IEEE TRANSACTIONS ON HAPTICS, VOL.1, NO.1, JANUARY-JUNE 2008

39

Six-DoF Haptic Rendering of Contact
between Geometrically Complex
Reduced Deformable Models

Jernej Barbi¢, Member, IEEE, and Doug L. James, Member, IEEE

Abstract—Real-time evaluation of distributed contact forces between rigid or deformable 3D objects is a key ingredient of 6-DoF
force-feedback rendering. Unfortunately, at very high temporal rates, there is often insufficient time to resolve contact between
geometrically complex objects. We propose a spatially and temporally adaptive approach to approximate distributed contact forces
under hard real-time constraints. Our method is CPU-based and supports contact between rigid or reduced deformable models with
complex geometry. We propose a contact model that uses a point-based representation for one object and a signed-distance field for
the other. This model is related to the Voxmap-PointShell (VPS) method, but gives continuous contact forces and torques,
enabling stable rendering of stiff penalty-based distributed contacts. We demonstrate that stable haptic interactions can be achieved
by point-sampling offset surfaces to input “polygon soup” geometry using particle repulsion. We introduce a multiresolution nested
pointshell construction that permits level-of-detail contact forces and enables graceful degradation of contact in close-proximity
scenarios. Parametrically deformed distance fields are proposed for contact between reduced deformable objects. We present several
examples of 6-DoF haptic rendering of geometrically complex rigid and deformable objects in distributed contact at real-time

kilohertz rates.

Index Terms—Haptics, 6-DoF, distributed contact, deformations, distance fields, VPS.

4

1 INTRODUCTION

HIS paper presents an efficient hard real-time CPU-

based algorithm for 6-DoF haptic rendering of
contact between two geometrically complex 3D objects
(see Fig. 1), each of which can undergo deformations.
Our time-critical algorithm resolves distributed contact
forces between two 3D objects, i.e., contacts with
potentially several simultaneous contact sites each dis-
tributed over a nonzero surface area (also called multi-
point or multisite contact; see Fig. 2). Distributed contact
is essential to 6-DoF haptic rendering and is challenging
to simulate due to the competing demands of high
temporal rates for contact force evaluation, e.g.,, 1 kHz in
our examples, and the computational burden introduced
by geometrically complex rigid and (more notoriously)
deformable objects. Deformable object simulators cannot
time-step complex simulation meshes at haptic rates. We
drive deformations of our geometrically complex meshes
with low-degree-of-freedom deformable models and
demonstrate how such deformable model simplification
(reduction) can be exploited by our contact processing
algorithm to enable haptic update rates.

e |. Barbi¢ is with the MIT Computer Science and Artificial Intelligence
Laboratory, The Stata Center, Building 32-D530, 32 Vassar Street,
Cambridge, MA 02139. E-mail: barbic@mit.edu.

e D.L. James is with the Department of Computer Science, Cornell
University, 4130 Upson Hall, Ithaca, NY 14853-7501.

E-mail: djames@cs.cornell.edu.

Manuscript received 23 Feb. 2008; accepted 30 Apr. 2008; published online
2 June 2008.

Recommended for acceptance by C. Basdogan.

For information on obtaining reprints of this article, please send e-mail to:
toh@computer.org, and reference IEEECS Log Number TH-2008-02-0014.
Digital Object Identifier no. 10.1109/ToH.2008.1.

1939-1412/08/$25.00 © 2008 IEEE

Our approach is most closely related to the Voxmap-
PointShell (VPS) method [1], [2], [3], an industrial 6-DoF
haptic rendering algorithm capable of simulating distrib-
uted geometrically detailed contact between a rigid
environment and a rigid point-sampled object (pointshell).
The pointshell is a collection of points (with normals)
positioned near-regularly at the surface of the object. The
VPS environment is modeled as a voxmap data structure: a
voxelization of the polygonal environment geometry where
each voxel contains a fixed-width value, such as 2-bit values
(interior, surface, next to surface, free space) in the original
VPS, or more bits in recent VPS extensions [3]. In every VPS
haptic cycle, pointshell points are queried against the
voxmap to determine contact.

Unfortunately, objects modeled by VPS are entirely
rigid, and for good reason: geometrically complex deform-
able objects are computationally expensive since 1) deform-
able object simulations cannot easily achieve haptic rates
(1,000 Hz) for geometrically rich models and 2) deformable
collision detection is expensive especially for close-
proximity scenarios typical of contact. These fundamental
difficulties have seriously hampered the progress of a
variety of emerging haptic rendering applications such as
haptic gaming. Another application of haptic rendering is
virtual prototyping: haptics can allow airplane designers
to check if a certain mechanical part can be positioned
into (or removed from) designated locations, thereby
avoiding critical design flaws before manufacturing the
structure, e.g., fire detector removal from an aircraft
engine assembly during routine servicing [2]. Supporting
deformable geometry is important since airplanes include
numerous deformable parts such as hoses, wires, plastic
parts, and sheet metal. Part-removal analysis using only

Published by the IEEE CS, RAS, & CES

40

Fig. 1. Six-DoF haptic rendering with complex deformable geometry.
The user is manipulating a rigid Buddha (distance field object) against
the deformable dragon (pointshell object). The simulation computes
deformations, detects collision, and computes contact forces and
torques in one loop running at 1,000 frames per second.

rigid simulations can lead to false reports that a part
cannot be (dis)assembled when in reality it can. For
example, wires and hoses may be deformed to let an
object through a narrow passage (see Fig. 3).

1.1 Overview

Our approach is designed to work with a variety of
deformable models that support a basic two-step simulation
process: 1) a fast time step of deformable dynamics and
2) fast evaluation of individual deformed surface point
positions and normals to adaptively resolve contact.
Suitable reduced models include classic linear modal
vibration models, reduced nonlinear models, low-resolution

Same view &
as tpp-left

From behind
B, the dinosaur

(c) (d)

From dino's front-left

Fig. 2. Distributed deformable contact. (a) Contact configuration between
a nonlinear reduced deformable bridge (15 reduced deformable DoFs)
and a rigid dinosaur, with 12 separate contact sites. (b)-(d) Contact sites
viewed from three different camera angles. A total of 5,200 points (in dark
gray (blue)) were traversed, resulting in 426 points (in light gray (red)) in
contact. Note: temporal coherence was disabled for this figure.

IEEE TRANSACTIONS ON HAPTICS, VOL. 1,

NO. 1,

JANUARY-JUNE 2008

Fig. 3. Real-time 6-DoF haptic rendering of rigid and deformable objects
in contact. The operator is navigating the rigid part in between two
deformable hoses.

deformable models with embedded geometry, multiresolu-
tion models, and articulated rigid or flexible multibodies or
skinned deformable models. We collectively refer to such
models as reduced deformable models. In our implementa-
tion, we employ reduced geometrically nonlinear FEM
models [4]. These models run at haptic rates, e.g., much less
than 100 us per time step in our examples, and are suitable
for large deformations with large rotations but small local
strain. We make extensive use of the low-dimensional shape
parameterization for time-critical collision and force proces-
sing. Regardless of the particular reduced deformation
model used, our approach addresses stable haptic display
of distributed contact between two objects, each with
nontrivial geometry.

As in VPS, one of our objects is modeled as a pointshell.
We explore the relationship between point-sampling and
haptic stability, and propose pointshells that near-uniformly
sample a smooth offset surface to the input triangle (“polygon
soup”) mesh. Instead of a VPS voxmap, we use a floating-
point signed-distance field to 1) make the contact force
continuous (improving stability), 2) support time-critical
contact estimation, and 3) exploit temporal coherence. At
every haptic cycle, pointshell points are queried against the
distance field to determine contact and compute contact
forces (see Fig. 4). We support contact between a rigid and a
reduced deformable model using a rigid distance field and a
deformable pointshell. We introduce output-sensitive
signed-distance field oracles for deformable models to
support contact between two reduced deformable models.
Our approach scales with increasing geometric detail. To the
best of our knowledge, we are the first to demonstrate haptic
rendering of deformable contact, with several simultaneous
contact sites, on a 6-DoF haptic device, with force and torque
stiffnesses at hardware device limits, between such geome-
trically complex models.

To support haptic display of geometrically detailed
models, e.g., involving a million pointshell points, we
propose organizing the pointshell into a nested multi-
resolution hierarchy. The hierarchy is constructed by fitting
a desired number of points (particles) onto an appro-
priately constructed smooth manifold (offset) surface,
using multiresolution particle repulsion. Our sampling is
near-uniform which provides economic pointshells and
improves haptic stability. We use a precomputed sphere-
tree hierarchy to bound the pointshell points, with sphere

BARBIC AND JAMES: SIX-DOF HAPTIC RENDERING OF CONTACT BETWEEN GEOMETRICALLY COMPLEX REDUCED DEFORMABLE... 41

(a) (b) (©)

Fig. 4. Point-contact model. (a) Reduced-deformable pointshell with
inward normals. (b) The signed distance field. (c) Deformable contact
and contact forces.

centers located at (nonleaf) pointshell points. For deformable
models, this gives a point-based modification of the
Bounded Deformation Tree (BD-Tree) [5]. Such a hierarchy
permits large pointshells, bigger than what could be
examined point by point during one haptic cycle: if a
point on some coarse hierarchical level is sufficiently far
from contact, none of the points in the subtree can be in
contact, and then those points need not be checked. In
contrast, if a large part of the pointshell is in contact or
close to contact, few subtrees will be culled and a large
part of the pointshell will need to be examined point by
point. We address this problem by providing graceful
degradation of contact: if there is not enough computation
time to fully complete the tree traversal, the algorithm still
returns a reasonable answer, with accuracy dependent on
contact-configuration difficulty and available processing
power. Graceful degradation is achieved by traversing the
nested hierarchy in a breadth-first order, rendering deeper
and deeper tree levels until out of computation time. We
use two separate activation thresholds to avoid abrupt
changes in the rendered depth during consecutive haptic
cycles. The simulation also uses temporal coherence to
time-sample the individual points at rates depending on
distance to contact (temporal adaptivity).

