
IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. YY, MONTH YEAR 1

Six-DoF haptic rendering of contact between
geometrically complex reduced deformable models

Jernej Barbič, Member, IEEE, Doug L. James, Member, IEEE

Abstract— Real-time evaluation of distributed contact forces
between rigid or deformable 3D objects is a key ingredient
of 6-DoF force-feedback rendering. Unfortunately, at very high
temporal rates, there is often insufficient time to resolve contact
between geometrically complex objects.

We propose a spatially and temporally adaptive approach
to approximate distributed contact forces under hard real-time
constraints. Our method is CPU based, and supports contact
between rigid or reduced deformable models with complex
geometry. We propose a contact model that uses a point-based
representation for one object, and a signed-distance field for the
other. This model is related to the Voxmap Pointshell Method
(VPS), but gives continuous contact forces and torques, enabling
stable rendering of stiff penalty-based distributed contacts. We
demonstrate that stable haptic interactions can be achieved by
point-sampling offset surfaces to input “polygon soup” geometry
using particle repulsion. We introduce a multi-resolution nested
pointshell construction which permits level-of-detail contact
forces, and enables graceful degradation of contact in close-
proximity scenarios. Parametrically deformed distance fields are
proposed for contact between reduced deformable objects.

We present several examples of 6-DoF haptic rendering of ge-
ometrically complex rigid and deformable objects in distributed
contact at real-time kilohertz rates.

Index Terms— haptics, 6-DoF, distributed contact, deforma-
tions, distance fields, VPS

I. INTRODUCTION

THIS paper presents an efficient hard-real-time CPU-based
algorithm for 6-DoF haptic rendering of contact between two

geometrically complex 3D objects (see Figure 1), each of which
can undergo deformations. Our time-critical algorithm resolves
distributed contact forces between two 3D objects, i.e., contacts
with potentially several simultaneous contact sites each distributed
over a non-zero surface area (also called multi-point or multi-
site contact; see Figure 2). Distributed contact is essential to
6-DoF haptic rendering and is challenging to simulate due to
the competing demands of high temporal rates for contact force
evaluation, e.g., 1 kHz in our examples, and the computational
burden introduced by geometrically complex rigid and (more
notoriously) deformable objects. Deformable object simulators
can not timestep complex simulation meshes at haptic rates. We
drive deformations of our geometrically complex meshes with
low-degree-of-freedom deformable models, and demonstrate how
such deformable model simplification (reduction) can be exploited
by our contact processing algorithm to enable haptic update rates.

Our approach is most closely related to the Voxmap-PointShell
method (VPS, [1]–[3]), an industrial 6-DoF haptic rendering

J. Barbič is with the Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology, Boston, MA, 02139, USA, e-mail:
barbic@mit.edu

D. L. James is with the Department of Computer Science, Cornell Univer-
sity, Ithaca, NY, 14853, USA, e-mail: djames@cs.cornell.edu

Manuscript received Feb 22, 2008; revised May 22, 2008.

Fig. 1. Six-DoF haptic rendering with complex deformable geometry:
the user is manipulating a rigid Buddha (distance field object) against the
deformable dragon (pointshell object). The simulation computes deformations,
detects collision and computes contact forces and torques in one loop running
at 1000 frames per second.

Fig. 2. Distributed deformable contact: (Top Left) contact configuration
between a nonlinear reduced deformable bridge (15 reduced deformable DoFs)
and a rigid dinosaur, with 12 separate contact sites; (Other images) contact
sites viewed from three different camera angles. A total of 5200 points (in
blue) were traversed, resulting in 426 points (in red) in contact. Note: temporal
coherence was disabled for this figure.

algorithm capable of simulating distributed geometrically detailed



IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. YY, MONTH YEAR 2

contact between a rigid environment and a rigid point-sampled
object (pointshell). The pointshell is a collection of points (with
normals) positioned near-regularly at the surface of the object.
The VPS environment is modeled as a voxmap datastructure: a
voxelization of the polygonal environment geometry where each
voxel contains a fixed-width value, such as 2-bit values (interior,
surface, next to surface, free space) in the original VPS, or more
bits in recent VPS extensions [3]. In every VPS haptic cycle,
pointshell points are queried against the voxmap to determine
contact.

Unfortunately, objects modeled by VPS are entirely rigid,
and for good reason: geometrically complex deformable ob-
jects are computationally expensive since (a) deformable object
simulations can not easily achieve haptic rates (1000 Hz) for
geometrically interesting models, and (b) deformable collision
detection is expensive especially for close-proximity scenarios
typical of contact. These fundamental difficulties have seriously
hampered the progress of a variety of emerging haptic rendering
applications, such as haptic gaming. One other application of
haptic rendering is virtual prototyping: haptics can allow airplane
designers to check if a certain mechanical part can be positioned
into (or removed from) designated locations, thereby avoiding
critical design flaws before manufacturing the structure, e.g., fire
detector removal from an aircraft engine assembly during routine
servicing [2]. Supporting deformable geometry is important since
airplanes include numerous deformable parts such as hoses, wires,
plastic parts, sheet metal, etc. Part-removal analysis using only
rigid simulations can lead to false reports that a part can not
be (dis)assembled when in reality it can. For example, wires and
hoses may be deformed to let an object through a narrow passage
(see Figure 3).

