created by DrawAFriend players. Right: our algorithm automatically
corrects new drawings in real-time based on a consensus of the drawings by previous players.

Abstract

We propose a new method for the large-scale collection and analysis
of drawings by using a mobile game specifically designed to collect
such data. Analyzing this crowdsourced drawing database, we build
a spatially varying model of artistic consensus at the stroke level.
We then present a surprisingly simple stroke-correction method
which uses our artistic consensus model to improve strokes in real-
time. Importantly, our auto-corrections run interactively and ap-
pear nearly invisible to the user while seamlessly preserving artistic
intent. Closing the loop, the game itself serves as a platform for
large-scale evaluation of the effectiveness of our stroke correction
algorithm.

Keywords: Interactive Drawings, Crowdsourcing,

CR Categories: I.3.3 [Computer Graphics]: Line and curve
generation—; J.5 [Arts and Humanities]: Fine arts—.

Links: DL PDF VIDEO WEB

1 Introduction

Drawing as a means of communication dates to well before other
forms of recorded history. Today, drawing remains a vital form of
artistic expression and an important window into human percep-
tion. However, the central challenge to further scientific analysis

of drawing is data scarcity. Although search engines index a huge
collection of line drawings, these images are stored in raster format
with little or no useful metadata. Ideally, a drawing corpus would
contain precise stroke-level data for each image, including timing
information. We would also like semantic metadata identifying
artists and subjects. Even more ambitiously, we would like to glean
perceptual information, such as which strokes contributed most to
image recognition. Finally, for statistical purposes, we would like
a large dataset, with many drawings by the same artist and many
drawings of the same subject by different artists.

To address this challenge, we developed DrawAFriend, an iPhone
game specifically designed to collect drawing data, including all of
the information described above. We currently focus on face por-
traits. Faces are exceedingly difficult to draw by hand, and even
more so using a touch interface on a small mobile device. To aid
users and to collect multiple drawings of the same subject, we al-
low players to trace over existing photographs. In its first week of
release DrawAFriend generated over 1,500 images per day.

We believe that this large and continuously growing drawing
database will enable a rich stream of future research in graphics.
As a first application, we demonstrate how the DrawAFriend cor-
pus can be mined to provide a self-correcting touch-based drawing
interface on mobile devices. We observe that drawing with a touch
device often suffers from the “fat finger” problem. We conceptually
factor this issue into two elements: (1) the “intent” of the artist in
drawing a stroke, and (2) an additional random noise component
caused by inaccuracy in the touch interface. We therefore hypoth-
esize that if we can determine a consensus of strokes (in an appro-
priate sense) over a sufficiently large database of drawings, then
we can cancel out the noise and recover the artist’s original intent.
We analyze the drawing corpus to compute a correction vector field
that for any location, points towards a nearby consensus of strokes.
This allows us to develop a real-time self-correcting touch inter-
face: as players draw, we essentially clean up their drawings by
using data from previous drawings of the same subject. We further
introduce a surprisingly simple method to correct strokes based on
this consensus while maintaining the stylistic choices of the artist.
The interface requires no new user interaction paradigms; in other
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words, it appears “invisible” to the user. The resulting strokes feel
more like the intent of the user than the raw original strokes.

To validate the effectiveness of our auto-correction algorithm, we
ran a large-scale user study within the game. Each time a user draws
a celebrity, we randomly turn the stroke correction on or off. Our
results validate the effectiveness of our stroke correction algorithm:
with autocorrect on, artists do not need to draw as accurately, and
they undo their strokes less. The ability of DrawAFriend to serve
simultaneously as a large-scale visual data collection platform and
as a statistically relevant user study underscores the generality of
our crowdsourcing approach.