We compute both contact forces and torques, and
haptically render them using static virtual coupling [2].
We propose a quasi-static damping scheme to improve the
passivity of penalty-based contacts. In haptics, higher
update rates generally enable stable rendering of stiffer
forces and torques; but reaching such high rates is
challenging for models with detailed geometry. In our
system, the deformations, collision detection, and contact
force computations run together in one loop at haptic rates
(1,000 Hz). We do not need to extrapolate from lower rate
signals. A multirate simulation using the contact gradients
(such as those presented in Section 5) could exploit user’s
limited sensing bandwidth to further increase example
complexity [6], [7].

The technical sections of this paper are organized as
follows: Section 2 gives our proposed contact model for
computing contact forces between a point and a distance
field. It also explains how we generate our pointshells and

distance fields from input “polygon soup” triangle meshes
and how points are organized into a multiresolution
hierarchy. In Section 3, we give our runtime algorithm:
we explain how we traverse the hierarchy at runtime, how
we exploit temporal coherence, and how we adjust the
rendered level of detail to support graceful degradation of
contact. In Section 4, we extend the algorithm to deformable
simulation—first, by making the pointshell deformable
(Section 4.1), next by adding deformations to the distance
field (Section 4.2).

1.2 Related Work

Haptic rendering has received increasing attention over the
last decade [8], and significant challenges remain especially
for rendering deformable systems. Early methods were
developed for tissue simulations during virtual surgery [9],
and mostly used mass-spring deformable objects. Space-
time adaptive and multirate methods have been successful
for real-time deformable object simulation [10], [11], but
time-critical distributed contact algorithms have received
less attention (cf. [12]). A variety of preprocessing techni-
ques, such as precomputed Green’s functions, exist for
accelerating linear elastostatic models to support haptic
force-feedback rendering of point-like contact, or modest
multipoint contacts via low-rank updates [13], [14], [15],
[16], [17]. Unfortunately, most such haptic rendering papers
assume interactions based on pulling on (or constraining)
certain vertices, not performing real-time deformable-rigid
object collision detection and distributed contact force and
torque computations with complex geometry.

As mentioned, the VPS method was introduced in [1] to
support rigid-rigid contact rendering. Pointshell accuracy
and virtual coupling stability were improved in [18]. In [2],
they replaced the original VPS mass-spring-damper with a
quasi-static spring. The recent paper of McNeely et al. [3]
introduces wider voxmaps (4-bit), which now have more
room to store distance-to-nearest-contact information for
free-space voxels. Since the haptic device is user controlled,
there exists an upper bound on the maximum possible
velocity of a pointshell point, and therefore, points located
in a voxel sufficiently far from contact need not be checked
for several haptic cycles (temporal coherence). Also, the
pointshell is traversed on two levels: a coarse level shell is
tested against a coarse level voxmap, followed by finer tests
if necessary. The hierarchy only consists of two levels, the
simulation is rigid and graceful degradation of contact was
not addressed.

Our progressive interruptible point-based contact-
sampling approach is analogous to the QSplat point-based
rendering algorithm [19] which represented the point cloud
hierarchically to enable level-of-detail control for graphical
rendering. Our oriented pointshell can be seen as a surfel
point cloud. A single-resolution contact algorithm for two
deformable point-sampled objects has been presented in
[20], reaching interactive, but not haptic rates. Hierarchical
point-contact handling was explored in [21], where they
demonstrate near-interactive (a few frames per second)
contact of point-based quasi-rigid (quasi-static and linear)
deformable objects. In this paper, we present a hierarchical
contact rendering method designed for haptic rendering.
We demonstrate how to maintain upper bounds on the

42

amount of computation per haptic cycle and how to
minimize contact force artifacts when runtime constraints
force a transition to a different contact resolution level.

Bounding volume hierarchies can be used for interrup-
tible collision detection for rigid [22] and embedded
deformable models [12] by traversing the hierarchy in a
breadth-first manner. Time-critical contact can be approxi-
mated by applying contact forces between contacting
(sphere) primitives at the deepest level traversed in a
particular frame. Unfortunately, such approaches can have
trouble resolving close-proximity and conforming contact
configurations in high-rate scenarios (as in haptic render-
ing): finer bounding volumes more closely approximate the
object, and as such the effective contact surface (and
therefore forces) depend on the level of detail rendered at
any instant. In our work, the points at different resolution
levels progressively sample the same well-defined contact
surface, thereby making contact at different levels of detail
more consistent.

Six-DoF haptic rendering of complex rigid objects can be
achieved using a number of techniques, in addition to VPS,
such as multiresolution collision detection on convex
decompositions, followed by a clustering of contacts [23].
A generalization of the god-object method to rigid objects
has been presented in [24], producing rigid haptic simula-
tions with tens of thousands of triangles. Multiresolution
contact haptics has been demonstrated for polygonal
geometry by appropriately simplifying the objects at
different hierarchical levels, to preserve the user haptic
sensation [6], [25]. The authors suggest that for contact sites
of large area, resolving the contact at a coarser resolution
will not result in significant sensation degradation; this has
motivated our graceful degradation algorithm. These
approaches, however, do not directly apply to point-
sampled objects or deformable objects.

Linear complementary problem (LCP) solvers can be
used to solve the Signorini contact problem between a rigid
object and a linear deformable object [26], at haptic rates.
LCP solvers are computationally demanding which limits
the approach to models of modest geometric complexity.
Haptic interaction between two objects with detailed
surface deformations can be achieved using geometry
proxies combined with GPU image space techniques, in a
multirate simulation with collision detection running at
graphics rates [27]. Haptic results were demonstrated using
a 3-DoF device, with one large contact area between a rigid
object and the deformable surface of the other object.

A deformable pointshell haptic rendering example has
been demonstrated in [4]; however, one of the two
contacting objects (a small rigid ball) had trivial geometry.
In this paper, both contacting objects have nontrivial
geometry, resulting in a much more difficult collision
detection problem; also the contact model of analytical
gradients (as used with the ball) gives discontinuities if
naively extended to nontrivial distance field geometry. We
published a conference version of our work in [28]. In this
paper, we extend the technique to handle deformable
versus deformable contact. We give convergence properties
of our contact model. We also present experimental results
on rendering fine geometric detail and on asymmetry of the
contact model.

IEEE TRANSACTIONS ON HAPTICS, VOL.1, NO.1, JANUARY-JUNE 2008

2 MULTIRESOLUTION POINT-CONTACT MODEL

In this section, we describe our point-contact model; its
components were selected to enable stable haptic rendering
of large models at fast update rates. Our point-contact
models for rigid-rigid, rigid-deformable, or defo-defo
contact are conceptually identical: during every haptic
cycle, the contact penalty forces are determined by querying
the points of the pointshell object against the signed
distance field of the other object (see Fig. 4). The user
interactively manipulates one of the two objects (the haptic
object). In our implementation, the distance-field object is
manipulated; the distance field then translates and rotates
with the haptic object. The roles could be reversed. Both
pointshell and the distance field are computed in a
preprocessing stage from input (“polygon soup”) triangle
meshes. Pointshell is fitted onto a smooth manifold surface,
using a multiresolution construction that permits incre-
mental construction of contact forces at runtime.

2.1 Contact Forces

Negative distance field values (by convention) denote the
interior of the distance field object, and therefore points in
contact. Penalty forces are computed for points in contact.
We choose the direction of the force to equal the inward
normal of the pointshell point in contact (and as such the
force acts to resolve contact). The magnitude is determined
from the amount of penetration. The force is (see also
Fig. 4c)

F=—kcdN, (1)

where k¢ is the contact penalty force stiffness, d < 0 is the
signed distance field value, and N is the point’s inward
normal in the world coordinate system. The point world-
coordinate position and normal computation are discussed
in later sections. Note that the total force and torque can be
computed easily using this model, and the trilinearly
interpolated distance field.

This particular contact model was selected because of its
useful approximation properties for haptics. Our motiva-
tion was to improve the VPS contact model. VPS force
directions are continuous, but magnitudes can be discon-
tinuous when crossing voxmap voxel boundaries. It is then
up to virtual coupling to remedy these discontinuities;
lower stiffness levels might be required to preserve
stability. In our first contact model attempt, we obtained
both force direction and magnitude from the distance field
object, by using distance field gradients. The gradient,
however, is discontinuous across voxel boundaries and
across interior object medial axes. The resulting force
direction discontinuities gave poor haptic signals. There-
fore, we designed our contact model to only use distances
and not distance gradients. Our contact forces are contin-
uous functions of positions, orientations and deformations
of the two contacting objects, which permits stable stiffer
contacts. We found our contact model to provide more
stable haptic feedback than the VPS voxmap model,
especially at higher stiffness settings.

