
IEEE COMPUTER GRAPHICS AND APPLICATIONS 1

Direct Control of Simulated Non-human
Characters

Junggon Kim and Nancy S. Pollard
Carnegie Mellon University

Abstract—We present an intuitive technique to control simulated self-propelled characters. In our system, a user can control
the motions of a character by directly guiding the character to a desired position with mouse drags while a physics simulation
determines the character’s motion. Based on the user input, the system automatically computes the actuator command that
causes the character to follow the user’s intention as closely as possible while respecting the underlying physics. This direct
control can be more intuitive to use than existing methods, such as controlling character joints to track a given joint trajectory
or set of keyframes, especially when physically plausible dynamic motions are desired. We show the power of our method
by creating realistic motions of various kinds of characters in our interactive user interface system, including rigid characters,
characters with deformable bodies and rigid skeletons, and self locomoting characters whose bodies form closed loops.

Index Terms—Physically-based character animation, interactive direct control, physics simulation.

F

1 INTRODUCTION

Traditional animators devote much time, practice, and
study to making characters appear to move in ap-
pealing and natural ways. While portraying a char-
acter’s personality and style are perhaps of greatest
importance, it is also important that a character’s
motions appear physically plausible and motivated.
For example, a character should appear to use its
own muscles to perform dynamic maneuvers while
interacting with the (changeable) environment (Fig-
ure 1). For this reason, creating a character anima-
tion through physics simulation is promising, as the
underlying physical laws constraining a character’s
motion can be handled automatically and “under the
hood,” while the animator is free to focus on the
character’s performance.

Achieving this goal is quite difficult, however, be-
cause finding a good actuator command resulting in
a desired motion is not in general an easy problem.
Though there are many effective controllers special-
ized for specific tasks such as walking for a human
like character, it is still currently out of reach to obtain
a general controller which can be effectively applied
to various kinds of characters and tasks.

Designing such a mighty controller is not our goal.
Instead, we make use of the human user as a high-
level controller by borrowing their intuition about
dynamic motions such as the manner of movement
and the timing. We believe that people do have a good
sense of how a character should move to achieve a
desired, physically realistic motion. We also believe
that this hypothesis is still valid to a large extent even
for non-human like characters such as the ones used
in our experiments.

One approach, which is also followed in this paper,

is to provide users with an interactive control of a
running physically based character simulation. The
user directs the animation by, for example, specify-
ing a desired keyframe as in the work of [1], and
the system—in real-time or at an animator’s desired
speed—produces physically correct motion with only
legitimate internal actuating forces, as if the motion
were being controlled by the character’s muscles.

However, even in such an interactive system, it is
still difficult to find a good user input such as the
keyframe, because it is difficult to exactly predict the
effect of the keyframe on the resulting global character
motion due to the underactuated nature of the simu-
lated characters—the global position and orientation
of the character is unknown and is determined by
solving the equations of motion.

We present a technique that allows a user to directly
control the motion of a simulated character intuitively
in Cartesian space. For example, in Figure 2 the user
created a jumping motion of a starfish character by
simply dragging the mouse cursor upward quickly
to lead the character’s center along a desired trajec-
tory, and our system instantly transformed the user
input into appropriate actuator commands for physics
simulation of the character model. Using our system,
the user can control the character’s bones and the
center of gravity directly in Cartesian space while
the simulation is running behind the user interface
system.

This approach may appear similar to prevailing
IK(inverse kinematics)-based methods in the sense
that the user controls the character directly in Carte-
sian space instead of the joint space (See, e.g., Yamane
and Nakamura [2]). However, unlike IK-based ap-
proaches, we must consider the underactuated nature
of the character, which cannot be handled in kinemat-

IEEE COMPUTER GRAPHICS AND APPLICATIONS 2

Fig. 1. Examples of physically simulated character motions using our direct control: The motions of a
starfish and a donut character were created through physics simulations controlled by interactive user inputs
such as mouse drags. Our system transforms the user inputs, e.g., the given target position of the body, into an
actuator command, such as joint torque or acceleration, for the simulation running behind the interface system.
Each character consists of a soft body and a skeleton, and the character motion is generated by using only the
internal forces from the actuators installed in the skeleton. There are no external forces acting on the characters
except the gravity and the frictional contact forces to handle the complicated interaction between the characters
and the changeable environments. As a result, the characters should appear to be using their own muscles to
generate the motions. (Top) A starfish is trying to escape from a glass case by attempting a few trials, e.g., lifting
up the obstacle’s edge using its arm (the first frame) or hitting the obstacle with a jump (the second frame).
(Bottom) A selfish donut is pushing other objects outside of the seesaw.

ics.
We transform the user control into an appropriate

joint command to make the character follow the user’s
intention as closely as possible while still respecting
the laws of physics. Therefore, if the user wants to
make the character do a flip, he or she must learn how
to move the character’s body so that the character
pushes off with the appropriate momentum to achieve
the flip. This learning process is simpler than it may
seem due to the real-time trial and error nature of our
interface system, and also results in a faithful physical
depiction of the motion that incorporates the user’s
own stylistic considerations.