2 Related Work
Perhaps the best known games designed to collect data are those by
von Ahn and colleagues [2004; 2006] which uses games to label ob-
jects in images. By contrast, we ask players to complete the much
more complex (and creative) task of actually drawing new images.
The graphics community is witnessing a recent spike of interest in
“big data” approaches to understand drawing, with the prototypical
examples being ShadowDraw [Lee et al. 2011] which helps guide
freeform sketching and WhatsMySketch [Eitz et al. 2012] which
identifies iPhone sketches as one of 250 possible object classes. An
important distinction between these efforts and our work is the data-
collection approach. Lee et al. uses 30,000 images downloaded
from existing web databases and extracted edges as proxies for pos-
sible sketches. Eitz et al. collected 20,000 sketches on Amazon Me-
chanical Turk (https://www.mturk.com). By contrast, we created a
publicly available iPhone game DrawAFriend which uses mechan-
ics similar to DrawSomething (http://omgpop.com/drawsomething)
to intrinsically motivate players to contribute drawings. Therefore,
rather than sequestering data collection into an initial phase of our
research, we collect data continuously with zero marginal cost per
user, and can re-instrument the game to change data collection on
the fly. Another distinction is that ShadowDraw and WhatsMyS-
ketch study freeform sketching, while our celebrity database con-
sists of many registered drawings of the same image.

There has also been considerable work in the Human Computer In-
teraction community on solving the problem of inaccurate touch in-
teractions, often called the fat finger problem. Wigdor et al. [2009]
taxonomizes touch-based interaction errors, and presents novel vi-
sual cues to help the user understand their intent. Other work ad-
dresses the fat finger problem by designing new interaction patterns
[Albinsson and Zhai 2003; Benko et al. 2006; Forlines et al. 2006;
Vogel and Baudisch 2007], or adding additional interaction hard-
ware [Scott et al. 2010; Wigdor et al. 2006; Wigdor et al. 2007].
The book by Benko and Wigdor [2010] presents a good overview
of work in the field.

There has been little work in helping users draw. One system,
iCanDraw [Dixon et al. 2010] helps users draw faces with a tuto-
rial approach. A sketching beautification system [Orbay and Kara
2011] infers smooth lines from a sketch consisting of short, over-
lapping strokes. Elasticurves [Thiel et al. 2011] neatens sketches
by smoothing strokes dynamically based on stroke speed. Similar
to our method, ShadowDraw [Lee et al. 2011] uses collected images
to aid users in drawing by providing shadows of similar drawings.
In contrast to these methods and to the fat finger problem correc-
tions, we add no hardware, visual cues or interaction paradigms.
The user thinks they are simply drawing with no help. We use data
from a corpus of previous drawings of the same image to seamlessly
correct user strokes as they draw. Gingold’s work [2012] uses im-
age averaging to beautify images. However their method, which
involves averaging euclidean points, is only used to improve simple
drawings such as smiley faces. Our stroke correction method was
inspired by the finding of Cole et al. [2008] that artists frequently
draw similar lines. Our results confirm Cole’s finding, and further

Figure 2: DrawAFriend: tracing a photo (left), the drawing alone
(right).

Figure 3: DrawAFriend: guessing identity (left). Once a player
guesses all consonants in a name, the consonant keys animate away
and vowels no longer cost coins. (right).

develop this idea with our hypothesis that the consensus of these
strokes represents the fundamental user “intent.” Our method de-
tects and leverages this artistic consensus in order to interactively
adjust strokes.

The concurrent work of [Zitnick 2013] improves handwriting and
simple drawing primitives by moving strokes towards an average of
similar strokes. The high level notion of leveraging the consensus
is similar to our work; however they use a very different definition
of a stroke to enable fast matching since they do not have the luxury
of having all strokes being aligned a priori.

Our stroke-correction technique minimizes an energy function sim-
ilar in spirit to the intelligent scissors method [Mortensen and Bar-
rett 1995]. However, rather than snap to image contours, our en-
ergy function is based on a consensus of strokes from many regis-
tered drawings. We further preserve the style of the users’ stroke
geometry using an approximately gradient-preserving deformation
method often used in geometry processing [Botsch and Sorkine
2008].



3 DrawAFriend: The Game

In order to capture and analyze a large-scale drawing dataset, we
have developed DrawAFriend, a Facebook-integrated turn-based
drawing and guessing game for mobile devices. The game is
designed to intrinsically motivate players to contribute drawing
through a hangman-like guessing mechanism. This approach en-
ables us to gather a large number of drawings with zero marginal
cost per drawing, and to modify and instrument the game to capture
specific types of data.

The game works as follows. Players have an option to start a game
with either a Facebook friend or an anonymous stranger. The player
is then given four pictures which she can draw. These will either be
mutual friends’ profile pictures or celebrity photos. When playing
with a stranger, the game offers only celebrity photos.