A. Overview

Our approach is designed to work with a variety of deformable
models that support a basic two-step simulation process: (1) a fast
timestep of deformable dynamics; (2) fast evaluation of individ-
ual deformed surface point positions and normals to adaptively
resolve contact. Suitable reduced models include classic linear
modal vibration models, reduced nonlinear models, low-resolution
deformable models with embedded geometry, multi-resolution
models, articulated rigid or flexible multibodies or skinned de-
formable models. We collectively refer to such models as reduced
deformable models. In our implementation we employ reduced
geometrically nonlinear FEM models [4]. These models run at
haptics rates, e.g., much less than one hundred microseconds per
timestep in our examples, and are suitable for large deformations
with large rotations but small local strain. We make extensive
use of the low-dimensional shape parameterization for time-
critical collision and force processing. Regardless of the particular
reduced deformation model used, our approach addresses stable
haptic display of distributed contact between two objects each
with non-trivial geometry.

As in VPS, one of our objects is modeled as a pointshell.
We explore the relationship between point-sampling and haptic
stability, and propose pointshells that near-uniformly sample a
smooth offset surface to the input triangle (“polygon soup”)
mesh. Instead of a VPS voxmap, we use a floating-point signed-
distance field to (a) make the contact force continuous (improving
stability), (b) support time-critical contact estimation, and (c)
exploit temporal coherence. At every haptic cycle, pointshell

Fig. 3. Real-time 6-DoF haptic rendering of rigid and deformable objects
in contact. The operator is navigating the green rigid part in between two
deformable hoses.

points are queried against the distance field to determine contact
and compute contact forces (see Figure 4). We support contact
between a rigid and a reduced deformable model using a rigid
distance field and a deformable pointshell. We introduce output-
sensitive signed-distance field oracles for deformable models to
support contact between two reduced deformable models. Our
approach scales with increasing geometric detail. To the best of
our knowledge, we are first to demonstrate haptic rendering of
deformable contact, with several simultaneous contact sites, on a
6-DoF haptic device, with force and torque stiffnesses at hardware
device limits, between such geometrically complex models.

Fig. 4. Point-contact model: (Left) Reduced-deformable pointshell with
inward normals; (Middle) the distance field; (Right) deformable contact and
contact forces.

To support haptic display of geometrically detailed models,
e.g., involving a million pointshell points, we propose organiz-
ing the pointshell into a nested multi-resolution hierarchy. The
hierarchy is constructed by fitting a desired number of points
(particles) onto an appropriately constructed smooth manifold
(offset) surface, using multi-resolution particle repulsion. Our
sampling is near-uniform which provides economic pointshells
and improves haptic stability. We use a precomputed sphere-
tree hierarchy to bound the pointshell points, with sphere centers
located at (non-leaf) pointshell points. For deformable models,
this gives a point-based modification of the Bounded Deformation
Tree (BD-Tree) [5]. Such a hierarchy permits large pointshells,
bigger than what could be examined point by point during one
haptic cycle: if a point on some coarse hierarchical level is



IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. YY, MONTH YEAR 3

sufficiently far from contact, none of the points in the subtree
can be in contact, and then those points need not be checked. In
contrast, if a large part of the pointshell is in contact or close
to contact, few subtrees will be culled and a large part of the
pointshell will need to be examined point by point. We address
this problem by providing graceful degradation of contact: if
there is not enough computation time to fully complete the tree
traversal, the algorithm still returns a reasonable answer, with ac-
curacy dependent on contact-configuration difficulty and available
processing power. Graceful degradation is achieved by traversing
the nested hierarchy in a breadth-first order, rendering deeper
and deeper tree levels until out of computation time. We use
two separate activation thresholds to avoid abrupt changes in the
rendered depth during consecutive haptic cycles. The simulation
also uses temporal coherence to time-sample the individual points
at rates depending on distance to contact (temporal adaptivity).

We compute both contact forces and torques, and haptically
render them using static virtual coupling [2]. We propose a quasi-
static damping scheme to improve the passivity of penalty-based
contacts. In haptics, higher update rates generally enable stable
rendering of stiffer forces and torques; but reaching such high
rates is challenging for models with detailed geometry. In our
system, the deformations, collision detection and contact force
computations run together in one loop at haptic rates (1000
Hz). We do not need to extrapolate from lower-rate signals. A
multi-rate simulation using the contact gradients of Section V
could exploit user’s limited sensing bandwidth to further increase
example complexity [6], [7].

The technical sections of this paper are organized as follows.
Section II gives our proposed contact model for computing contact
forces between a point and a distance field. It also explains
how we generate our pointshells and distance fields from input
“polygon soup” triangle meshes, and how points are organized
into a multi-resolution hierarchy. In Section III, we give our run-
time algorithm: we explain how we traverse the hierarchy at run-
time, how we exploit temporal coherence, and how we adjust
the rendered level of detail to support graceful degradation of
contact. In Section IV, we extend the algorithm to deformable
simulation; first, by making the pointshell deformable (§ IV-A),
next by adding deformations to the distance field (§ IV-B).

B. Related Work

Haptic rendering has received increasing attention over the
last decade [8], and significant challenges remain especially for
rendering deformable systems. Early methods were developed
for tissue simulations during virtual surgery [9], and mostly
used mass-spring deformable objects. Space-time adaptive and
multi-rate methods have been successful for real-time deformable
object simulation [10], [11], but time-critical distributed contact
algorithms have received less attention (c.f. [12]). A variety of
preprocessing techniques, such as precomputed Green’s functions,
exist for accelerating linear elastostatic models to support haptic
force-feedback rendering of point-like contact, or modest multi-
point contacts via low-rank updates [13]–[17]. Unfortunately,
most such haptic rendering papers assume interactions based on
pulling on (or constraining) certain vertices, not performing real-
time deformable-rigid object collision detection and distributed
contact force and torque computations with complex geometry.