Though our direct control is applicable to any kind
of character model, we have found that the system
can be quite effective for creating dynamic motions of
non-human like characters such as the ones shown in
Figure 1, because usually no high quality motion data
(e.g., motion captured data) exists. For such cases,
alternative techniques may require large amounts of
time and effort to generate physically plausible mo-
tions.

2 RELATED WORK

Physically based approaches have been explored by
many researchers to generate physically plausible
character motions while considering environmental

Fig. 2. Motions of a starfish and a fish characters:
(Top) The starfish jump was driven by clicking the
center part of the character and then dragging the
mouse cursor (the yellow arrow line) upward quickly.
(Middle) The fish jump motion was initially guided by
the mouse drag while maintaining a fixed orientation of
the tail (red circle). Then we switched to the keyframe
control to get a stretching motion for jump. (Bottom)
The turnover was guided by the mouse drag.

IEEE COMPUTER GRAPHICS AND APPLICATIONS 3

interaction. Hodgins et al. [3] presented an algorithm
for animating dynamic athletic behaviors using con-
trol algorithms, and control based approaches have
been pursued by a number of other researchers.
In particular, in the computer graphics community,
many effective controllers have been developed to
generate bipedal character motions, e.g., by using a fi-
nite state machine (Yin et al. [4]), but their applications
are mostly limited to walking or running of human-
like characters. Liu et al. [5] presented a sampling
based technique to reconstruct contact-rich captured
motions such as rolling. However, their approach
cannot be directly applied to non-human or inanimate
characters because it is difficult to obtain reference
motions with good quality for such characters.

Laszlo et al. [1] introduced an interactive simulation
control technique. In their approach predefined poses
are mapped to user inputs such as keystrokes or
mouse drags, and a PD controller generates joint
torques to compensate for differences from the desired
joint angles. Such an interface, however, may not be
easy to use when the number of motion primitives is
large. It is also difficult to select the right key poses
with the right timing because the effect of the user
input on the simulated character motion is hard to
predict when the character is underactuated.

Formulating control in terms of high-level tasks
can give more intuitiveness in building controllers for
balancing and locomotion (Macchietto et al. [6], de
Lasa et al. [7]). Sentis and Khatib [8] introduced a
task-space control algorithm and applied it to the sim-
ulation of humanoid robots. Using their whole body
control framework, they generated various kinds of
humanoid motions by combining multiple tasks de-
fined in both Cartesian and joint spaces. Our user
interface system also provides similar user inputs to
control the physics simulation of characters, but with
more emphasis on interactivity and ease of use. More-
over, our formulation can handle a broader range
of characters, including characters with deformable
bodies and self locomoting closed loops.

3 OUR USER INTERFACE

The most interesting feature of our user interface
system is that the user can create dynamic motions
of a character by directly guiding the character’s
bones and the center of gravity with mouse drags.
The character motion is generated through a fully
3D physics simulation running behind the interface
system. The feedback rate is fast enough for users
to control the motion interactively, and if needed,
it can be set to a desired speed by users (e.g., to
slow the simulation down to more carefully control
complex motions). The user must use his or her
own intuition about the physics of the character in
designing a motion and catching the proper timing.
Then our interface translates the user’s command into

joint commands such as torque or acceleration for
the simulation. The following is a short description
of each control provided by the system, and their
mathematical formulation will be presented in Section
5.

• Bones: The user can set up a desired position
and orientation of a bone in the skeleton by
using a graphical interface or a script. The mouse
cursor can be regarded as the desired position
of a selected bone so that the user can change
it continuously by dragging the mouse during
the simulation. For example, guiding the position
of the lamp character’s head to move downward
and then rapidly upward with a mouse drag will
make a jump motion (Figure 3, frame 1 ∼ frame
3). The user can make it jump higher and farther
by simply dragging the mouse cursor upward
more quickly. If the user set up a desired orienta-
tion of the character’s foot, its orientation with
respect to the inertial frame will be controlled
continuously even when the character is in mid-
air (Figure 3, frame 4).