After choosing a photo to draw, the player is brought to the drawing
screen. There she can trace the image (see Figure 2 left). At any
point, the user can press the eye button to hide the photo and see
their drawing on its own (Figure 2 right). To overcome the limita-
tions of the phone’s size and touch screen inaccuracies, players can
pan and zoom using the pinch zoom and two fingered pan gestures.

Once finished, the player sends her drawing to the friend or anony-
mous player with whom she is playing. The friend receives a noti-
fication that they have a drawing to guess. The user is prompted to
guess the identity of the other player’s drawing (Figure 3 left). The
drawing is replayed stroke by stroke, and similar to Hangman, the
player can guess which letters are in the mutual friend or celebrity’s
name. Vowels originally cost coins, however once all the conso-
nants are guessed, vowels become free (Figure 3 right).

The tracing paradigm results in a set of pre-aligned drawings.
Whereas other papers begin with rasterized versions of drawings,
we collect individual strokes represented as polylines along with
timing information. Furthermore, by observing the guesses we can
indirectly evaluate the quality of the drawings. We hypothesize that
a good drawing is much more likely to be guessed correctly than a
bad drawing. DrawAFriend thus leverages a dataset of quality pho-
tos (Faceboook profile pictures and celebrity images) and via the
efforts of players, results in a large dataset of user created draw-
ings. This dataset includes drawings from artists around the world
with different artistic and cultural backgrounds.

For the purposes of tackling the fat finger problem, we focus for the
remainder of the paper on the corpus of celebrity drawings. These
represent sets of drawings of the same photographs by many differ-
ent artists.

4 Data Driven Drawing

Our goal is to provide a drawing interface on mobile devices that
provides the feeling that the user is in full control, while simultane-
ously providing assistance, in particular, to overcome the inherent
fat finger problem. As described earlier, the problem is more con-
strained than a general drawing system through the use of a tracing
paradigm. The simplest idea would be to attract drawn strokes to
edges found in the image being traced. Unfortunately, this idea
fails in two respects. First edge detectors such as Canny methods
(see Figure 9, e) have no notion of semantics and thus appear noisy
and inconsistent. Second, unlike automated edge detectors, humans
tend to select only the most meaningful edges to draw.

To provide assistance, we take advantage of previous drawings of
the same face and then pull the users strokes towards a consensus
of strokes from previous drawings. The simplest idea for forming
a consensus would be to use an average drawing (see Figure 9,b).

Figure 4: A didactic blow-up of the graphs in Figure 6. The point
at the origin represents a point, p on a stroke being drawn. The red
points are the set of nearest stroke neighbors from each database
drawing. Note that the orientation of the strokes are always orthog-
onal to a vector from the origin. We determine a correction vector
based on a learned anisotropic Gaussian with mean µ and sigmas
σ1 and σ2 surrounding a mode of nearby points from strokes in the
database drawings.

This idea is also very problematic as the averages tend to create
very fat lines of varying darkness, as well as broad regions such as
in the hair. Although some kind of skeletonization may aid the first
problem, it would fail on the second.

Instead, we develop a stroke correction strategy with two phases.

(i) Consensus Finding: Using the training drawings available for
an image, we create a correction vector field which indicates, for
each pixel on the image, the delta toward the nearest consensus
stroke. This phase is run off-line.

(ii) Interactive Correction: The correction vector field is transmit-
ted to the mobile device along with the image to be traced. When a
user draws a stroke, the field is sampled, and the stroke is moved in
real-time in a way that maintains the original style.

4.1 The Correction Vector Field

A correction vector field, V (p), (see Figure 9(c)and (d)) is con-
structed to point, for each location p in the image, towards the
nearest consensus. Intuitively , the consensus represents a loca-
tion where many almost parallel strokes pass nearby in the training
drawings. Interestingly, we do not need to construct an explicit
model of consensus strokes. Instead, we can directly compute V
using a modified version of the mean shift algorithm [Comaniciu
and Meer 1999].