As mentioned, the Voxmap-PointShell (VPS) method was intro-
duced by [1] to support rigid-rigid contact rendering. Pointshell

accuracy and virtual coupling stability were improved in [18].
In [2], they replaced the original VPS mass-spring-damper with
a quasi-static spring. The recent paper of [3] introduces wider
voxmaps (4-bit), which now have more room to store distance-
to-nearest-contact information for free-space voxels. Since the
haptic device is user controlled, there exists an upper bound on the
maximum possible velocity of a point shell point, and therefore
points located in a voxel sufficiently far from contact need not be
checked for several haptic cycles (temporal coherence). Also, the
pointshell is traversed on two levels: a coarse level shell is tested
against a coarse level voxmap, followed by finer tests if necessary.
The hierarchy only consists of two levels, the simulation is rigid,
and graceful degradation of contact was not addressed.

Our progressive interruptible point-based contact-sampling ap-
proach is analogous to the QSplat point-based rendering al-
gorithm [19] which represented the point cloud hierarchically
to enable level-of-detail control for graphical rendering. Our
oriented pointshell can be seen as a surfel point cloud. A single-
resolution contact algorithm for two deformable point-sampled
objects has been presented in [20], reaching interactive, but not
haptic rates. Hierarchical point-contact handling was explored
in [21], where they demonstrate near-interactive (a few frames per
second) contact of point-based quasi-rigid (quasi-static and linear)
deformable objects. In this paper, we present a hierarchical contact
rendering method designed for haptic rendering. We demonstrate
how to maintain upper bounds on the amount of computation
per haptic cycle, and how to minimize contact force artifacts
when run-time constraints force a transition to a different contact
resolution level.

Bounding volume hierarchies can be used for interruptible
collision detection for rigid [22] and embedded deformable mod-
els [12] by traversing the hierarchy in a breadth-first manner.
Time-critical contact can be approximated by applying contact
forces between contacting (sphere) primitives at the deepest level
traversed in a particular frame. Unfortunately, such approaches
can have trouble resolving close-proximity and conforming con-
tact configurations in high-rate scenarios (as in haptic rendering):
finer bounding volumes more closely approximate the object, and
as such the effective contact surface (and therefore forces) depend
on the level of detail rendered at any instant. In our work, the
points at different resolution levels progressively sample the same
well-defined contact surface, thereby making contact at different
levels of detail more consistent.

Six-DoF haptic rendering of complex rigid objects can be
achieved using a number of techniques, in addition to VPS, such
as multi-resolution collision detection on convex decompositions,
followed by a clustering of contacts [23]. A generalization of the
god-object method to rigid objects has been presented in [24],
producing rigid haptic simulations with tens of thousands of
triangles. Multi-resolution contact haptics has been demonstrated
for polygonal geometry by appropriately simplifying the objects
at different hierarchical levels, to preserve the user haptic sensa-
tion [6], [25]. The authors suggest that for contact sites of large
area, resolving the contact at a coarser resolution will not result in
significant sensation degradation; this has motivated our graceful
degradation algorithm. These approaches, however, do not directly
apply to point-sampled objects or deformable objects.

Linear complementary problem (LCP) solvers can be used to
solve the Signorini contact problem between a rigid object and
a linear deformable object [26], at haptic rates. LCP solvers are



IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. YY, MONTH YEAR 4

computationally demanding which limits the approach to models
of modest geometric complexity. Haptic interaction between two
objects with detailed surface deformations can be achieved using
geometry proxies combined with GPU image space techniques,
in a multi-rate simulation with collision detection running at
graphics rates [27]. Haptic results were demonstrated using a 3-
DoF device, with one large contact area between a rigid object
and the deformable surface of the other object.

A deformable pointshell haptic rendering example has been
demonstrated in [4]; however, one of the two contacting objects
(a small rigid ball) had trivial geometry. In this paper, both
contacting objects have non-trivial geometry, resulting in a much
more difficult collision detection problem; also the contact model
of analytical gradients (as used with the ball) gives discontinuities
if naively extended to non-trivial distance field geometry. We
published a conference version of our work in [28]. In this paper,
we extend the technique to handle deformable vs deformable
contact. We give convergence properties of our contact model.
We also present experimental results on rendering fine geometric
detail, and asymmetry of the contact model.

II. MULTI-RESOLUTION POINT-CONTACT MODEL

In this section, we describe our point-contact model; its com-
ponents were selected to enable stable haptic rendering of large
models at fast update rates. Our point-contact models for rigid-
rigid, rigid-deformable, or defo-defo contact are conceptually
identical: during every haptic cycle, the contact penalty forces
are determined by querying the points of the pointshell object
against the signed distance field of the other object (see Figure 4).
The user interactively manipulates one of the two objects (the
haptic object). In our implementation, the distance-field object is
manipulated; the distance field then translates and rotates with the
haptic object. The roles could be reversed. Both pointshell and
the distance field are computed in a pre-processing stage from
input (“polygon soup”) triangle meshes. Pointshell is fitted onto
a smooth manifold surface, using a multi-resolution construction
that permits incremental construction of contact forces at runtime.