• Center of gravity: The center of gravity (CoG)
of the character’s skeleton can be controlled by
a mouse drag. The user may use this feature,
for example, to guide a self locomoting character
whose body forms a closed loop (Figure 1, bot-
tom) or to maintain balance after the high speed
landing by keeping the CoG over the foot (Figure
3, frame 6).

• Joints: The user can specify a desired joint angle
for each joint. In the lamp character demo in
Figure 3, the user set up desired angles for some
of the joints to prepare the landing (frame 5). The
foot orientation is still maintained as much as
possible while taking the new joint controls into
consideration because the user set up the orien-
tation control to be valid until the foot touches
down to the ground. Joint limits and torque limits
for the character can also be considered auto-
matically when the user guides the character’s
motion.

A preview function is provided in order to guide
the simulation more conveniently (Figure 4). Since
the user input, such as the desired position of a
body, and the resulting simulation output are seen
in the same Cartesian space, showing a glimpse of
a short future motion corresponding to a trial input
can give the user good intuition about the effect of
the input on the output motion. By using the preview
function, effective fine tuning of the direct control can
be made to create, e.g. a jump followed by a landing
on a specific place as shown in Figure 4. To make a
prediction of the simulated motions, we assume the
user command remains constant throughout the time
of the preview. Though we have not tested this in our
system, multiple previews with input sampling could

IEEE COMPUTER GRAPHICS AND APPLICATIONS 4

Fig. 3. A jump motion of a lamp character (screen captured while driving the physics simulation with
user inputs): Using a mouse drag, we guided the character’s head (green dot) to make it crouch, then stretched
rapidly to make the jump (frame 1 ∼ frame 3). The mouse cursor with a blue circle denotes the desired position of
a controlled point, here the green dot. When the lamp’s foot started to leave the ground, we set up a constraint on
the foot to maintain the inclined foot orientation until it touched the ground (frame 4). When the character began
falling, we set up desired joint angles to prepare the landing (frame 5). To prevent the character from tumbling
over, we controlled the position of the center of gravity (magenta dot) using the mouse cursor (frame 6). In our
implementation, physics simulation starts with pressing the mouse button, and stops when the button is released.
The simulation runs in the background while the user guides the character using the constraints. Invoking and
revoking the constraints can be done through predefined combinations of a mouse click and keyboard inputs at
any time when the simulation is paused. In this example, however, we preprogrammed the controls applied to
the foot and the joints so that they can be automatically set up during the jump for user’s convenience.

Fig. 4. Previewing a short future motion can help the
user guide the simulation more easily. In this example
the user was able to create a jump on a box in three
trials. The user can get an intuition for the relationship
between the input (the target position of the head part
shown as the mouse cursor with a blue circle) and
the output (the trajectory in green) through the preview
mode.

provide users with more convenience in choosing an
appropriate input as done in Laszlo et al. [9].

Keyframing-based simulation is also provided in
our system. The user can set up desired key poses by
dragging a link with the mouse through an inverse
kinematics approach, and then physics simulation
runs to obtain the resulting character motion from
a reference pose trajectory obtained by interpolating
the keyframes with a B-spline. Note that the reference
pose trajectory is obtained for active joints only, the
joints at which the character could plausibly exert
internal muscle forces. Though the keyframe control
of simulation in practice will be found unsuitable
for generating a long sequence of motion due to the
difficulty of predicting the resulting global motion of
the character, it can be effectively used to generate a
short motion segment such as the stretching phase in
jumping (Figure 2, middle).

4 PHYSICS SIMULATION

We assume that every character has a skeleton. The
skeleton can be any set of rigid bodies connected
by various types of joints, where one of the bones

Fig. 5. Simulation model for the starfish character
This figure shows an example of the simulation models
used in our experiments. The starfish model has a
skeleton, consisting of rigid bones and joints, and a soft
body attached to the skeleton. A virtual 6-DOF passive
joint (root joint) connects the center bone to the ground
to represent the global position and orientation of the
character. The wire frame represents the fine surface
of the character’s deformable body, and the solid mesh
enclosing the surface is for finite element analysis
in our simulation system. Some of the volume mesh
nodes are fixed to the bones to attach the deformable
body to the skeleton, and the others are free to move
while being constrained by visco-elastic forces and
frictional contact forces.

is connected to the ground by a virtual joint – we
call this virtual joint the root joint. In order to make
the character appear to be self-actuated, the root joint
is assumed to be passive so that no force is exerted
on the character through the joint. The simulation is
driven by joint commands (e.g., torque or accelera-
tion) on the active joints only.