Given a point p on a stroke in the image being drawn, we first find
the nearest stroke point, vi in each drawing, Di, in our training
set. We place the nearest points, v, in a coordinate system using
p as the origin (see the red points in Figure 4 and the points in
Figure 5). One key observation is that the position of the point
vi also implicitly encodes the orientation of the nearest stroke in
Di. In particular, the stroke orientation will be orthogonal to the
vector vi (unless the nearest point is a stroke endpoint). Otherwise
there would be some closer point along the stroke. Thus, if the
nearest strokes from different users are closely aligned in position
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Figure 5: Nearest neighbors and learned Gaussians for four points
in the Obama dataset. The Gaussian distribution is shown with
ellipses at the first, second, and third standard deviations.

and orientation, they will produce a set of the nearest points, v, that
lie approximately along a line. Furthermore, this line will intersect
the origin (i.e., the point p). We use this observation to build the
consensus of nearby strokes.

Our goal is find a consensus of nearby strokes that avoids undue
influence from outliers. For the points, v, we seek a mode in which
the points lie in close proximity to each other and lie roughly along
a line pointing back towards the origin. We employ an iterative
mean shift style algorithm for the mode finding.

Our algorithm works by iteratively updating a vector of weights,
w, which represent the belief that a particular nearest point, vi, is a
member of the consensus stroke. The final correction vector, V (p),
is determined by the weighted mean of the points, v. We initialize
all weights using a symmetric Gaussian centered at the origin, with
σ equal to the mean distance to all nearest points, v.

The iterations proceed by determining an anisotropic Gaussian with

weighted mean, µ =
(∑

j
wjvj

)
/
∑

j
wj , with σ1 in the di-

rection back toward the origin (Eq. 1), and (σ2) in the orthogo-
nal direction (Eq. 2). We define the normalized mean vector as,
ν = µ/||µ||, and finally determine the anisotropic standard devia-
tions of the projected distances to the mean, given by

σ1 =

√√√√(∑
j

wj((vj − µ)Tν)2
)
/
∑
j

wj (1)

σ2 =

√√√√(∑
j

wj(vT
j ν⊥)

2

)
/
∑
j

wj (2)

We add a simple regularization wi ← wi/(wi + 0.05) to the
weights. The regularization serves to reinforce points near the
mean, and further discount points away from the mean. The term
0.05, which intuitively says that any points more than two stan-
dard deviations away from the mean are mostly noise, was chosen

experimentally. We then reweight all points according to the new
Gaussian distribution, and iterate until the mean stops moving.

The system typically converges quickly (all of our experiments use
a hard-coded 10 iterations), and V (p) is set to µ. Examples of near-
est neighbor sets and their resulting consensus strokes are shown in
Figure 5.

The vector field, V , defined above indicates a best guess of how any
individual vertex, p, on a stroke polyline should move to match the
consensus of all drawings. V maps the discretized vector field onto
the points p using bilinear interpolation.

The naive approach is to take the points (p1, . . . , pk) com-
prising a stroke, along with their correction field samples
(V (p1), . . . , V (pk)), and directly move each point to arrive at
(p1 + V (p1), . . . , pk + V (pk)). Unfortunately, noise and discon-
tinuities in the vector field cause undesirable end results. More im-
portantly, any stylistic choices such as intentional wiggles inherent
in the original stroke would also be lost. We hypothesize that the
fat finger problem is likely to cause the input stroke to be off by
a roughly constant displacement, while the original stroke shape is
likely to represent the user’s intent.

Our goal is thus to use the guidance of the vector field on where
to move, but still maintain most of the shape of the original stroke.
We therefore create and solve an over-constrained linear system that
represents both of those objectives.

With pi representing input stroke sample locations for i = 1 . . . k,
Vi a shorthand for V (pi) representing the correction vector field
at pi, and p′i representing the corrected samples, we construct a
quadratic error function as:

E =

k∑
i=1

(p′i−(pi+Vi))
2+α

k∑
i=2

((p′i−p′i−1)−(pi−pi−1))
2 (3)

The first term represents the faithfulness to the correction vector
field. The second term tries to maintain the shape of the stroke
by enforcing that neighboring points move in sync. The α term
weights the relative importance of the two terms. The error is min-
imized with respect to p′ using a standard least squares solver.

4.1.1 Setting α - Closely Spaced Consensus Strokes

A higher α value results in stiffer strokes in the sense that they
maintain their shape instead of following variations in the vector
field precisely. Aside from maintaining the style of the strokes,
a high stiffness also helps avoid having part of a stroke pulled in
one direction and another part pulled in another. This can happen
especially when there are two closely spaced parallel lines in the
consensus, such as the two sides of the nose, or the bottom and top
of the lips. Unfortunately, such a very high α does not allow the
strokes to adapt at all to the subtleties of the consensus drawing
represented in the vector field.