A. Contact Forces

Negative distance field values (by convention) denote the
interior of the distance field object, and therefore points in contact.
Penalty forces are computed for points in contact. We choose the
direction of the force to equal the inward normal of the pointshell
point in contact (and as such the force acts to resolve contact).The
magnitude is determined from the amount of penetration. The
force is (see also Figure 4, Right):

F = −kC d N, (1)

where kC is the contact penalty force stiffness, d < 0 is the signed
distance field value, and N is the point’s inward normal in the
world coordinate system. The point world-coordinate position and
normal computation are discussed in later sections. Note that the
total force and torque can be computed easily using this model,
and the trilinearly interpolated distance field.

This particular contact model was selected because of its useful
approximation properties for haptics. Our motivation was to
improve the VPS contact model. VPS force directions are contin-
uous, but magnitudes can be discontinuous when crossing voxmap
voxel boundaries. It is then up to virtual coupling to remedy

Fig. 5. (Left) A low-quality pointshell; haptic signal will be chaotic;
(Middle) analytical contact limit (Equation 2); (Right) conservative extension
of the distance field outside of the distance field box.

these discontinuities; lower stiffness levels might be required to
preserve stability. In our first contact model attempt, we obtained
both force direction and magnitude from the distance field object,
by using distance field gradients. The gradient, however, is
discontinuous across voxel boundaries and across interior object
medial axes. The resulting force direction discontinuities gave
poor haptic signals. Therefore, we designed our contact model
to only use distances and not distance gradients. Our contact
forces are continuous functions of positions, orientations and
deformations of the two contacting objects, which permits stable
stiffer contacts. We found our contact model to provide more
stable haptic feedback than the VPS voxmap model, especially at
higher stiffness settings.

In our model, only the normal of one of the two contacting
objects (that of the pointshell object) determines force direction.
This is both an approximation used for speed, and robustness;
also note that for smooth surfaces in non-penetrating contact,
the normals of the two opposing surfaces at the contact point
are colinear. Our contact forces are temporally coherent in that
contact sites (points in contact) vary smoothly from one haptic
cycle to the next, improving stability. The contact force can start
decreasing (but does not invert) under large penetrations, e.g.,
when crossing a medial axis of the distance field object. However,
this issue is remedied by keeping the contacts shallow (using
virtual coupling saturation, and schemes that limit haptic object
velocities, see Section V). Our contact model is asymmetric:
different contact forces will be obtained if the roles of the
pointshell and distance field object are reversed. However, due
to shallow penetrations, the two contact forces are very similar
(see Figure 15 in the Results section).

B. Pointshells sampling closed manifold surfaces

We found that the haptic signal quality greatly depends on
the quality of the pointshell; a good pointshell can mean the
difference between a very stable signal and a very chaotic signal
(see Figure 5, Left). At first, we considered pointshells sampling
“polygon soup” geometry directly, but stable haptic rendering
can not be guaranteed due to unpredictable normals and the
non-closed and non-oriented nature of the surface sampling.
Consequently, we designed our pointshells to sample a closed
manifold oriented surface. When combined with virtual coupling
saturation (§ V), this restricts the distance field object to outside
of the pointshell object (or at most a shallow penetration), where
the pointshell normals point in the direction that resolves contact.
It is critical that pointshells resolve surfaces well and that normals
are set orthogonal to the surface; isolated points can get rotated
arbitrarily and can even push the object deeper into contact.



IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. YY, MONTH YEAR 5

Another problem happens if points are too far apart, allowing
a small feature in the distance field object to slip undetected in
between two points; we address this by keeping the pointshell
resolution equal or finer than the distance field resolution. The
original VPS pointshell was obtained by voxelizing the pointshell
geometry, and using centers of surface voxels as points of the
pointshell. Such an approach is simple and fast, however we found
that it can result in a relatively large (redundant) number of points.
Also, the contact surface is sampled on an axis-aligned grid,
which can result in staircase-like point positions. We found that
pointshells positioned on smooth closed manifold surfaces tend to
be stable; high frequency components, either in point locations or
point normals tend to cause instabilities. Sharp corners can still
be rendered, albeit not aggressively.

We note that our contact model converges to a well-defined
limit with progressively finer (near-regular) pointshells, and this
limit has an intuitive volume integral interpretation (obtained
using the divergence theorem):

Flimit =
−kC L

R
SC

d(x)n(x)dSR
SC

dS
=

kC L
R
V grad d(x)dVR

SC
dS

,

(2)
where d(x) and n(x) are the signed distance value and inward
normal at x, respectively ( see Figure 5, Middle), and the integer L

is the scaling threshold for many-points contacts (we use L = 10;
see Section V). Our discrete contact model of Equation 1 can
therefore be seen as resolving contact between a surface and a
distance field object, by approximating the surface integral of
Equation 2 with a discrete Riemann sum evaluated at the locations
of pointshell points. The norm of the distance field gradient is
typically close to 1. For contacts where the gradient does not
significantly change direction within the contact volume (e.g., in
locally planar regions), the limit contact force is proportional to
the penetration volume, divided by the surface area of penetration.

C. Distance field generation and evaluation

Computing a signed distance field is straightforward for closed
manifold meshes. For “polygon soups”, we first compute an
unsigned distance field, then extract an isosurface for some
small distance value using marching cubes to obtain a closed
manifold mesh [29] (see [30] for an alternative approach). Next
we remove any mesh components completely contained inside
another component, and then compute a signed distance field with
respect to the remaining closed manifold mesh(es). At runtime,
we trilinearly interpolate the distance field grid values to the query
location when inside the distance field box. If outside the box, we
propose using the conservative estimate d(p) ≥ dbox +dboundary,

where dbox is the shortest distance from the query location p to
the distance field box, and dboundary is the query-independent
minimum distance field value on the surface of the distance field
box (we give proof in Figure 5, Right).