We also attach soft bodies to the skeleton to capture
the secondary motions of the character body such
as deformation and jiggling. In this case, we use a
coarse mesh with an assumption of lumped mass
to represent the behavior of the deformable body,
and consider the character’s fine surface in obtaining

IEEE COMPUTER GRAPHICS AND APPLICATIONS 5

the mechanical properties of the body and handling
collisions between the character and the environment
(Figure 5). Our simulation system is fast enough to
be applied to an interactive animation control system
such as the one shown in this paper. Details of our
simulation system, which combines active skeleton
simulation with a passive finite element simulation
of deformable flesh, are given in [10]. However, our
formulation of constraints for direct control, which
is the focus of this paper, is general and can be
used with any simulation system, including cartoon
or alternative physics simulation systems, as long as
linear relationships can be obtained between user-
controlled parameters or their derivatives and sim-
ulation variables such as acceleration or torque.

5 DIRECT CONTROL

In our system, all user inputs (e.g., the desired posi-
tion of a bone indicated by the mouse cursor) are rep-
resented as linear equality and inequality constraints,

Au = b and Cu ≤ d (1)

where u denotes the active joint command for the
simulation running behind the interface system. We
obtain the necessary joint command by solving the
constraints in a robust manner.

We prefer using acceleration as the joint command
in our direct control of simulated characters, but our
formulation is not restricted to any particular choice of
joint command. We will discuss the effect of a different
choice in Section 6. In case of using acceleration (q̈a) as
the active joint command, we obtain the acceleration
for the passive root joint and the torque needed to
actuate the active joints by solving the equations of
motion. Finally, we advance the physics simulation to
the next time step by integrating the acceleration for
both active and passive joints.

5.1 Building Constraints

Global position and orientation of bones
The first type of user inputs we consider are the
desired position (xd) and/or orientation (Rd) of a
bone. We will build up linear constraints on the active
joint acceleration (q̈a) from the given user inputs
(xd, Rd) and the current system state.

Let Ẍ ∈ ℜ6 denote the linear and angular accel-
erations of a bone with respect to the inertial frame.
Because bone accelerations have a linear relationship
with the joint input command, here q̈a, they can be
written as

Ẍ =
∂Ẍ

∂q̈a
q̈a + Ẍ0 (2)

where ∂Ẍ
∂q̈a

denotes the derivative of the bone accelera-
tion with respect to the joint command, and Ẍ0 is the
bone acceleration when q̈a = 0. In our implementation

we obtain ∂Ẍ
∂q̈a

rapidly by analytically differentiating a
recursive dynamics algorithm, presented in detail in
[10] but outside the scope of this article. Note that, in
the case of skeleton driven deformable body systems,
we only need to differentiate the dynamics of the
skeleton because the joint command does not instantly
affect the acceleration of passive nodes representing
the deformable tissues. When we calculate Ẍ0, how-
ever, we must use the equations of motion for the
whole system to consider the effects of the viscoelastic
forces arising inside the deformable body and the
frictional contact forces acting on the soft body surface
from the environment.

Now we can set up the following constraint equa-
tions for the given desired position and orientation of
a bone

∂Ẍ

∂q̈a
q̈a = Ẍd − Ẍ0 (3)

where Ẍd = (ẇd, ẍd) is a desired bone acceleration
which is obtained as

ẍd = kp(xd − x)− kvẋ

ẇd = k′p R log((R)TRd)− k′vw
(4)

where xd and Rd are the given desired position and
orientation of the bone, x, ẋ, R, and w are the cur-
rent position, linear velocity, orientation and angular
velocity of the bone respectively, and kp, kv, k′p, and
k′v are the gain parameters defined by the user to
control how aggressively the character moves toward
a desired position.

Center of gravity
Here the user will give a desired center of gravity
xc
d of the skeleton as the user constraint. Similarly

to the desired bone acceleration above, the desired
acceleration of the center of gravity is obtained by

ẍc
d = kp(x

c
d − xc)− kvẋ

c (5)

where xc and ẋc are the current position and velocity
of the center of gravity.

The acceleration of the center of gravity can be
written as

ẍc =
∂ẍc

∂q̈a
q̈a + ẍc

0 (6)

where the derivative of the center of gravity can be
obtained by ∂ẍc

∂q̈a
= 1∑

i m
i

∑
i m

i ∂ẍi

∂q̈a
, and here xi and

mi denote the center of gravity position of the i-
th bone and its mass respectively, and ∂ẍi

∂q̈a
can be

easily deduced from ∂Ẍ
∂q̈a

used in (3). Finally we obtain
the following constraint equations on q̈a for the user
constraints on the position of the center of gravity.