In our model, only the normal of one of the two
contacting objects (that of the pointshell object) determines
force direction. This is both an approximation used for

BARBIC AND JAMES: SIX-DOF HAPTIC RENDERING OF CONTACT BETWEEN GEOMETRICALLY COMPLEX REDUCED DEFORMABLE... 43

d|stancelﬁle bject dw,‘.Kd’
= _\ Aw
A X R D
L P \ bounfary
< \\\ X o
ﬁ' point 1 el): £

(a) (b) (©)

Fig. 5. (a) A low-quality pointshell: haptic signal will be chaotic.
(b) Analytical contact limit (2). (c) Conservative extension of the distance
field outside of the distance field box.

speed and robustness; also note that for smooth surfaces in
nonpenetrating contact, the normals of the two opposing
surfaces at the contact point are colinear. Our contact forces
are temporally coherent in that contact sites (points in
contact) vary smoothly from one haptic cycle to the next,
improving stability. The contact force can start decreasing
(but does not invert) under large penetrations, e.g., when
crossing a medial axis of the distance field object. However,
this issue is remedied by keeping the contacts shallow
(using virtual coupling saturation and schemes that limit
haptic object velocities, see Section 5). Our contact model is
asymmetric: different contact forces will be obtained if the
roles of the pointshell and distance field object are reversed.
However, due to shallow penetrations, the two contact
forces are very similar (see Fig. 15).

2.2 Pointshells Sampling Closed Manifold Surfaces

We found that the haptic signal quality greatly depends on
the quality of the pointshell; a good pointshell can mean the
difference between a very stable signal and a very chaotic
signal (see Fig. 5a). At first, we considered pointshells
sampling “polygon soup” geometry directly, but stable
haptic rendering cannot be guaranteed due to unpredictable
normals and the nonclosed and nonoriented nature of the
surface sampling. Consequently, we designed our point-
shells to sample a closed manifold oriented surface. When
combined with virtual coupling saturation (Section 5), this
restricts the distance field object to outside of the pointshell
object (or at most a shallow penetration), where the
pointshell normals point in the direction that resolves
contact. It is critical that pointshells resolve surfaces well
and that normals are set orthogonal to the surface; isolated
points can get rotated arbitrarily and can even push the
object deeper into contact. Another problem happens if
points are too far apart, allowing a small feature in the
distance field object to slip undetected in between two
points; we address this by keeping the pointshell resolution
equal or finer than the distance field resolution. The original
VPS pointshell was obtained by voxelizing the pointshell
geometry and using centers of surface voxels as points of
the pointshell. Such an approach is simple and fast,
however, we found that it can result in a relatively large
(redundant) number of points. Also, the contact surface is
sampled on an axis-aligned grid, which can result in
staircase-like point positions. We found that pointshells
positioned on smooth closed manifold surfaces tend to be

stable; high-frequency components, either in point locations
or point normals tend to cause instabilities. Sharp corners
can still be rendered, albeit not aggressively.

We note that our contact model converges to a well-
defined limit with progressively finer (near-regular) point-
shells, and this limit has an intuitive volume integral
interpretation (obtained using the divergence theorem):

~kc L [y d(z)n(x)dS ke L [, gradd(x)dV
Js. dS Js. a5 7

where d(z) and n(z) are the signed distance value and
inward normal at z, respectively (see Fig. 5b), and the
integer L is the scaling threshold for many-points contacts
(we use L = 10; see Section 5). Our discrete contact model of
(1) can therefore be seen as resolving contact between a
surface and a distance field object, by approximating the
surface integral of (2) with a discrete Riemann sum
evaluated at the locations of pointshell points. The norm
of the distance field gradient is typically close to 1. For
contacts where the gradient does not significantly change
direction within the contact volume (e.g., in locally planar
regions), the limit contact force is proportional to the
penetration volume, divided by the surface area of contact.

2)

limit =

2.3 Distance Field Generation and Evaluation

Computing a signed distance field is straightforward for
closed manifold meshes. For “polygon soups,” we first
compute an unsigned distance field, then extract an isosur-
face for some small distance value using marching cubes to
obtain a closed manifold mesh [29] (see [30] for an
alternative approach). Next, we remove any mesh compo-
nents completely contained inside another component, and
then compute a signed distance field with respect to the
remaining closed manifold mesh(es). At runtime, we
trilinearly interpolate the distance field grid values to the
query location when inside the distance field box. If outside
the box, we propose using the conservative estimate
d(p) > diox + dboundary, Where dyoy is the shortest distance
from the query location p to the distance field box, and
dpoundary 1S the query-independent minimum distance field
value on the surface of the distance field box (we give proof
in Fig. 5c¢).

2.4 Multiresolution Nested Pointshell

At every haptic cycle, our algorithm can traverse the
pointshell linearly (point by point), evaluating the contact
model of (1) and rendering the sum to the user (via virtual
coupling, Section 5). However, only small pointshells
(~4,000 points on our hardware) fit into the computational
budget of one haptic cycle. To some extent, larger
pointshells are possible by using temporal coherence and
wider voxels [3]. To be able to simulate much larger
pointshells (rigid or deformable), we propose organizing
the pointshell into a nested tree hierarchy (see Fig. 6). We
generate our multiresolution pointshells by fitting a set of
particles (points) onto a smooth manifold surface, using
particle repulsion [31], [32]. Initially, we simply tried
sampling surfaces randomly, or we used vertices of input
triangle meshes, with poor results. Repulsion gives near-
regular point distributions at all hierarchical levels (see
Fig. 7), which improves haptic stability. It works by

44

~J — 5
~ 15
\“x 0 1 ‘Z
»13 c o ~
? > - p)
H o7
i 0 4 5 1 2 3 =z
9% A (“/ =7 | ;' i ;\' 2
o /3 > > >
1}\. s [0 9 14][4 17 19|[5 16| [1 6 12 13 15[2 10 1g[3 7 8 11 _CZS

(a) (b)

Fig. 6. Nested point-tree. (a) The pointshell. (b) The hierarchy, the
traversal order, and tree levels £;. Particle-repulsion levels are 0-1, 2-5,
and 6-19.

(a)

(b)

Fig. 7. Multiresolution oriented pointshell. (a) The first two levels of a part
of the hose scene. (b) Detail with four levels shown. Points are fitted on a
small-distance offset oriented manifold surface to support “polygon
soup” input geometry and provide oriented surface normals for contact.

randomly positioning a desired number of points (imagine
electrons) to the surface, followed by a simulation where
the points repel each other while constrained to the
surface. The nested point hierarchy is constructed by
freezing converged points, then injecting the points of the
next level (we use a 4x branching factor). Our construc-
tion is related to [33]; however, to support nonmanifold
input geometry, we constrain points on a level set of a
distance field as opposed to a triangle mesh. Repulsion
requires tuning two parameters (repulsion force strength
and repulsion force kernel width). We manually (inter-
actively) tune the two parameters on a small pointshell,
then run the multiresolution repulsion simulation offline,
decreasing force strength and kernel width by a factor of
two for each new level. Running times were on the order
of 1 to 2 hours for our pointshells with 256,000 points.
Repulsion is very parallel and could be accelerated using
multiple cores or a GPU. Details are available in [34].

IEEE TRANSACTIONS ON HAPTICS, VOL. 1,

NO. 1, JANUARY-JUNE 2008

After particle repulsion, each point has been positioned
and assigned to one of the disjoint particle-repulsion levels. It
is now necessary to organize the points into a nested
hierarchical data structure (see Fig. 6b), so that contact
forces can be computed progressively by a breadth-first
hierarchy traversal (Section 3). We first generate tree levels L;:
the set £; consists of an instance of every point of particle-
repulsion levels 1 through . Therefore, if a point belongs to
particle-repulsion level 4, an instance (a copy) of this point
will appear in all tree levels £;, for j > i. Instances can share
common memory data. The deepest tree level consists of a
single instance of all the points in the pointshell. The
elements of L, are our tree nodes on tree level i. This
construction was chosen so that all nodes at all levels lie on
the actual contact surface 7 and that each £; samples 7
about uniformly (without gaps), with progressively finer
resolution with level index i. We establish the tree parent-
child relationships by traversing nodes at every level £;.,
and assigning each node to the nearest node from level ;. A
bounding sphere radius is computed for each nonleaf tree
node, centered at the location of the node, and covering all
nodes in the subtree, in the undeformed configuration. The
radius of the bounding sphere gets progressively smaller for
instances of the same point at different levels. The nested
point tree can be augmented to support deformable point-
shells (Section 4.1).

3 TIME-CRITICAL PROGRESSIVE CONTACT FORCES

We now describe the core approach for time-critical
evaluation of contact forces when one object is represented
as a rigid or deformable pointshell, and the other object
provides a signed-distance oracle, d(p).

Runtime tree traversal. At every haptic cycle, the algorithm
traverses the pointshell hierarchy in breadth-first order. For
every tree node, the algorithm looks up the value of the
signed distance field at the node’s location. If the distance
field value is greater than the radius, no point in the subtree
can collide, and the subtree is not traversed further (see
Fig. 8b, e.g., node 2). Otherwise, all children of the node are
added to a list for future traversal (see Fig. 8b, e.g., nodes 0
and 3). If the distance field value is negative (contact), a
penalty force is assigned to the node, just like in the single-
resolution case. If child copies of the node are visited during
later traversal, no additional force is accumulated (but the
copy is not skipped from traversal since its proper children
may be in contact).