D. Multiresolution nested pointshell

At every haptic cycle, our algorithm can traverse the pointshell
linearly (point by point), evaluating the contact model of Equa-
tion 1, and rendering the sum to the user (via virtual coupling,
§ V). However, only small pointshells (∼ 4000 points on our
hardware) fit into the computational budget of one haptic cycle.
To some extent, larger pointshells are possible by using temporal
coherence and wider voxels [3]. To be able to simulate much

larger pointshells (rigid or deformable), we propose organizing
the pointshell into a nested tree hierarchy (see Figure 6). We

Fig. 6. Nested point-tree: (Left) The pointshell; (Right) the hierarchy, the
traversal order and tree levels Li. Particle-repulsion levels are 0-1, 2-5, 6-19.

generate our multi-resolution pointshells by fitting a set of par-
ticles (points) onto a smooth manifold surface, using particle
repulsion [31], [32]. Initially, we simply tried sampling surfaces
randomly, or we used vertices of input triangle meshes, with
poor results. Repulsion gives near-regular point distributions at all
hierarchical levels (see Figure 7), which improves haptic stability.
It works by randomly positioning a desired number of points
(imagine electrons) to the surface, followed by a simulation where
the points repel each other while constrained to the surface.
The nested point hierarchy is constructed by freezing converged
points, then injecting the points of the next level (we use a 4×
branching factor). Our construction is related to [33]; however, to
support non-manifold input geometry, we constrain points on a
level set of a distance field as opposed to a triangle mesh. Repul-
sion requires tuning two parameters (repulsion force strength and
repulsion force kernel width). We manually (interactively) tune
the two parameters on a small pointshell, then run the multi-
resolution repulsion simulation offline, decreasing force strength
and kernel width by a factor of two for each new level. Running
times were on the order of one to two hours for our 256K
pointshells. Repulsion is very parallel and could be accelerated
using multiple cores or a GPU. Details are available in [34].

Fig. 7. Multi-resolution oriented pointshell: (Left) The first two levels
of a part of the hose scene; (Right) detail with four levels shown. Points are
fitted on a small-distance offset oriented manifold surface to support “polygon
soup” input geometry, and provide oriented surface normals for contact.

After particle repulsion, each point is positioned, and assigned
to one of the disjoint particle-repulsion levels. It is now necessary
to organize the points into a nested hierarchical datastructure
(see Figure 6, Right), so that contact forces can be computed
progressively by a breadth-first hierarchy traversal (Section III).
We first generate tree levels Li : the set Li consists of an instance
of every point of particle-repulsion levels 1 through i. Therefore,
if a point belongs to particle-repulsion level i, an instance (a copy)
of this point will appear in all tree levels Lj , for j ≥ i. Instances
can share common memory data. The deepest tree level consists of
a single instance of all the points in the pointshell. The elements of



IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. YY, MONTH YEAR 6

Li are our tree nodes on tree level i. This construction was chosen
so that all nodes at all levels lie on the actual contact surface T ,

and that each Li samples T about uniformly (without gaps), with
progressively finer resolution with level index i. We establish the
tree parent-child relationships by traversing nodes at every level
Li+1, and assigning each node to the nearest node from level
Li. A bounding sphere radius is computed for each non-leaf tree
node, centered at the location of the node, and covering all nodes
in the subtree, in the undeformed configuration. The radius of
the bounding sphere gets progressively smaller for instances of
the same point at different levels. The nested point tree can be
augmented to support deformable pointshells (§ IV-A).

III. TIME-CRITICAL PROGRESSIVE CONTACT FORCES

We now describe the core approach for time-critical evaluation
of contact forces when one object is represented as a rigid or
deformable pointshell, and the other object provides a signed-
distance oracle, d(p).

Runtime tree traversal: At every haptic cycle, the algorithm
traverses the pointshell hierarchy in breadth-first order. For every
tree node, the algorithm looks up the value of the signed distance
field at the node’s location. If the distance field value is greater
than the radius, no point in the subtree can collide, and the subtree
is not traversed further (see Figure 8 (Middle, e.g., node 2)).
Otherwise, all children of the node are added to a list for future
traversal (see Figure 8 (Middle, e.g., nodes 0, 3)). If the distance
field value is negative (contact), a penalty force is assigned to
the node, just like in the single-resolution case. If child copies of
the node are visited during later traversal, no additional force is
accumulated (but the copy is not skipped from traversal since its
proper children may be in contact).

Temporal coherence: Each time a tree node is processed, an
estimate of the earliest possible haptic cycle when the bounding
ball at this node can enter contact is determined and stored with
the node. This estimate is computed based on node’s current
distance to contact, sphere radius, and maximum point velocity
that can occur in the simulation. It can be the immediate next
cycle if the node is close to contact (or in contact), or it can
be hundreds of cycles into the future for nodes far from contact.
Next time a node is about to be processed, we can safely skip it if
the current haptic cycle is earlier than what stored with the node.
Temporal coherence reduced our simulation times 20%-45%.