To achieve the dual goals of avoiding the two nearby stroke problem
while balancing stiffness and style, we use a continuation method,
performing three iterations of the solver described above. We begin
with α = 10. This high stiffness value leads to an almost rigid
transformation of the stroke to the most dominant consensus region.
We then lower α to 7, and feed the previous result, p̂, into the first
error term, (p′i − (p̂i + Vi)), while keeping the original terms for
the latter half of the error measure, and solve the new system. We
repeat this one final time with α = 4 to get our final result. The α
values (10, 7, and 4) were chosen experimentally.



Avg. # 
Strokes

 Avg. Stroke 
Length

Avg. Draw 
Time (Secs)

% Guessed 
Correctly

Angelina Jolie 155 84 421 54%
Robert Downey Junior 300 45 572 43%
Kim Kardashian 161 110 506 61%
Kristen Stewart 162 66 434 60%
Brad Pitt 102 50 281 55%
Barack Obama 121 65 607 81%

Figure 6: Celebrity drawing statistics for 611 hand-picked draw-
ings from the first four days after launch.
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Figure 7: This chart plots the undo rates (percentage of all strokes
that are undone, i.e., undoes / undoes + not-undoes) for each draw-
ing sorted by undo rates. The X axis indicates the percentile undo
rate, for example at the 50% mark half of the drawings had less un-
does and half more. As can be seen the two sets behave similarly for
the first half in which the undo rate is below about 15%. However
for higher percentiles the two sets diverge, with the auto-corrected
drawings generally showing lower undo rates.

4.1.2 Purely Stylistic Strokes

We also found that some strokes are purely stylistic in nature. For
example, someone writes “Obama” above the president’s head. We
do not want such strokes to have parts pulled towards the consen-
sus. We make a binary decision about whether the stroke is purely
stylistic, in which case, we leave it alone. A stroke is defined to
be purely stylistic if either of two conditions is met. Either the
maximum vector length, maxi ||Vi||, is greater than 5mm (approx-
imately 1/10th the screen width), or a stroke’s direction is mostly
orthogonal to the vector field. The latter term is measured with the
average of absolute cosines 1

N

∑
i
||N(pi − pi−1) · N(V (pi))||,

where N(·) normalizes vectors. If the average falls below 1/2, the
stroke is considered purely stylistic. Examples of purely stylistic
strokes can be seen in our video.

5 Results

After smaller-scale trials, DrawAFriend was released publicly on
January 8th, 2013. In 88 days there were 14,270 drawings. After
the launch of DrawAFriend, our project proceeded in three phases.
First we collected drawings for six celebrities to prime our initial
correction vector field. Second we use the correction field to add
an automatic stroke correction helper into the game. Lastly we
crowd sourced the evaluation of our stroke corrector, by AB test-
ing it within the game.

5.1 DrawAFriend Correction Vector Field

In order to integrate the correction vector field into the game, we
needed to prime it with initial drawings. In four days players had
downloaded the game over 2000 times and created 6373 drawings.
In that time, players had already spent approximately 10 full 24
hour days drawing. We used these drawings to create the correction
vector field.

Players were given the option of drawing Facebook friends or one
of an initial set of six celebrities: Robert Downey Jr.1, Angelina
Jolie2, Kim Kardashian3, Barack Obama4, Brad Pitt5, or Kristen
Stewart6. From the drawings generated in the first four days, we
manually chose 611 celebrity drawings. We filtered by picking
drawings in which players had made an attempt to accurately draw
the eyes (the most intricate feature to draw). These 611 drawings
were slightly less than 10% of the dataset. The rest of the dataset
mostly consisted of drawings that players had drawn quickly, re-
sembling a person like scribble. While this portion of the dataset
could be used for analysis, we did not train our correction vector
field on it. Figure 6 references statistics for these 611 drawings.