∂ẍc

∂q̈a
q̈a = ẍc

d − ẍc
0 (7)

Note that we can control the center of gravity only
when the character is in contact with the environment

IEEE COMPUTER GRAPHICS AND APPLICATIONS 6

such as the ground. To control the center of gravity
in this way, we need to include a constraint-based
contact model between the skeleton and the ground in
the equations of motion when we build the constraints
in (7), though we in fact use a more realistic penalty-
based method for the contacts in the simulation. We
will discuss this point further in Section 5.4.

Joints

It is straightforward to consider a desired joint dis-
placement in our formulation. Let qid be a given de-
sired displacement of the i-th active coordinate. Then
we can build the following constraint equation

Aiq̈a = k̃p(q
i
d − qi)− k̃v q̇

i (8)

where Ai = [0, · · · , 1, · · · , 0], and qi and q̇i are the
current displacement and velocity of the coordinate
respectively.

To handle the limits of joint displacement, we
present a simple and effective method to respect the
joint limit rigorously, but in a damped manner to
avoid any sudden impulse on the character. For each
i-th joint coordinate, we define short ranges of the
displacement, [qLi , q

L
i + ∆i] and [qUi − ∆i, q

U
i] where

our joint limit constraints on the lower and upper
limit qLi and qUi can be activated. When the joint
enters one of the areas with a velocity toward the
corresponding limit, we must control the joint to stop
before reaching the limit by restricting its acceleration
range. We determine the acceleration limit by assum-
ing a parabolic curve for the joint trajectory whose
maximum or minimum reaches the upper or lower
limit and passes through the current displacement
with the current velocity. If we restrict the joint accel-
eration to less than the acceleration of the parabola,
then the joint trajectory will always remain within
the boundary. Therefore, we set up the following
inequality constraints for the joint limit

q̈i ≤ q̈Ui if qi ∈ [qUi −∆i, q
U
i] and q̇i > 0

q̈i ≥ q̈Li if qi ∈ [qLi , q
L
i +∆i] and q̇i < 0

(9)

where q̈Ui and q̈Li are the upper and lower limits of
the acceleration of the i-th joint coordinate obtained
from the parabola. The acceleration limit depends on
the current displacement and velocity as well as the
location of the joint limit, and is obtained by q̈Ui =

− q̇2i
2(qUi −qi)+β

and q̈Li =
q̇2i

2(qi−qLi)+β
where β is a small

positive value to prevent dividing by zero.
Joint torque limits can also be incorporated into

our formulation. We use the following inequality con-
straints for the torque limits

∂τa
∂q̈a

q̈a ≤ τUa − τa,0

−∂τa
∂q̈a

q̈a ≤ τa,0 − τLa

(10)

where τLa and τUa are the lower and upper limits of the
active joint torques, and τa,0 denotes the torques when
q̈a = 0. Since ∂τa

∂q̈a
is a byproduct of the differentiation

of the recursive dynamics algorithm, which will also
be called to build the bone constraints, we can set up
the torque limit constraints efficiently.

5.2 Constraint Solving
All the constraints in Section 5.1 can be merged into
a set of linear constraints on the active joint accelera-
tions in the form of

Aq̈a = b and Cq̈a ≤ d (11)

where A, b, C and d are nonlinear functions of the
current system state (q, q̇). The equality constraint
equations represent the user’s intention for guiding
the physics simulation. The inequality constraints
form a convex space for the joint acceleration where
the joint and torque limits are satisfied.

Though the constraint equations look simple, we
need to be careful when we solve the equations in or-
der to make the user interface system robust. Indeed,
in many situations A is likely to be ill-conditioned
because of singularity. For example, the fish lying on
the dock in a straight shape in Figure 2 is a good
example of a singular pose where the head and tail
of the character cannot be accelerated horizontally at
the moment. In this case, if the user gives a wrong
input (e.g., a desired position of the head or tail
requiring such acceleration) then a naı̈ve solution of
the constraint equations will become very large in
an attempt to meet the constraints exactly. Such a
situation is very likely to cause the simulation to
diverge. The user interface system must be robust to
such user inputs, which may happen regularly during
direct user control of characters.