Graceful degradation: If the contact scenario is not very
involved, much of the tree will be quickly culled and only a small
fraction of the pointshell will be traversed. In contrast, if there are
many different contact sites, such as when the pointshell object is
positioned close to the distance field object, a large fraction of the
pointshell will need to be traversed, preventing a complete tree
traversal within one haptic cycle. To support graceful degradation
in such cases, we traverse the tree progressively level by level (see
Figure 8). While traversing the list of nodes that need to be visited
on level i (as determined by level i − 1), we build the traversal
list for level i + 1. At the end of level i, we compare the size of
this list to a measure of the remaining computation time for the
haptic cycle. Only if enough time remains, we render the next
level. The algorithm always either completes a level or does not
start it. The resulting contact forces are identical to those obtained
under an exhaustive tree-less traversal of points up to a given
level. Note that such a scheme is of course approximate: only
geometric features resolved by points on the deepest traversed

level will be rendered. If the surface contains detail beyond what
the particular CPU can render, some points in contact (deep in
the hierarchy) could remain undetected; no force will be applied
to such points. The benefit of our construction is that it produces
a reasonable stable contact force given the available CPU power.
The rendered surface resolution and contact force accuracy both
increase with available computing power.

LOD control: The amount of work required to process a
node is predictable and it is not necessary to time the execution
explicitly. Instead, we count the total number of tree nodes
visited during the current haptic cycle. We use two thresholds to
determine whether to render the next tree level. All the levels up
to and including the deepest level rendered in the previous haptic
cycle use the warm threshold VW , whereas all deeper levels use
the cold threshold VC < VW . A level i is rendered if the total
number of tree nodes visited before entering level i plus the size
of traversal queue for level i (as determined by the just completed
level i − 1) is less than the threshold for level i. Cold threshold
is stricter to prevent popping back and forth among two levels
during consecutive haptic cycles; we set VC = 0.8VW . Our LOD
control therefore has a hysteresis, similar to, say, a thermostat
controlling a heater. In practice, we have seen LOD changes at
most about 2-3× per second, and did not feel any popping haptic
rendering artifacts. LOD changes can be made fewer by reducing
VC . We selected VW manually by running the simulation and
observing computation times per haptic cycle. The selection was
not difficult and could be automated.

IV. DEFORMATIONS

In this section, we describe the necessary algorithmic mod-
ifications to support deformations. In our rigid vs deformable
simulations, we render a deformable pointshell against a rigid
distance field. For deformable vs deformable simulations, we
render a deformable pointshell against a deformed distance field.

A. Deformable pointshell

Our pointshell is embedded into a deformable object; as the ob-
ject deforms, so does the pointshell. Our method is not specific to
a particular deformable object algorithm, as long as this algorithm
has the following properties: (1) it runs at haptic rates, (2) given
any particular tree node queried by our runtime nested tree traver-
sal, it must be able to (quickly) provide the current point world-
coordinate location, and a bounding radius for the node subtree,
and (3) it must provide the (deformed) normal for points in
contact. For small pointshells, these requirements can be satisfied
by running any fast deformable object algorithm, and computing
the positions, normals, and bounding spheres for all tree nodes
at the beginning of every haptic cycle. With large pointshells, it
is wasteful (and computationally infeasible) to always compute
the positions and normals for all the points, because only a
small fraction of the points will usually be queried during the
tree traversal. Instead, the requirements (1-3) can be satisfied by
running a deformable object algorithm where some simplified
dynamics drives the deformations of the (detailed) pointshell. Ex-
amples of suitable deformable models are: any coarse deformable
model (mass-spring system, FEM, etc.), model-reduced (linear
or nonlinear) FEM models, multi-resolution models, articulated
rigid or flexible models, and skinned deformable models. We use
reduced nonlinear FEM models in our examples; the specifics



IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. YY, MONTH YEAR 7

Fig. 8. Graceful degradation: With involved contact scenarios (Left), many tree nodes need to be traversed during a complete hierarchy traversal (Middle).
Under graceful degradation (Right), tree is traversed only up to a shallow depth, as permitted by available CPU power.

of this model are given in [34]. Regardless of the particular
deformable model, the simplified dynamics runs quickly at haptic
rates, and individual deformable point positions and normals are
computed adaptively as needed by the tree traversal. In particular,
the displacement u ∈ R3 of a point in any of the listed deformable
models can be expressed as u(t) = U q(t), where U ∈ R3×r is a
certain point-specific time-independent matrix (e.g., FEM shape
functions, or model reduction basis functions evaluated at point’s
material mesh location), q = q(t) ∈ Rr is the (relevant part
of) the low-dimensional deformation state, and r is the (point-
dependent in some deformable models) number of shape functions
affecting the particular point. Deforming the normals is important
for simulation quality. Continuously deformed normals can be
approximated quickly using deformation gradient push-forward
of undeformed normals. Such normals can be evaluated using a
point-specific normal correction matrix N ∈ R3×r , similarly to
point positions (details in [34]).

The contact model and the deformable model are linked as
follows. During the nested tree traversal, the current deformation
is held fixed. The computed contact forces are then set as
external forces to the deformable object integrator. The integration
timestep is performed at the end of the haptic cycle, producing
the deformations for the next haptic cycle.