(b)

T r——— square =traversed node ==
18,7 ot e Jb | 0 1 C =node in contact 5 s
54 " pe I > ——> > o > > !
IR o Lo 4 5 | 1 2] | 3] o| 4]]5s] I REAEL
’ Pl
(] k‘ £ C #-— < - 5 T T 7 7 i
/ 3 \\ ,3 I —’";“1 [Z5¢ . | LEL "/’ / // ; i i '\’\
RRY of ,,1,4 171hoffs le| (16 12 13 152 10 18?'& 7ls 1) 09 144 17 19][5 16 [1 6 12 13 152 10 183 7 8 11
U= (T o c
4

(©

Fig. 8. Graceful degradation. With (a) involved contact scenarios, many tree nodes need to be traversed during (b) a complete hierarchy traversal.
(c) Under graceful degradation, tree is traversed only up to a shallow depth, as permitted by available CPU power.

BARBIC AND JAMES: SIX-DOF HAPTIC RENDERING OF CONTACT BETWEEN GEOMETRICALLY COMPLEX REDUCED DEFORMABLE... 45

Temporal coherence. Each time a tree node is processed, an
estimate of the earliest possible haptic cycle when the
bounding ball at this node can enter contact is determined
and stored with the node. This estimate is computed based
on node’s current distance to contact, sphere radius, and
maximum point velocity that can occur in the simulation. It
can be the immediate next cycle if the node is close to contact
(or in contact), or it can be hundreds of cycles into the future
for nodes far from contact. Next time a node is about to be
processed, we can safely skip it if the current haptic cycle is
earlier than what stored with the node. Temporal coherence
reduced our simulation times 20 percent-45 percent.

Graceful degradation. If the contact scenario is not very
involved, much of the tree will be quickly culled and only a
small fraction of the pointshell will be traversed. In contrast,
if there are many different contact sites, such as when the
pointshell object is positioned close to the distance field
object, a large fraction of the pointshell will need to be
traversed, preventing a complete tree traversal within one
haptic cycle. To support graceful degradation in such cases,
we traverse the tree progressively level by level (see Fig. 8).
While traversing the list of nodes that need to be visited on
level i (as determined by level i — 1), we build the traversal
list for level i + 1. At the end of level i, we compare the size
of this list to a measure of the remaining computation time
for the haptic cycle. Only if enough time remains, we render
the next level. The algorithm always either completes a level
or does not start it. The resulting contact forces are identical
to those obtained under an exhaustive tree-less traversal of
points up to a given level. Note that such a scheme is of
course approximate: only geometric features resolved by
points on the deepest traversed level will be rendered. If the
surface contains detail beyond what the particular CPU can
render, some points in contact (deep in the hierarchy) could
remain undetected; no force will be applied to such points.
The benefit of our construction is that it produces a
reasonable stable contact force given the available CPU
power. The rendered surface resolution and contact force
accuracy both increase with available computing power.

LOD control. The amount of work required to process a
node is predictable and it is not necessary to time the
execution explicitly. Instead, we count the total number of
tree nodes visited during the current haptic cycle. We use two
thresholds to determine whether to render the next tree level.
All the levels up to and including the deepest level rendered
in the previous haptic cycle use the warm threshold Vyy,
whereas all deeper levels use the cold threshold Vo < Viy. A
level ¢ is rendered if the total number of tree nodes visited
before entering level i plus the size of traversal queue for
level i (as determined by the just completed level i — 1) is less
than the threshold for level i. Cold threshold is stricter to
prevent popping back and forth among two levels during
consecutive haptic cycles; we set Vo = 0.8Vj. Our LOD
control, therefore, has a hysteresis, similar to, say, a
thermostat controlling a heater. In practice, we have seen
LOD changes at most about 2-3 x per second and did not feel
any popping haptic rendering artifacts. LOD changes can be
made fewer by reducing V. We selected Vi manually by
running the simulation and observing computation times per
haptic cycle. The selection was not difficult and could be
automated.

4 DEFORMATIONS

In this section, we describe the necessary algorithmic
modifications to support deformations. In our rigid versus
deformable simulations, we render a deformable pointshell
against a rigid distance field. For deformable versus
deformable simulations, we render a deformable pointshell
against a deformed distance field.

4.1 Deformable Pointshell

Our pointshell is embedded into a deformable object: as the
object deforms, so does the pointshell. Our method is not
specific to a particular deformable object algorithm, as long
as this algorithm has the following properties: 1) it runs at
haptic rates, 2) given any particular tree node queried by
our runtime nested tree traversal, it must be able to
(quickly) provide the current point world-coordinate loca-
tion and a bounding radius for the node subtree, and 3) it
must provide the (deformed) normal for points in contact.
For small pointshells, these requirements can be satisfied by
running any fast deformable object algorithm and comput-
ing the positions, normals, and bounding spheres for all tree
nodes at the beginning of every haptic cycle. With large
pointshells, it is wasteful (and computationally infeasible)
to always compute the positions and normals for all the
points, because only a small fraction of the points will
usually be queried during the tree traversal. Instead, the
requirements (1-3) can be satisfied by running a deformable
object algorithm where some simplified dynamics drives
the deformations of the (detailed) pointshell. Examples of
suitable deformable models are any coarse deformable
model (mass-spring system, FEM, etc.), model-reduced
(linear or nonlinear) FEM models, multiresolution models,
articulated rigid or flexible models, and skinned deformable
models. We use reduced nonlinear FEM models in our
examples; the specifics of this model are given in [34].
Regardless of the particular deformable model, the simpli-
fied dynamics runs quickly at haptic rates, and individual
deformable point positions and normals are computed
adaptively as needed by the tree traversal. In particular, the
displacement u € R* of a point in any of the listed
deformable models can be expressed as u(t) = U ¢(t), where
UeR* is a certain point-specific time-independent
matrix (e.g., FEM shape functions, or model reduction basis
functions evaluated at point’s material mesh location),
g =q(t) € R" is the (relevant part of) the low-dimensional
deformation state, and r is the (point-dependent in some
deformable models) number of shape functions affecting
the particular point. Deforming the normals is important for
simulation quality. Continuously deformed normals can be
approximated quickly using deformation gradient push-
forward of undeformed normals. Such normals can be
evaluated using a point-specific normal correction matrix
N € IR*, similarly to point positions (details in [34]).

The contact model and the deformable model are linked
as follows: During the nested tree traversal, the current
deformation is held fixed. The computed contact forces are
then set as external forces to the deformable object
integrator. The integration time step is performed at the
end of the haptic cycle, producing the deformations for the
next haptic cycle.

46

The bounding spheres of tree node subtrees need to be
refitted under deformations. The centers of our spheres
always coincide with current point locations; this is
computationally convenient so that, in order to determine
if a subtree needs to be traversed, the distance field value
queried at the point location need only be compared to the
bounding sphere radius. For small pointshells, we can refit
the entire sphere hierarchy before every haptic cycle. For
large pointshells, we refit (conservatively) only the sphere
radii of traversed nodes, using a point-based modification of
the Bounded Deformation Tree (BD-Tree) [5], [34]. The
subtle but algorithmically key point is that our point-based
BD-Tree uses nested pointshell points as deformed sphere
centers. This seemingly trivial choice enables time-critical
testing of the point-based BD-Tree against a distance field:
updating a BD-Tree sphere also updates a deformed
pointshell point, p, which can in turn be immediately
evaluated against the distance field, and if in contact,
(d(p) < 0) will contribute to the progressive accumulation of
contact forces in a multiresolution manner. Therefore, even
in the expected case where there is insufficient time to
completely test the BD-Tree against the distance field,
approximate contact forces can still be accumulated in a
time-critical fashion.

4.2 Deformed Distance Field

Our real-time contact algorithm performs over a thousand
signed-distance-field evaluations per millisecond-long hap-
tic frame. Distance fields for complex rigid objects can be
preprocessed and runtime-sampled quickly; however, the
same is not true of the deformable distance fields needed to
support “defo-defo” contact. In this section, we introduce
an algorithm which can approximate signed distance values
to deformed complex geometry very quickly, provided that
the deformations themselves are reasonably coarse (low
frequency). Our approach is similar to material-space
methods [35], but does not require a bounding volume
hierarchy and can report distance field approximations
outside of the object.

If distance field computation (evaluation) costs were zero
or negligible, one could simply treat the deformed distance
field as an oracle to provide the exact distance d(p). On
today’s hardware, however, distance field evaluation for
deformable models is expensive and cannot be performed
at haptic rates for nontrivial geometry [36], [37]. Even if an
acceleration data structure such as a bounding volume
hierarchy was computed (refitted) to the deformed triangle
mesh before each haptic cycle, each individual point
distance query requires O(log(n)) search time, where n is
the number of triangles in the model. Deformed distance
fields can be computed on grids in appropriate regions of
interest using methods such as Fast Marching [38], or 3D
scan conversion [39] (also see [40] for a survey). These
methods recompute the distance field from scratch, i.e., they
are general-purpose distance field computation algorithms,
invoked separately with each deformed configuration. They
cannot update the distance field at hard real-time rates for
complex geometry as their computation times depend on
the number of model triangles and the distance field
resolution. Fast marching has also been applied to
unstructured locations inside the object [41]; however,
marching still requires near-uniform spatial distribution of
the distance field query locations, known at the beginning
of marching. In our work, we need the distance only at the

IEEE TRANSACTIONS ON HAPTICS, VOL.1, NO.1, JANUARY-JUNE 2008
sparse locations of traversed tree nodes, most of which will
be outside the object, and all of which only become known
progressively during the traversal.