To avoid problems due to singularities, we build
the following quadratic program (QP) by changing
the equality constraints into an optimization

min
q̈a

||Aq̈a − b||2 + α||q̈a||2 s.t. Cq̈a ≤ d (12)

where α > 0 denotes the weight of the second
term of the objective function. Changing the equal-
ity constraints into such an optimization form is
a well-known technique to obtain a stable solution
for inverse kinematics [11]. The minimum point of
the quadratic function can be obtained by q̈∗a =
V (S‡)TUT b where A = USV T , S‡ = diag(σi/(σ

2
i +α)),

σi denotes the singular values of A, i.e., S = diag(σi),
and α is a parameter to damp out the effect of small
singular values.

Different priorities can be imposed on the user
inputs. For example, in our experiments, mouse drags
were set to be secondary while other constraints on
links, such as maintaining orientations of the lamp
character’s foot and the fish tail in Figure 3 and
2(middle) respectively, were set to be primary. We

IEEE COMPUTER GRAPHICS AND APPLICATIONS 7

handle the different priorities by solving the con-
straints sequentially as done in the literature ([2], [8],
[7]). Let Apx = bp and Asx = bs be the primary and
secondary equality constraints from the user inputs.
We first choose a particular solution of the primary
QP problem (Apx = bp, Cx ≤ d). Then we set
up a linear subspace x = xp + Npy with the null
space of Ap and a new variable y for exploring the
subspace. Note that all the points in the subspace
satisfy the primary constraints at the same level, and
the particular solution has a minimal norm among the
solution space. We will find a solution which meets
the secondary constraints within the subspace. The
secondary QP problem is formulated in terms of y by
substituting xp +Npy for x in Asx = bs and Cx ≤ d,
and we obtain the final solution by x = xp + Npys
where ys is the solution of the secondary QP problem.

5.3 Closed Loops

Our acceleration-based formulation can also handle
closed loops in the skeleton (Figure 1, bottom). We
assume that all the joints in the closed loops are active
so that their trajectory can be controlled actively.

We build a virtual tree-topological system by cut-
ting each closed loop at a single joint or link. Keep
in mind that we should control the active joints
in the open loop system in a coordinated way in
order to keep the original closed loops. We do this
by constructing constraint equations on the joints in
the closed loops and finding a joint subspace which
satisfies the closed loop condition.

From kinematics, the closed loop constraints can be
written as

f(qa) = I (13)

where f represents the forward kinematics of the
joint loop which is a nonlinear function of the active
joint coordinates qa, and I is the identity matrix. By
differentiating the equation with respect to time, we
can obtain a linearized constraint on q̈a

Jq̈a = −J̇ q̇a (14)

where J = ∂f
∂qa

∈ ℜ6×na denotes the Jacobian of
the closed loop constraints and J̇ is its time deriva-
tive. The closed loop constraints are treated with the
highest priority in our implementation, and all other
constraints are solved within the solution subspace
which can be expressed with the null space of J and
a particular solution obtained by the Moore-Penrose
pseudoinverse.

Though the joint command q̈a corresponding to the
user inputs satisfies the linearized constraints in (14)
at every time step, the system pose at the next time
step may slightly deviate from the original nonlinear
closed loop constraints in (13). As the simulation
proceeds, the tiny error at each time step accumulates
and the closed loops can break down. We compensate

for this error by projecting the system pose onto the
curved subspace using the Newton-Raphson method.
At most a few iterations per time step suffice in our
experiments.

5.4 Contact Modeling
We use a penalty-based contact model in the physics
simulation, which ensures plausible physics for both
rigid and deformable bodies. However, in some cir-
cumstances it may be advantageous to temporarily
assume that contacts are hard constraints in order to
compute character actuations that make proper use
of the character’s ability to push off the ground. In
particular, if we do not use this approach, it is not
possible for the user to control the character’s center
of gravity, because under the penalty-based contact
model the character appears as an isolated system
where acceleration of the center of gravity cannot be
affected through internal actuation. (In such a case,
the term ∂ẍc

∂q̈a
in (7) would be the zero matrix.)

When we build the constraints for the computation
of the joint command, we temporarily create a joint to
express the contact between a bone and the ground.
For example, in the case of the lamp character, we
replace the original 6-DOF passive root joint with
a 3-DOF ball joint, 1-DOF revolute joint, or 0-DOF
welding joint when the number of contact points
is 1, 2, and 3 or more respectively. If there is no
contact, the 6-DOF free joint will remain as the root
joint. After building the constraints, the temporary
joint for contacts is replaced with the original root
joint and the penalty-based contact model is applied
for the simulation. This treatment of ground contact
can produce interesting effects. For example, if the
user attempts to have the lamp character accelerate
forward quickly on an icy surface, our system will
compute joint accelerations that attempt to accomplish
this motion, and the simulated lamp, not finding
sufficient friction for the attempted motion, will slip
on the surface and possibly fall.