The bounding spheres of tree node subtrees need to be refitted
under deformations. The centers of our spheres always coincide
with current point locations; this is computationally convenient
so that, in order to determine if a subtree needs to be traversed,
the distance field value queried at the point location need only be
compared to the bounding sphere radius. For small pointshells,
we can refit the entire sphere hierarchy before every haptic cycle.
For large pointshells, we refit (conservatively) only the sphere
radii of traversed nodes, using a point-based modification of
the Bounded Deformation Tree (BD-Tree) [5], [34]. The subtle
but algorithmically key point is that our point-based BD-Tree
uses nested pointshell points as deformed sphere centers. This
seemingly trivial choice enables time-critical testing of the point-
based BD-Tree against a distance field: updating a BD-Tree
sphere also updates a deformed pointshell point, p, which can in
turn be immediately evaluated against the distance field, and if in
contact (d(p)<0) will contribute to the progressive accumulation
of contact forces in a multi-resolution manner. Therefore, even in
the expected case where there is insufficient time to completely
test the BD-Tree against the distance field, approximate contact
forces can still be accumulated in a time-critical fashion.

B. Deformed distance field

Our real-time contact algorithm performs over a thousand
signed-distance-field evaluations per millisecond-long haptic
frame. Distance fields for complex rigid objects can be prepro-
cessed and runtime-sampled quickly, however the same is not
true of the deformable distance fields needed to support “defo-
defo” contact. In this section, we introduce an algorithm which
can approximate signed distance values to deformed complex
geometry very quickly, provided that the deformations themselves
are reasonably coarse (low-frequency). Our approach is similar
to material-space methods [35], but does not require a bounding
volume hierarchy and can report distance field approximations
outside of the object.

If distance field computation (evaluation) costs were zero or
negligible, one could simply treat the deformed distance field as
an oracle to provide the exact distance d(p). On today’s hard-
ware, however, distance field evaluation for deformable models
is expensive and can not be performed at haptic rates for non-
trivial geometry [36], [37]. Even if an acceleration datastructure
such as a bounding volume hierarchy was computed (re-fitted)
to the deformed triangle mesh before each haptic cycle, each
individual point distance query requires O(log(n)) search time,
where n is the number of triangles in the model. Deformed
distance fields can be computed on grids in appropriate regions
of interest using methods such as Fast Marching [38], or 3D
scan conversion [39] (also see [40] for a survey). These methods
recompute the distance field from scratch, i.e., they are general-
purpose distance field computation algorithms, invoked separately
with each deformed configuration. They can not update the
distance field at hard real-time rates for complex geometry as their
computation times depend on the number of model triangles and
the distance field resolution. Fast marching has also been applied
to unstructured locations inside the object [41], however marching
still requires near-uniform spatial distribution of the distance field
query locations, known at the beginning of marching. In our work,
we need the distance only at the sparse locations of traversed tree
nodes, most of which will be outside the object, and all of which
only become known progressively during the traversal.

Our method is related to the “material-space distance”
method [35] which we briefly describe next. In [35], a deformed
distance field is approximated by re-using a rest configuration
precomputed distance field. No particular structure in query
locations is required, enabling convenient output-sensitive random
access to the signed distance field. The deformable object carries a
simulation mesh, such as a tetrahedral mesh or a hexahedral mesh.
Given the current mesh deformation, a bounding volume hierarchy
is (re-)fitted to the tetrahedra. Then, for a query location p, one



IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. YY, MONTH YEAR 8

can use the hierarchy to quickly locate the tetrahedron containing
p, or detect that p is not contained in any tetrahedron. If inside a
tetrahedron, one uses p’s barycentric weights to pull p back to the
rest configuration, obtaining the corresponding material location
P. A distance value estimate is then obtained by looking up P

into the precomputed signed distance field. Note that the tet mesh
is typically coarser than the surface triangle mesh, or else it is
advantageous to compute the distances simply by maintaining
a hierarchy on the surface triangle mesh. The method can not
report distances outside of the tetrahedral mesh, and was only
used in offline simulations. It requires maintaining a bounding
volume hierarchy on the deforming tet mesh, and a traversal of
the hierarchy for each distance field query.

We propose a modification of the material-space distance
method that does not use a volumetric (tetrahedral) mesh and does
not require a deformable bounding volume hierarchy. It can also
compute distance approximations outside of the object. During
pre-process, we compute a signed distance field with respect
to the undeformed configuration. At runtime, we compute fast
approximations to the deformed distance field values d(p) at the
locations of traversed pointshell points. We do so by using first-
order local deformation models at a small number of selected
locations (the “proxies”). We interpolate these models to pull
pointshell point positions back to the undeformed configuration
of the distance field object, followed by a lookup into the
precomputed distance field.

The specifics of the method are as follows. During pre-process,
we fit a small pointshell (typically ∼40 points) to the surface of
the distance field object. We call this pointshell the proxyshell and
its points the proxies. We fit the proxies using the same algorithm
that was used to fit the points to the surface of the pointshell
object. Proxies are embedded into (deform together with) the de-
formable distance field object. To evaluate the deformed distance
field at some query pointshell point location x, we first perform a
k-nearest neighbor search to locate the k current closest proxies
p1, . . . , pk to x (see Figure 9, Left, Middle). We then assign non-
negative weights to pi; closer proxies are given larger weights,
and the weights sum to one; we use the scheme described in [42]
to assign weight wi to proxy i,

wi =
w′

i

W
, w′

i =
1/di − 1/dmax

1/dmin − 1/dmax
, W =

kX
i=1

w′
i, (3)

where di = ||x − pi||2 and dmax (dmin) is the max (min) of di

over i = 1, . . . , k. We typically set k = 5 in our implementations
to avoid singular configurations where dmin = dmax (five points
in general do not lie on the same sphere in 3D).