Our method is related to the “material-space distance”
method [35] which we briefly describe next. In [35], a
deformed distance field is approximated by reusing a rest
configuration precomputed distance field. No particular
structure in query locations is required, enabling conveni-
ent output-sensitive random access to the signed distance
field. The deformable object carries a simulation mesh, such
as a tetrahedral mesh or a hexahedral mesh. Given the
current mesh deformation, a bounding volume hierarchy is
(re)fitted to the tetrahedra. Then, for a query location p, one
can use the hierarchy to quickly locate the tetrahedron
containing p, or detect that p is not contained in any
tetrahedron. If inside a tetrahedron, one uses p’s barycentric
weights to pull p back to the rest configuration, obtaining
the corresponding material location P. A distance value
estimate is then obtained by looking up P into the
precomputed signed distance field. Note that the tet mesh
is typically coarser than the surface triangle mesh, or else it
is advantageous to compute the distances simply by
maintaining a hierarchy on the surface triangle mesh. The
method cannot report distances outside of the tetrahedral
mesh and was only used in offline simulations. It requires
maintaining a bounding volume hierarchy on the deform-
ing tet mesh and a traversal of the hierarchy for each
distance field query.

We propose a modification of the material-space distance
method that does not use a volumetric (tetrahedral) mesh
and does not require a deformable bounding volume
hierarchy. It can also compute distance approximations
outside of the object. During preprocess, we compute a
signed distance field with respect to the undeformed
configuration. At runtime, we compute fast approximations
to the deformed distance field values d(p) at the locations of
traversed pointshell points. We do so by using first-order
local deformation models at a small number of selected
locations (the “proxies”). We interpolate these models to
pull pointshell point positions back to the undeformed
configuration of the distance field object, followed by a
lookup into the precomputed distance field.

The specifics of the method are as follows: During
preprocess, we fit a small pointshell (typically ~40 points)
to the surface of the distance field object. We call this
pointshell the proxyshell and its points the proxies. We fit the
proxies using the same algorithm that was used to fit the
points to the surface of the pointshell object. Proxies are
embedded into (deform together with) the deformable
distance field object. To evaluate the deformed distance
field at some query pointshell point location z, we first
perform a k-nearest neighbor search to locate the k£ current
closest proxies pi, ..., p; to (see Figs. 9a and 9b). We then
assign nonnegative weights to p;; closer proxies are given
larger weights, and the weights sum to one; we use the
scheme described in [42] to assign weight w; to proxy i:

f o i Ve

- 1 / dmax ’

wi N 1/dmin - W B

i

wi, (3)

k
w; =
=1

Sl

where d; = ||z — pi||y, and dmax (dmin) is the max (min) of d;
over i =1,...,k We typically set k = 5 in our implementa-
tions to avoid singular configurations, where dyin = diax
(five points in general do not lie on the same sphere in 3D).

BARBIC AND JAMES: SIX-DOF HAPTIC RENDERING OF CONTACT BETWEEN GEOMETRICALLY COMPLEX

(]
Y,
U

undeformed l

(a) (b) (©)

Fig. 9. Deformed distance field approximation. (a) Proxies (squares), the
query pointshell point at z. (b) Three-nearest neighbors and their
weights. (c) Material configuration pullbacks X; of x.

We use local first-order deformation models at p; to
generate an approximation to the deformed distance field at
z, as follows: Let P; be the material position of p;, then the
deformation transformation in the vicinity of P, can be
approximated as

X—zr=p +F(X-P), (4)

where X is an arbitrary material point sufficiently close to
P, and F, e R>® is the deformation gradient at F;.
Deformation gradients can be evaluated quickly. For
example, for (coarse) FEM models or reduced FEM models,
this can be achieved in 9r flops, by taking analytical
gradients of the shape (or basis) functions and precomput-
ing deformation gradient mode matrices, (E-)j, for
j=1,...,r, where r is the number of shape functions
affecting the deformation at P, [34]. We then pull the query
position « back to X, by inverting (4) (see Fig. 9c). Next, we
obtain d;, the distance with respect to proxy 4, by looking up
the undeformed field at X;. Our distance approximation is
d =YY" wid;. Note that the weights are continuous and
vanish at the furthest nearest neighbor, ensuring C°
continuity of d both with respect to and the deformations
of the distance field object.

The resulting contact forces are applied (with opposite
sign) to both the pointshell deformable object and the
distance field deformable object. For the pointshell object,
the force is applied at the location of the point. For the
distance field object, the material location of the force is
known; however, the simulation mesh element (or nearest
simulation mesh vertex) containing this material location is
not known a priori. We apply the force to the locations of
the nearest proxy which had already been identified during
the k-nearest neighbor query. Force location could be
improved by a bounding volume hierarchy search for each
point in contact, exploiting the fact that only a small number
of all the traversed points will be in contact at any moment
of time.

Our scheme can be seen as approximating the global
deformation transformation (both inside and outside of the
object) by interpolating (and extrapolating) local first-order
deformation models. It is capable of computing a fast
approximation to the deformed distance field with respect
to complex geometry. This is possible because the complex
geometry is encoded into the distance field in the
undeformed configuration. The k-nearest neighbor search
is fast since it is performed only on a small number of proxy
points. Our approximation benefits from spatially smooth

REDUCED DEFORMABLE... 47

Fig. 10. Isocontours of the exact (dark gray (blue)) and approximate
(dashed light gray (red)) deformed distance field. (a) Pose 1, single-
domain approximation. (b) Pose 2, single-domain approximation with the
two legs mirroring. (c) Pose 2, multiple domain approximation without
mirroring. Solid light gray (green) denotes the interior of the object, with
respect to the approximated field.

deformable models and becomes progressively less accu-
rate under stretching/compression. Our proxies are uni-
formly distributed across the model. Proxy positions could
be chosen adaptively such that more proxies are used in
regions with localized deformations or larger changes in
deformation gradients.

Multiple domains. The basic deformable distance field
scheme can suffer from spurious contact regions when two
nearby parts deform away from each other: “mirror”
images of one part appear in estimates d; under proxies
on the other part (see Fig. 10b). Similar “ghosting” has also
been reported with feature-based 2D image morphing
techniques [43], where a morph between two images is
computed from a collection of transformations of pairs of
line segments. These artifacts can be reduced by dividing
the distance field object into several domains, precomput-
ing a separate distance field for each domain, performing
the single-domain scheme with respect to each domain,
and taking the minimum (see Fig. 10c). Mirroring essen-
tially introduces “extra” geometry, which typically pushes
the isocontours of the approximate field further out than
the true isocontours, leading to conservative distance
estimates. While we cannot guarantee conservative distance
estimates, we did not encounter problems with our
examples. Although more costly, deformable distance field
accuracy might be improved under compression deforma-
tions by pushing forward material-space closest-point
information [44].

5 HaPTIC DISPLAY OF DISTRIBUTED CONTACT

Until now, we have abstracted 6-DoF haptic rendering as
simply a matter of computing contact forces and torques at
high rates. However, penalty forces and torques cannot
simply be sent to the haptic device: each point in contact
adds to the overall stiffness of the system and if enough
points are added, maximum renderable stiffness of the
haptic device is easily exceeded. Instead, it is customary to
separate the simulation position and orientation of the
haptic object from the position and orientation imposed by
the haptic manipulandum, and connect the two with a
generalized spring (virtual coupling [45]). This penalty
spring of stiffness kyc tries to align the simulation position
and orientation of the haptic object to the manipulandum.
We adopt static virtual coupling of [2] since it needs a
relatively small number of parameters (unlike [1]) and
does not need device velocity estimates. We extend static
coupling by introducing quasi-static damping. We also

48

IEEE TRANSACTIONS ON HAPTICS, VOL.1, NO.1, JANUARY-JUNE 2008

TABLE 1
Model Statistics for Representative Contact Configurations

Contact case; Contact Pointshell Dist. field | Traversed nodes | Points in | LOD Timings [ps]

pointshell+distance field depicted in | Tevels [points | resolution | with TC | TC off | contact VC[StVK [TT Jtotal [TL
knight(r) + axe(r) Figure 12 6 1.02 M 256 2050 3400 820 6 90 0 780 | 870 | 80,000
bridge(d) + dinosaur(r) Figure 2 4 85K 256 1989 5200 426 4 90 45 710 | 845 | 12,200
CAD scene 1(d) + metal part(r) | Figure 3 4 80K 128 530 1520 50 4 90 45 125 [260 | 6,600
dragon(d) + Buddha(r) Figure 4 5 256K 256 1750 2900 650 5 90 45] 615 | 750 | 29,800
dragon(r) + dragon hole(r) Figure 16 5 256K 256 1701 2642 843 2 90 0 722 | 812 | 45,000
CAD scene 2(d) + hose(d) Figure 13 5 256K 256 537 1720 40 5 90 190 | 507 | 787 | 210,000
dragon(d) + dinosaur(d) Figure 13 5 256K 256 245 1390 24 3 90 90 531 | 711 | 590,000

Timings generated on an Intel Core 2 Duo 2.66-GHz processor with 2-Gbyte RAM. All deformable models use r = 15 deformation modes, except

CAD scene 2 + hose (r = 20 for both models). LEGEND: r = rigid, d =

deformable, VC = virtual coupling and manipulandum transformations,

StVK = deformable FEM dynamics, TT = tree traversal, TC = temporal coherence, LOD = level of detail rendered (in the particular configuration),

TL = time under a tree-less pointshell traversal.

include large rotation terms in the static equilibrium
equations (details in [34]).