6 RESULTS AND DISCUSSION

We tested our algorithms for creating dynamic mo-
tions on various kinds of characters such as a lamp,
worm, fish, starfish, and a donut-shaped character. All
the characters tested, except for the lamp character,
have elastic soft bodies attached to their skeletons. For
the passive root joint, which connects one of the bones
in the skeleton to the ground, we used 6-DOF joints
for the lamp and starfish, and 3-DOF planar joints
for the worm, fish, and donut characters, although
the character models and some of the motions were
fully 3D (e.g., see Figure 1, top). The control loop
can be executed at a lower rate (e.g., 50Hz ∼ 1kHz)
than the simulation loop, and the simulation speed
can be adjusted by the user. Though the user is able
to control most of the tested characters in real time,

IEEE COMPUTER GRAPHICS AND APPLICATIONS 8

Fig. 6. A lamp motion: A 3D lamp motion including
jumping up the stairs and sliding on a frictionless box
was created in our interface system.

in such a simulation setting, it can be difficult for the
user to react quickly and correctly enough to guide the
character in a desired way as pointed out in [1]. In our
experiments, we preferred controlling the characters
at a slow simulation speed, e.g., 3 ∼ 8 times slower
than real time.

The elapsed time for creating a physically simulated
motion in our system depends on the type of the
character and the required controls. For example, even
a novice was able to control the selfish donut character
in Figure 1 (bottom) to push the other objects outside
of the seesaw successfully within a few minutes, and
this is because the required control is very simple
— only guiding the position of the center of gravity
with the mouse suffices for the task. In the case of
the starfish escape in Figure 1 (top) in which the
user is usually required to manipulate different body
parts successively using the mouse, the users had
to be trained for some time to become familiar to
the interface. Once the users become accustomed to
the system, however, they were able to create the
motions of the escaping starfish within a few minutes.
For the 3D lamp example shown in Figure 6, it took
about 30 minutes for a proficient user to create the
long sequence of the motion consisting of consecutive
jumps and balances.

We formulated all the constraint equations for our
direct control in terms of the active joint acceleration.
Under the acceleration-based formulation, the con-
straint solver chooses a minimal acceleration among
possible solutions. Therefore, the current momentum
of the character is likely to be preserved as much
as possible in the next time step, and this leads to
a smooth dynamic motion starting from a stationary
state. Though the momentum-preserving nature of
the acceleration-based formulation is good for starting

dynamic motions, it is not proper for generating less
dynamic motions (Figure 2, bottom) and stopping mo-
tions such as the landing phase of the lamp character
(Figure 3, rightmost). We handle situations such as
these by modifying the original formulation in (11) in
terms of the active joint velocity as

Aq̇da = hb−Aq̇a and Cq̇da ≤ hd− Cq̇a (15)

with an assumption of the explicit Euler integration
on the velocity, q̇da = q̇a+hq̈a where q̇a and q̇da represent
the velocity at the current and next time step respec-
tively and h denotes the step size for integration. We
solve the constraint equations by using the method
described in Section 5.2 to obtain a feasible minimal
joint velocity at the next time step. Finally we set up
the active joint acceleration, the joint command for
the simulation, as q̈a = 1

h (q̇
d
a − q̇a) and then perform

the dynamics simulation to get the system state at the
next time step. The constraints can also be formulated
in terms of joint torques, and in this case, the resulting
motions appear to use less torque than the other
formulations.

The physics simulation driven by joint acceleration
does not produce compliant joint motions that are
responsive to unexpected external forces. This prob-
lem, however, can be effectively solved by placing an
additional forward dynamics process after the current
physics solver which outputs the acceleration of the
passive joints and the torque for the active joints. In
this case, the active joint torque is used as the input
command of the forward dynamics simulation. Note
that, for the user to observe the effect of compliance
using this technique, the unexpected external forces
must be used in the final forward dynamics simula-
tion only.

7 CONCLUSION

We presented an acceleration-based formulation for
direct Cartesian control of underactuated characters
with deformable bodies and closed loops, and showed
the effectiveness of the control by creating dynamic
motions of various kinds of characters in our user
interface system. In the system the user can inter-
actively guide the character simulation using his or
her own physical intuition through direct control in
Cartesian space using mouse drags, for example, for
guiding bones and the center of gravity. Realistic and
physically plausible character motions can be created
without using physically correct reference motion
data which is usually unavailable for non-human-like
characters such as the ones tested in our experiments.