We ran our modified mean shift algorithm on this initial dataset to
create the correction vector fields shown in Figure 9. Our MATLAB
implementation took under 5 minutes for each celebrity. The great
majority of the time was spent in un-optimized nearest neighbor
search. The dimensions of the correction vector field are 460x320.
In Figure 8 (top) we plot how our correction vector field converges
for Brad Pitt. We do this by calculating the relative error between
the vector field for a subset of the drawings and the vector field for
all 124 drawings. There appears to be an inflection point around 25
drawings, where the correction vector field would probably work
well. However every additional drawing still improves the correc-
tion field, implying that after 124 drawings it has not completely
converged. We can also use the correction vector field to filter our
drawings. Drawings whose points were on average 10 pixels away
from the consensus were never actually portraits (most often they
were the celebrity’s name spelt out). We use this filtering method
to exclude non-portraits in the user study described below.

5.2 Drawing Enhancements

We apply the correction vector field to interactively modify strokes
during the drawing process. For every new stroke point added, a
background thread is spun off to correct the new stroke. Once the
thread completes if newer points have accumulated another thread
is immediately spun off. Without adding user interface elements to
the existing DrawAFriend UI, we seamlessly integrate stroke auto-
correction. As the user draws, strokes are subtly corrected at inter-
active rates on an iPhone 4. In general, the fact that corrections are
being applied is almost invisible to the user. Instead, strokes appear
where the user intended to draw.

We also applied the correction vector field retrospectively to im-
prove the existing database of user drawings. The drawings are
already quite good, making the vector field corrections all the more
impressive. While the algorithm improves the images, it does so
without sacrificing style. For comparisons of the raw drawings and

1Meritano, E. “Robert Downey Jr.” Photo. wikimedia.org. Apr 2008.
2Natt, C. “Angelina Jolie.” Photo. wikimedia.org. Jun 2007.
3Shankbone, D. “Kim Kardashian.” Photo. wikimedia.org. May 2005.
4Souza, P. “Barack Obama.” Photo. wikimedia.org. Jan 2009.
5Boyd, B. “Brad Pitt.” Photo. wikimedia.org. Mar 2008.
6Dispara, A. “Kristen Stewart.” Photo. wikimedia.org. Oct 2008.



(a) (b) (c) (d) (e)

Figure 9: DrawAFriend users draw one of six celebrities (a). We use our database of hundreds of drawings per subject – shown averaged
in (b) – to precompute a correction vector field (c) enabling real-time drawing assistance on the iPhone. The magnitude of our vector field
(d) reveals a consensus of artistic renderings strikingly different than what we could compute with automated methods, such as a canny edge
detector (e).

the corrected images please see Figure 10, our video, and the sup-
plementary files.

5.3 Crowdsourced User Study

One key advantage of developing DrawAFriend as an online game
is the ability to quickly deploy a study of users at scale. To test
the effectiveness of the stroke auto-correction, we instrumented the
game to enable a simple AB study. Every time a user started a
drawing they were unknowingly placed in one of two groups. One
group drew the celebrities as before. The other group (unbeknownst
to them) drew with the stroke auto-correction on. By comparing
these two groups, we can assess the effectiveness of the stroke auto-
correction helper. Users drew one of the six celebrities. We use the
consensus vector field to filter out drawings that could not be por-
traits. We record the geometry and timing of each stroke, all undos,
and the recognition rates of the players receiving the drawings.

5.3.1 User Study Results

After approximately one week, 500 players had “contributed” over
1,300 drawings to the user study. Using this data we assess recogni-
tion rates (measuring how good the drawings are from the perspec-
tive of others). We also analyze undo rates (providing an insight
into how artists like their own drawings). Finally we measure aver-
age “distance” from the artistic consensus (measuring how carefully
artists are drawing).

First we investigate undoes as an indication of how artists like their
own drawing. Since players used a different number of strokes, we
focus on undo rates, which is the number of strokes undone over the
total number of strokes. For example if a user drew 100 strokes and
pressed undo for 40 of them, this would have an undo rate of 40%.
For our analysis we removed all drawings that had 0 undoes (assum-
ing that this implied players did not know undo existed). This left
327 drawings auto-corrected and 295 that were not. We sorted each
set of drawings by the undo rates from lowest to highest, and in Fig-
ure 7, plotted the undo rate for each percentile of sorted drawings
(this normalizes for the different number of drawings in each set).
The distribution of undo rates for drawings with fewer undoes track
together for both sets with and without autocorrection. However
the undo rates diverge further along the sorted lists. This seems to
imply that our auto-corrector lowers the undo rate for more careful
drawers (players that undo a larger percent of their strokes).