In every haptic cycle, we first read the position and
orientation of the haptic device manipulandum. We then
compute contact penalty forces and torques (by traversing
the nested point-tree), virtual coupling forces and torques,
and their gradients with respect to the simulation position and
orientation of the haptic object (see Fig. 4). The net force and
torque on the simulation object, under a (small) incremental
displacement Az and (small) incremental rotation Aw € IR?,
are then

B 0Fye OFc O0Fyc OF¢
Foew = Fve - Fot (W " a—m> A (aT " m) A,
(5)
. aT\/C 8TC aTVC aTC
Thet = Tve +Tc + < o +E>Al‘+ (R +8_w)Aw’
(6)

where Fyc, Tyc denote current virtual coupling force and
torque [2], and Fg, T denote the sum of all contact forces
and torques. We displace the virtual object such that the
net force and torque on the object vanish under this first-
order model, by solving the nonsymmetric 6 x 6 linear
system of (5) and (6) for (Az, Aw) using LU decomposition
(fast, ~5 us per solve). Finally, we compute the virtual
coupling force and torque with respect to the new
simulation position and render them to the user. Virtual
coupling gradients are determined through analytical
differentiation of the virtual coupling forces and torques.
Gradients of contact forces and torques are computed by
treating each contact point as undergoing contact with an
infinite halfspace (wall), oriented according to the contact
normal (details in [34]).

In our deformable distance field simulations, there are
three haptic object configurations at any moment of time:
the manipulandum position and orientation, the rigid
simulation position and orientation (dark gray (blue) in
Fig. 13), and the complete simulation configuration where
the haptic object’s deformations are added to the rigid
simulation position and orientation. The virtual coupling
forces and torques are computed with respect to the
manipulandum and rigid simulation positions and orienta-
tions. Rigid body motion of the deformable haptic object is
set to the static equilibrium between virtual coupling forces
and the defo-defo contact forces determined during the tree

traversal, in the same way as with rigid haptic objects. The
deformation of the haptic object’s distance field is held
fixed during the tree traversal. One time step of haptic
object’s deformations is performed at the end of each haptic
cycle, using the defo-defo contact forces as external forces.
Note that our haptic object deformations are decoupled
from rigid body motion; this approximation is very
common in computer graphics for its simplicity and
plausible results [5].

A simple calculation shows that the maximum stiffness felt
by the user if ¢ points are in contactis 1/(1/(¢ - kc) + 1/kvc);
therefore, kyc presents an upper bound on the stiffness ever
rendered to the haptic device, regardless of ¢. Since time is
sampled discretely, simulation stability is improved if k¢ is
scaled down when there are multiple points in contact; as in
VPS, we replace k¢ with kcL/¢ whenever ¢ > L (we use
L =10). The displacement-force relationship of virtual
coupling is designed to be linear only up to a certain
displacement, after which it saturates to some maximum
force value (cf. virtual proxy [46], [47]).

Quasi-static damping. The lack of dissipation in the static
virtual coupling model can lead to slight instabilities, such
as during fast sliding contact. We augmented the static
virtual coupling model by introducing a quasi-static
damping, or a damped state update: after Az, Aw are
computed, we only change the simulation position and
rotation by (1 — a)Az, (1 — a)Aw, where a € [0,1) controls
the amount of static damping. Such damping exponentially
restores the simulation position to the manipulandum
position, similar to critical damping in mass-spring-damper
dynamic virtual coupling models [1]. We set v = 0.5 in all
our simulations; high values of « are avoided since they
introduce a surface stickiness effect.

6 RESULTS

Statistics on all haptic rendering examples are provided
in Table 1. Haptic demos (executables for Sensable’s
Phantom Premium 6-DoF, 3-DoF, and Omni devices) are
freely available at http://graphics.cs.cmu.edu/projects/
defoContact/demo/index.html.

In our first 6-DoF haptic rendering example, we simulate
a detailed deformable bridge in contact with a detailed
rigid dinosaur (see Fig. 2). We recorded a characteristic
manipulandum trajectory and report simulation data under
this trajectory computed offline under different force

BARBIC AND JAMES: SIX-DOF HAPTIC RENDERING OF CONTACT BETWEEN GEOMETRICALLY COMPLEX REDUCED DEFORMABLE... 49

Force magnitude [N]

1 L

Torque magnitude [milliNewton * m]

o

0 TAGNAN L e, V. vl
0 5000 10000 15000 20000

Fig. 11. lllustration of graceful degradation (GD). Simulation data for a
prerecorded manipulandum trajectory is rendered in two ways: using
GD (in gray with triangles (red)) with warm threshold at 600 nodes;
without GD (in black) with all four tree levels. The pointshell has 85,018
points total. The common z-axis corresponds to haptic frames. This
data was recorded on a 3-year-old 3.0-GHz dual Intel Xeon processor
with 2.75 Gbytes of memory, illustrating algorithm’s adaptivity to
different computer speeds. On the (faster) machine of Table 1, the
black timing curve reaches a maximum of ~800 us.

approximations (see Fig. 11). We also present a detailed
deformable dragon in contact with a rigid Buddha mesh.
Fig. 12 gives a haptic gaming example demonstrating that
pointshells with a million points can be simulated when our
method is used for rigid simulations only. We demonstrate
“defo-defo” contact by simulating a deformable dragon in
contact with a deformable dinosaur, and a deformable
mechanical structure in contact with a deformable hose
(Fig. 13). Fig. 14 shows that our method can render detailed
features such as the bumps on the back of the dinosaur.
Fig. 16 demonstrates the benefits of graceful degradation to
simulate very large contact areas. Interactive (dis)assembly
and path planning are illustrated in Fig. 3 by example
where the user can manipulate a metallic rigid component
in contact with deformable hose geometry typical of
modern airplanes. Large hose deformations allow the
operator to interactively navigate the component in
between the hoses.

7 CONCLUSION

We have demonstrated that real-time time-critical haptic
rendering of distributed contact between geometrically
complex models is possible for both rigid and reduced
deformable models. A key ingredient has been the exploita-
tion of low-dimensional parameterizations of deformable
models for fast dynamics, point-based deformation bounds,

Fig. 12. Interactive haptic gaming is an emerging application area. In this
example, the user can swing a detailed rigid axe to “interact” with an
armored rigid knight. This example demonstrates crisp contact with
detailed million-point pointshells possible when our method is used for
rigid-only simulations. The pointshell is resolved at the deepest level
when poking the knight with the blade of the axe. Our graceful
degradation algorithm reduces the LOD to maintain haptic update rates
if the axe is positioned in flat contact against the knight.

and output-sensitive evaluation of pointshell points and
contact normals.

Discussion. Our deformations are reduced and not fully
general; in the future, fully general complex FEM deform-
able objects might run at haptic rates on commodity
workstations, but this is not the case today. Our deformable
model is adaptive: more basis vectors can be added to the
basis as processor speeds will increase. While our current
demonstrations run on standard Windows or Linux plat-
forms, simulation on operating systems and parallel
architectures that can guarantee hard real-time scheduling

deformed

(a)

contact
site

(b)

Fig. 13. Deformable versus deformable contact. (a) A deformable
dinosaur (haptic object; deformable distance field; five domains;
k=75) in contact with a deformable dragon (rooted to ground;
deformable pointshell). (b) A deformed hose (haptic object; deform-
able distance field; one domain; k= 5) in contact (at three separate
locations, indicated by arrows) with a deformed mechanical structure
(rooted to ground; deformable pointshell). Dark gray (blue) =
deformable distance field object rigid configuration; black = pointshell
object rigid configuration.

50

force magnitude [N]
©

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

haptic frames
(b)

Fig. 14. Our method can render small features. (a) Resolution in our
method is high enough for the user to feel the bumps on the back of the
rigid dinosaur (distance field object, 256 x 256 x 256), by sliding the
back of the dinosaur against the upper shelf of the bridge (pointshell
object). The arrows indicate the direction of the dinosaur’s sliding. Both
objects are rigid in this experiment. Bridge pointshell has five levels of
detail with 256,000 points. (b) The force magnitude rendered to the user,
under progressively finer pointshells and a prerecorded manipulandum
trajectory. Sampling rate is 1,000 frames per second. The user caused
six bumps total to touch the bridge (one after another, in tangential
motion, while simultaneously also pushing the dinosaur in a normal
direction against the bridge). The impact of each individual bump can be
clearly seen in the haptic signal and felt in the haptic simulation.

is a natural area of exploration. The simulation can be
simplified if the signed distance field is replaced by a
simpler implicit function with an analytical formula. Our
offset surfaces are not reaching down to the exact geometry
in case of “polygon soup” input geometry, when the contact
surface is not well defined. Quality of the offset surface
degrades under offsets too small compared to distance field
resolution. Large deformations can potentially introduce
undersampled pointshell surface regions; however, this was
not problematic in our case of deformations mostly
consisting of large rotations and small strain.