In our current implementation, the mouse is the
only device used to control the characters interactively
and continuously and this may limit the user from
fully realizing his or her intentions when guiding
the simulated characters. Using an input device that
would transmit its 3D position and orientation at the

IEEE COMPUTER GRAPHICS AND APPLICATIONS 9

same time would enhance the performance of our
interface significantly. A real-time motion capturing
system could be used for even more sophisticated
control as in [12].

Though an artist may want to bend physics in
some cases to obtain a desired effect, our current
implementation can only produce physically plausible
motions. Allowing intentional external force on the
root joint could be one solution for this problem, and
it would be quite challenging future work to find an
optimal trade-off between the realism of the motion
and the desired task in the artist’s mind.

ACKNOWLEDGMENTS

This research was partially supported by NSF award
CCF-0702443. The authors gratefully acknowledge
Moshe Mahler for help with Maya modeling and ren-
dering. We also thank the graphics group at Carnegie
Mellon for their helpful comments.

REFERENCES
[1] J. Laszlo, M. van de Panne, and E. Fiume, “Interactive control

for physically-based animation,” in SIGGRAPH ’00: Proceedings
of the 27th annual conference on Computer graphics and interactive
techniques, 2000, pp. 201–208.

[2] K. Yamane and Y. Nakamura, “Natural motion animation
through constraining and deconstraining at will,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 09, no. 3,
pp. 352–360, 2003.

[3] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien,
“Animating human athletics,” in SIGGRAPH ’95: Proceedings
of the 22nd annual conference on Computer graphics and interactive
techniques, Aug. 1995, pp. 71–78.

[4] K. Yin, K. Loken, and M. van de Panne, “Simbicon: simple
biped locomotion control,” ACM Transactions on Graphics, vol.
26, no. 3, 2007.

[5] L. Liu, K. Yin, M. van de Panne, T. Shao, and W. Xu,
“Sampling-based contact-rich motion control,” ACM Transac-
tions on Graphics, vol. 29, no. 4, 2010.

[6] A. Macchietto, V. Zordan, and C. R. Shelton, “Momentum
control for balance,” ACM Transactions on Graphics, vol. 28, no.
3, 2009.

[7] M. de Lasa, I. Mordatch, and A. Hertzmann, “Feature-based
locomotion controllers,” ACM Transactions on Graphics, vol. 29,
no. 4, 2010.

[8] L. Sentis and O. Khatib, “A whole-body control framework for
humanoids operating in human environments,” in Proceedings
2006 IEEE International Conference on Robotics and Automation,
May 2006.

[9] J. Laszlo, M. Neff, and K. Singh, “Predictive feedback for
interactive control of physics-based characters,” in Proceedings
of Eurographics, 2005.

[10] J. Kim and N. S. Pollard, “Fast simulation of skeleton-driven
deformable body characters,” ACM Transactions on Graphics (in
press).

[11] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions
with singularity robustness for robot manipulator control,”
Journal of Dynamic Systems, Meas., and Control, vol. 108, pp.
163–171, 1986.

[12] M. Dontcheva, G. Yngve, and Z. Popovic, “Layered acting for
character animation,” ACM Transactions on Graphics, vol. 22,
no. 3, 2003.

Junggon Kim is currently a Project Scientist in the Robotics Institute
at Carnegie Mellon University. He received a B.S. and M.S. in
Mechanical Engineering from Seoul National University in 1996 and
1998, and a Ph.D. from the Robotics Laboratory at Seoul National
University in 2007. His research interests include robotics, motion
planning, and computer graphics and animation. Contact him at
junggon@cs.cmu.edu.

Nancy S. Pollard is an Associate Professor in the Robotics Institute
and the Computer Science Department at Carnegie Mellon Univer-
sity. She received her PhD in Electrical Engineering and Computer
Science from the MIT Artificial Intelligence Laboratory in 1994, where
she performed research on grasp planning for articulated robot
hands. Before joining CMU, Nancy was an Assistant Professor and
part of the Computer Graphics Group at Brown University. She re-
ceived the NSF CAREER award in 2001 for research on ’Quantifying
Humanlike Enveloping Grasps’ and the Okawa Research Grant in
2006 for ”Studies of Dexterity for Computer Graphics and Robotics.
Contact her at nsp@cs.cmu.edu.