With auto-correct on, we observe a significant increase in the av-
erage distance between the actual uncorrected strokes and the con-
sensus drawings (as measured by the correction vector field). We
perform a two-sample Wilcoxon test of whether or not there is a dif-
ference in the mean of the correction vector field under the stroke
points with auto correct on versus off. This shows a significant
difference in the means, with a p-value of 1.653× 10−6. This sug-
gests that artists do not need to draw as precisely. Figure 8 (bottom)
shows the median distance to the consensus for each celebrity with
a sample size of 570 auto-corrected and 533 not auto-corrected.

Interestingly, statistical analysis reveals that the auto-corrector does
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Figure 8: Top: Convergence of the correction vector field as more
images are added. Relative error is measured between the correc-
tion vector field built using X drawings and the correction vector
field using all 124 drawings. (The final dip is an artifact caused
by measuring convergence to a specific vector field computed with
124 drawings rather than to the “true” limit correction field. This
is also why the error drops down to zero exactly.) Bottom: The
median across drawings of the mean distance of stroke points to
the consensus for each celebrity with and without auto- correction.
Distance is measured by the value of the correction vector field un-
der the strokes. The error bars mark the 60th and 40th percentile
for each celebrity. Auto-correction universally leads to a greater
distance, implying that users can be sloppier when auto-correction
is activated.

not significantly alter recognizability. Corrected drawings had a
recognition rate of 37.5%±2.02% while uncorrected drawings had
an average recognition rate of 38.6%± 2.11% (again 570 and 533
drawings respectively). Running a permutation we get a p-value =
.87, which implies that the two populations are uncharacteristically
similar. We believe that our auto-corrector does not change players
final drawing quality. Rather it makes reaching this level of quality
easier by requiring less undoes and less accuracy.

6 Conclusion

We have presented a unique crowdsourcing approach of using so-
cial game mechanics to grow and use a dataset of drawings. We
developed an iPhone game, DrawAFriend, specifically for the pur-
pose of collecting drawing data. We then introduced a method to
extract stroke-level artistic consensus from a large drawing corpus.
The resulting correction vector field improves strokes in real-time
without new interactions interfaces, while preserving artistic intent.
We presented stroke correction on over 80 images which illustrate
our method’s ability to improve both aesthetics and recognizabil-

ity. Lastly we evaluated our stroke correction algorithm through
crowd sourcing, by observing how it influenced drawings “in the
wild” by instrumenting the game itself. In general, we believe that
DrawAFriend presents an unprecedented platform to perform quan-
titative drawing analysis at the Internet scale.

Our stroke consensus method has several drawbacks. While it al-
lows us to improve strokes and filter out non-portrait drawings, it
currently requires the initial drawings to be filtered by hand. Au-
tomated filtering is an area of future research. Even with stroke
correction, many drawings are still not beautiful. We would like to
study automatic aesthetic enhancement of strokes, including weight
and texture. We also see several avenues to improve and generalize
our correction vector field model. For example, the field depends
on 2D position only. An anisotropic field, however, could correct
strokes differently based on their orientation. We plan to lift the
correction field to 3D (position plus orientation). This could be
especially beneficial at stroke intersections which we do not explic-
itly model at present. Nevertheless, we have found that our simple
isotropic field corrects strokes well in practice, especially around
dominant lines for which there is great artistic consensus. Mov-
ing beyond the single consensus model, we envision automatically
identifying and clustering by artistic “style”. This would allow new
drawings to be enhanced based on which style they most closely
mimic to provide more nuanced stroke correction. Lastly we would
like to extend our stroke correction algorithm to make it more gen-
eral, perhaps by using an image-analogy-like approach to transfer
our correction vector-field from one image to another.

Stroke correction represents just the tip of the iceberg for applica-
tions of the large (and growing) DrawAFriend image corpus. Thus
far, we have explored only a small portion of the trove of data we
are collecting. For example, measuring how quickly drawings are
identified could shed light on which strokes are most salient for
recognition. Studying when the user undoes strokes could provide
clues as to which strokes are good or bad. While the stroke cor-
rection algorithm could have been implemented using just a raster-
ized image of a drawing, the vector representation will be useful for
other applications. Analyzing stroke order could enable us to pre-
dict what the artist will draw next, potentially enabling completely
new drawing interactions. Making this data available to the com-
munity, we hope to explore both these exciting ideas, and discover
as-yet unknown applications of this rich dataset.
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