Distance fields can be memory consuming; for example,
a 256 x 256 x 256 32-bit floating point distance field
occupies about 64 Mbytes of memory. This was not a
limiting factor in our implementations where the manipu-
lated object carries a distance field. In virtual assembly
simulations, the manipulated object is often the tool; greater
accuracy is typically needed to represent the virtual
environment (pointshell object in our case). While we did
not pursue out-of-core approaches that would enable one,
say, to render the interior of an entire airplane, we believe
our nested point hierarchy would be very effective in
quickly ruling much of the airplane out of collision. The
point hierarchy could be preceded with a few coarse
standard hierarchy levels to cover major individual airplane
parts before diving into the individual point hierarchies. To
reduce distance-field memory, a hybrid data structure
would be possible, using a wide-bit voxmap in free space
and a distance field accessed via a hash table in the shallow
contact force layer surrounding the object. Distance field
could also be sampled adaptively [48].

Our rendered level of detail is selected globally for the
entire object. In some situations, it might be advantageous to
be able to select LODs locally, for example, if the haptic
object touches a large flat panel on one side, and a thin wire
on the other side. Such an algorithm would need to

IEEE TRANSACTIONS ON HAPTICS, VOL.1, NO.1, JANUARY-JUNE 2008

<— fixed
dragon

NG

contact
force (x) [N]

hhbbbo
I3
/
i

o
N
1=}
15y

sample

T = index =900
rection
— of motion

n L L n =)
1000 1200 1400 1600 1800

contact
force (y) [N]
v Ao N
f
[i
/i
|
|
|
I
|
|
|
|
|
I
|
|
I
I

800

o
N
1=
15y

SN WA g

contact
force (z) [N]

o

cood50

800 1000 1200 1400 1600 1800

o

force magnitudes [N]
o

200 400 00
sample

index =1800

o
o

difference of contact

05 Mwmmwwwmmwwmmwwﬂw
-
0 200 400 00 800 1000 1200 1400 1600 1800
8000
6000 _k_zé;gyﬁ,g;y/

num points
in contact
S
S
3
3

sample
index = 900

1000 1200 1400 1600 1800

d.f. voxel size]

TS ——

L n L L n L T
400 600 800 1000 1200 1400 1600 1800
sample index along the pre-recorded trajectory

200

minimum distance
value across all points

[1 unit
o

sample
index =1800

o

10,

ot
o
3
=

o
o

o
o
=

contact force (x) [N]
contact force (y) [N]
contact force (z) [N]

-2 Q [9)
300 400 500 600 300 300

sample index

700 400 500 600

sample index

700 400 500 600

sample index

700

Fig. 15. Asymmetric contact model. The contact force changes
under role reversal; however, the difference is reasonably small. The
first contact case (rigid dragon (on the right, green) = pointshell,
rigid dragon (on the left, brown) = signed distance field) is depicted
with a solid line, the reverse case (rigid dragon (on the right, green)
= signed distance field, rigid dragon (on the left, brown) = pointshell)
is shown as a dashed line. Both lines show the contact force
(without virtual coupling) on the moving dragon on the right (green).
The top-right images show the configurations at samples 900 and
1,800, respectively. The bottom-right images depict points in contact
(light gray (red) = in contact, dark gray (blue) = traversed by tree,
but not in contact). Note that the z-axis is aligned with the direction
of motion and is (about) normal to the contact areas; z-force is,
therefore, the normal contact force and is as such substantially
larger than tangential forces. Penetration depths are large in this
experiment; in our simulations, virtual coupling saturation would
prevent penetrations deeper than about one voxel. The vertical line
denotes the sample index where penetration reaches one voxel. The
bottom image shows the shallow penetration part of the top image in
greater detail. Contact force differences can be seen to be small.

minimize the number of LOD transitions and could employ
a perception error metric [6] to balance accuracy against
performance. Although our implementation is not highly
optimized, we did implement some time-critical routines in
assembly (SSE2 multimedia instructions) and carefully laid
out data in memory to optimize cache performance,
resulting in a system speedup of about 2x. Perceptual
studies may be useful in determining speed-accuracy trade-
offs, such as maximum necessary contact resolution or
perception of deformation complexity, similar to other
studies done in rigid-rigid contact rendering [25]. Another
interesting area of future work is simulating friction, which
can play an important role in applications such as analysis
of mechanical part removability and accessibility. With

BARBIC AND JAMES: SIX-DOF HAPTIC RENDERING OF CONTACT BETWEEN GEOMETRICALLY COMPLEX REDUCED DEFORMABLE... 51

10000
100 L 1 L I L L I
Tree nodes traversed (log scale)
10000 : :
100 : : : : :
Num nodes in contact (log scale)
10000 : — - — ; ~e— /T
100 I L L
0 2000 4000 6000

Fig. 16. Graceful degradation supports large conforming contacts to
allow time-critical approximation of very difficult contact configurations
(here, under 1 ms). (a) A dragon “peg” inserting into a matching dragon
“hole” obtained via CSG difference. (b) Dragon manipulated haptically
into the hole. (c) Large contact area with traversed points in dark gray
(blue) (43 percent of all L2 points) and contacting points in light gray (red)
(21 percent of all L2 points). (d) Simulation data for a prerecorded
manipulandum trajectory is rendered in two ways: using GD (in light gray
with triangles (red)) with warm threshold at 2,000 nodes; without GD (in
black) with all five tree levels. Same machine as in Table 1. The common
z-axis corresponds to haptic frames.

reduced nonlinear FEM models, some applications may be
limited by the fact that modification or cutting of the models
is prohibited by the preprocessing employed for perfor-
mance. Although unaddressed in our implementation, large
deformations can necessitate self-collision processing, and
this remains a significant computational challenge for hard
real-time haptic rendering applications (cf. [49]).

ACKNOWLEDGMENTS
This research was sponsored by the Boeing Company, the US
National Science Foundation (CAREER-0430528), the Link
Foundation, Pixar, Nvidia, Intel, and donation of Maya
licenses from Autodesk.

REFERENCES

(1]

(2]

B3]
(4

(5]

(o]

(71

8]
[l

(10]

(1]

(2]

(13]

[14]

[15]

[10]

(171

(18]

(19]

[20]

[21]

(22]

(23]

[24]

W.A. McNeely, K.D. Puterbaugh, and].J. Troy, “Six Degree-of-
Freedom Haptic Rendering Using Voxel Sampling,” Proc. ACM
SIGGRAPH "99, pp. 401-408, 1999.

M. Wan and W.A. McNeely, “Quasi-Static Approximation for
6 Degrees-of-Freedom Haptic Rendering,” Proc. 14th IEEE
Visualization Conf. (VIS '03), pp. 257-262, 2003.

W. McNeely, K. Puterbaugh, and]. Troy, “Voxel-Based 6-DoF
Haptic Rendering Improvements,” Haptics-e, vol. 3, no. 7, 2006.
J. Barbi¢c and D.L. James, “Real-Time Subspace Integration for
St. Venant-Kirchhoff Deformable Models,” ACM Trans. Graphics,
vol. 24, no. 3, Aug. 2005.

D.L. James and D.K. Pai, “BD-Tree: Output-Sensitive Collision
Detection for Reduced Deformable Models,” ACM Trans. Graphics,
vol. 23, no. 3, pp. 393-398, 2004.

M.A. Otaduy and M.C. Lin, “A Modular Haptic Rendering
Algorithm for Stable and Transparent 6-DoF Manipulation,” IEEE
Trans. Robotics, vol. 22, no. 4, pp. 751-762, 2006.

M.A. Otaduy and M. Gross, “Transparent Rendering of Tool
Contact with Compliant Environments,” Proc. World Haptics Conf.
(WHC ’07), pp. 225-230, 2007.

S. Laycock and A. Day, “A Survey of Haptic Rendering
Techniques,” Computer Graphics Forum, vol. 26, pp. 50-65, 2007.
U. Kithnapfel, H. Cakmak, and H. Maa83, “Endoscopic Surgery
Training Using Virtual Reality and Deformable Tissue Simula-
tion,” Computers and Graphics, vol. 24, pp. 671-682, 2000.

O. Astley and V. Hayward, “Multirate Haptic Simulation
Achieved by Coupling Finite Element Meshes through Norton
Equivalents,” Proc. IEEE Int’l Conf. Robotics and Automation (ICRA),
1998.

G. Debunne, M. Desbrun, M.-P. Cani, and A.H. Barr, “Dynamic
Real-Time Deformations Using Space and Time Adaptive Sam-
pling,” Proc. ACM SIGGRAPH '01, pp. 31-36, Aug. 2001.

C. Mendoza and C. O’Sullivan, “Interruptible Collision Detection
for Deformable Objects,” Computer and Graphics, vol. 30, no. 2,
2006.

M. Bro-Nielsen and S. Cotin, “Real-Time Volumetric Deform-
able Models for Surgery Simulation Using Finite Elements
and Condensation,” Computer Graphics Forum, vol. 15, no. 3,
pp. 57-66, 1996.

S. Cotin, H. Delingette, and N. Ayache, “Realtime Elastic
Deformations of Soft Tissues for Surgery Simulation,” IEEE Trans.
Visualization and Computer Graphics, vol. 5, no. 1, pp. 62-73, 1999.
D.L. James and D.K. Pai, “A Unified Treatment of Elastostatic
Contact Simulation for Real Time Haptics,” Haptics-e, vol. 2, no. 1,
Sept. 2001.

D.L. James and D.K. Pai, “Multiresolution Green’s Function
Methods for Interactive Simulation of Large-Scale Elastostatic
Objects,” ACM Trans. Graphics, vol. 22, no. 1, pp. 47-82, 2003.

S. Jun, J. Choi, and M. Cho, “Physics-Based S-Adaptive Haptic
Simulation for Deformable Object,” Proc. Int’l Symp. Haptic
Interfaces for Virtual Environment and Teleoperator Systems
(HAPTICS ’06), pp. 72-78, 2006.

M. Renz, C. Preusche, M. Potke, H.-P. Kriegel, and G. Hirzinger,
“Stable Haptic Interaction with Virtual Environments Using an
Adapted Voxmap-Pointshell Algorithm,” Proc. Eurohaptics 01,
pp. 149-154, 2001.

S. Rusinkiewicz and M. Levoy, “Qsplat: A Multiresolution
Point Rendering System for Large Meshes,” Proc. ACM
SIGGRAPH '00, pp. 343-352, July 2000.

R. Keiser, M. Miiller, B. Heidelberger, M. Teschner, and M. Gross,
“Contact Handling for Deformable Point-Based Objects,” Proc.
Vision, Modeling, Visualization (VMV '04), pp. 339-346, 2004.

M. Pauly, D.K. Pai, and L. Guibas, “Quasi-Rigid Objects in
Contact,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer
Animation (SCA), 2004.

P.M. Hubbard, “Collision Detection for Interactive Graphics
Applications,” PhD dissertation, Dept. of Computer Science,
Brown Univ., 1995.

Y.J. Kim, M.A. Otaduy, M.C. Lin, and D. Manocha, “Six Degree-
of-Freedom Haptic Display Using Incremental and Localized
Computations,” Presence-Teleoperators and Virtual Environments,
vol. 12, no. 3, pp. 277-295, 2003.

M. Ortega, S. Redon, and S. Coquillart, “A Six Degree-of-Freedom
God-Object Method for Haptic Display of Rigid Bodies with
Surface Properties,” IEEE Trans. Visualization and Computer
Graphics, vol. 13, no. 3, pp. 458-469, May/June 2007.

52

(25]

[20]

(271

(28]

[29]

(30]

(31]

(32]

[33]

(34]

(35]

[30]

[37]

(38]

[39]

[40]

[41]

(42]

[43]

[44]

[45]

[40]

[47]

(48]

M.A. Otaduy and M.C. Lin, “Sensation Preserving Simplification
for Haptic Rendering,” Proc. ACM SIGGRAPH 03, pp. 543-553,
2003.

C. Duriez, F. Dubois, A. Kheddar, and C. Andriot, “Realistic
Haptic Rendering of Interacting Deformable Objects in Virtual
Environments,” IEEE Trans. Visualization and Computer Graphics,
vol. 12, no. 1, pp. 36-47, Jan./Feb. 2006.

N. Galoppo, S. Tekin, M.A. Otaduy, M. Gross, and M.C. Lin,
“Haptic Rendering of High-Resolution Deformable Objects,” Proc.
12th Int’l Conf. Human-Computer Interaction (HCI), 2007.

J. Barbi¢ and D.L. James, “Time-Critical Distributed Contact for
6-DoF Haptic Rendering of Adaptively Sampled Reduced
Deformable Models,” Proc. ACM SIGGRAPH/Eurographics Symp.
Computer Animation (SCA '07), pp. 171-180, July 2007.

T. Lewiner, H. Lopes, AW. Vieira, and G. Tavares, “Efficient
Implementation of Marching Cubes’ Cases with Topological
Guarantees,” J. Graphics Tools, vol. 8, no. 2, pp. 1-15, 2003.

C. Shen, J.F. O'Brien, and J.R. Shewchuk, “Interpolating and
Approximating Implicit Surfaces from Polygon Soup,” Proc. ACM
SIGGRAPH '04, pp. 896-904, Aug. 2004.

G. Turk, “Re-Tiling Polygonal Surfaces,” Computer Graphics,
vol. 26, no. 2, pp. 55-64, 1992.

A.P. Witkin and P.S. Heckbert, “Using Particles to Sample and
Control Implicit Surfaces,” Proc. ACM SIGGRAPH "94, pp. 269-278,
July 1994.

G. Turk, “Texture Synthesis on Surfaces,” Proc. ACM
SIGGRAPH 01, pp. 347-354, Aug. 2001.

J. Barbi¢, “Real-Time Reduced Nonlinear Deformable Objects for
Computer Graphics and Haptics,” PhD dissertation, Computer
Science Dept., Carnegie Mellon Univ., Aug. 2007.

G. Hirota, S. Fisher, A. State, C. Lee, and H. Fuchs, “An Implicit
Finite Element Method for Elastic Solids in Contact,” Proc. 14th
IEEE Conf. Computer Animation (CA), 2001.

A. Sud, N. Govindaraju, R. Gayle, and D. Manocha, “Interactive
3D Distance Field Computation Using Linear Factorization,” Proc.
ACM Symp. Interactive 3D Graphics and Games (13D), 2006.

A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha, “Fast
Proximity Computation among Deformable Models Using Dis-
crete Voronoi Diagrams,” Proc. ACM SIGGRAPH, 2006.

S. Fisher and M.C. Lin, “Fast Penetration Depth Estimation for
Elastic Bodies Using Deformed Distance Fields,” Proc. IEEE/RS]
Int’l Conf. Intelligent Robots and Systems (IROS '01), pp. 330-336,
2001.

C. Sigg, R. Peikert, and M. Gross, “Signed Distance Transform
Using Graphics Hardware,” Proc. 14th IEEE Visualization Conf.
(VIS "03), pp. 83-90, 2003.

M. Jones, J. Berentzen, and M. Sramek, “3D Distance Fields: A
Survey of Techniques and Applications,” IEEE Trans. Visualization
and Computer Graphics, vol. 12, no. 4, pp. 581-599, July/ Aug. 2006.
D. Marchal, F. Aubert, and C. Chaillou, “Collision between
Deformable Objects Using Fast-Marching on Tetrahedral Models,”
Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation
(SCA "04), Aug. 2004.

C. Buehler, M. Bosse, L. McMillan, S.J. Gortler, and M.F. Cohen,
“Unstructured Lumigraph Rendering,” Proc. ACM SIGGRAPH 01,
ser. Computer Graphics Proc., Ann. Conf. Series, pp. 425-432,
Aug. 2001.

T. Beier and S. Neely, “Feature-Based Image Metamorphosis,”
Computer Graphics, Proc. ACM SIGGRAPH 92, vol. 26, no. 2,
pp. 35-42, July 1992.

J. Teran, E. Sifakis, G. Irving, and R. Fedkiw, “Robust Quasistatic
Finite Elements and Flesh Simulation,” Proc. ACM SIGGRAPH/
Eurographics Symp. Computer Animation (SCA '05), pp. 181-190,
July 2005.

J. Colgate, P. Grafing, M. Stanley, and G. Schenkel, “Implementa-
tion of Stiff Virtual Walls in Force-Reflecting Interfaces,” Proc.
IEEE Virtual Reality Ann. Int’l Symp. (VRAIS "93), pp. 202-208, 1993.
C. Zilles and]. Salisbury, “A Constraint-Based God-Object
Method for Haptics Display,” Proc. IEEE/RS] Int’l Conf. Intelligent
Robots and Systems (IROS '95), pp. 146-151, 1995.

D.C. Ruspini, K. Kolarov, and O. Khatib, “The Haptic Display of
Complex Graphical Environments,” Proc. ACM SIGGRAPH ’97,
T. Whitted, ed., pp. 345-352, Aug. 1997.

S. Frisken, R. Perry, A. Rockwood, and T. Jones, “Adaptively
Sampled Distance Fields: A General Representation of Shape for
Computer Graphics,” Proc. ACM SIGGRAPH 00, pp. 249-254,
2000.

IEEE TRANSACTIONS ON HAPTICS, VOL.1, NO.1, JANUARY-JUNE 2008

[49] N.K.Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf, R. Gayle,
M.C. Lin, and D. Manocha, “Interactive Collision Detection
between Deformable Models Using Chromatic Decomposition,”
ACM Trans. Graphics, vol. 24, no. 3, pp. 991-999, Aug. 2005.

Jernej Barbic received the PhD degree from
Carnegie Mellon University, in 2007. He is
currently a postdoc in the MIT Computer Science
and Artificial Intelligence Laboratory, The Stata
Center, Cambridge, Massachusetts. His re-
search interests include real-time simulation,
FEM deformable objects, haptic rendering of
contact for geometrically rich scenarios, sound
simulation, and model reduction and control of
nonlinear systems. He is a member of the IEEE.

Doug L. James received the PhD degree from
the University of British Columbia. Since 2006,
he has been a professor of computer science
in the Department of Computer Science,
Cornell University, Ithaca, New York. Prior to
that, he was a professor of computer science
and robotics at Carnegie Mellon University
(2002-2006). His research interests include
computer graphics, physically-based animation,
computational geometry, scientific computing,
dimensional model reduction, computational robotics, and haptic
force-feedback rendering. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