We use local first-order deformation models at pi to generate
an approximation to the deformed distance field at x, as follows.
Let Pi be the material position of pi; then the deformation
transformation in the vicinity of Pi can be approximated as

X 7→ x = pi + Fi(X − Pi), (4)

where X is an arbitrary material point sufficiently close to Pi,

and Fi ∈ R3×3 is the deformation gradient at Pi. Deformation
gradients can be evaluated quickly. For example, for (coarse) FEM
models or reduced FEM models this can be achieved in 9r flops,
by taking analytical gradients of the shape (or basis) functions,
and precomputing deformation gradient mode matrices, (Fi)j , for
j = 1, . . . , r, where r is the number of shape functions affecting

the deformation at Pi [34]. We then pull the query position x

back to Xi, by inverting equation 4 (see Figure 9, Right). Next,
we obtain di, the distance with respect to proxy i, by looking
up the undeformed field at Xi. Our distance approximation is
d =

Pk
i=1 widi. Note that the weights are continuous, and vanish

at the furthest nearest neighbor, ensuring C0 continuity of d both
with respect to x and the deformations of the distance field object.

Fig. 9. Deformed distance field approximation: (Left) Proxies (squares),
the query pointshell point at x; (Middle) 3-nearest neighbors and their
weights; (Right) material configuration pull-backs Xi of x.

The resulting contact forces are applied (with opposite sign)
to both the pointshell deformable object and the distance field
deformable object. For the pointshell object, the force is applied
at the location of the point. For the distance field object, the
material location of the force is known; however, the simulation
mesh element (or nearest simulation mesh vertex) containing this
material location is not known a priori. We apply the force to the
locations of the nearest proxy which had already been identified
during the k-nearest neighbor query. Force location could be
improved by a bounding volume hierarchy search for each point
in contact, exploiting the fact that only a small number of all the
traversed points will be in contact at any moment of time.

Our scheme can be seen as approximating the global defor-
mation transformation (both inside and outside of the object)
by interpolating (and extrapolating) local first-order deformation
models. It is capable of computing a fast approximation to the
deformed distance field with respect to complex geometry. This
is possible because the complex geometry is encoded into the
distance field in the undeformed configuration. The k-nearest
neighbor search is fast since it is performed only on a small
number of proxy points. Our approximation benefits from spa-
tially smooth deformable models, and becomes progressively less
accurate under stretching/compression. Our proxies are uniformly
distributed across the model. Proxy positions could be chosen
adaptively such that more proxies are used in regions with
localized deformations or larger changes in deformation gradients.

Multiple domains: The basic deformable distance field
scheme can suffer from spurious contact regions when two nearby
parts deform away from each other: “mirror” images of one
part appear in estimates di under proxies on the other part (see
Figure 10, Middle). Similar “ghosting” has also been reported
with feature-based 2D image morphing techniques [43], where
a morph between two images is computed from a collection
of transformations of pairs of line segments. These artifacts
can be reduced by dividing the distance field object into sev-
eral domains, precomputing a separate distance field for each
domain, performing the single-domain scheme with respect to
each domain, and taking the minimum (see Figure 10, Right).
Mirroring essentially introduces “extra” geometry, which typically
pushes the isocontours of the approximate field further out than
the true isocontours, leading to conservative distance estimates.
While we can not guarantee conservative distance estimates, we



IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. YY, MONTH YEAR 9

did not encounter problems with our examples. Although more
costly, deformable distance field accuracy might be improved
under compression deformations by pushing forward material-
space closest-point information [44].

Fig. 10. Isocontours of the exact and approximate deformed distance
field:(Left) Pose 1, single-domain approximation; (Middle) pose 2, single-
domain approximation with the two legs mirroring; (Right) pose 2, multiple
domain approximation without mirroring. Green denotes the interior of the
object, with respect to the approximated field.

V. HAPTIC DISPLAY OF DISTRIBUTED CONTACT

Until now we have abstracted 6-DoF haptic rendering as simply
a matter of computing contact forces and torques at high rates.
However, penalty forces and torques can not simply be sent to the
haptic device: each point in contact adds to the overall stiffness of
the system and if enough points are added, maximum renderable
stiffness of the haptic device is easily exceeded. Instead, it is
customary to separate the simulation position and orientation of
the haptic object from the position and orientation imposed by
the haptic manipulandum, and connect the two with a generalized
spring(virtual coupling [45]). This penalty spring of stiffness kVC

tries to align the simulation position and orientation of the haptic
object to the manipulandum. We adopt static virtual coupling
of [2] since it needs a relatively small number of parameters
(unlike [1]), and does not need device velocity estimates. We ex-
tend static coupling by introducing quasi-static damping. We also
include large rotation terms in the static equilibrium equations
(details in [34]).

In every haptic cycle, we first read the position and orientation
of the haptic device manipulandum. We then compute contact
penalty forces and torques (by traversing the nested point-tree),
virtual coupling forces and torques, and their gradients with
respect to the simulation position and orientation of the haptic
object (see Figure 4). The net force and torque on the simulation
object, under a (small) incremental displacement ∆x and (small)
incremental rotation ∆ω ∈ R3, are then

Fnet = FVC + FC +
“∂FVC

∂x
+

∂FC

∂x

”
∆x +

“∂FVC

∂ω
+

∂FC

∂ω

”
∆ω

(5)

Tnet = TVC + TC +
“∂TVC

∂x
+

∂TC

∂x

”
∆x +

“∂TVC

∂ω
+

∂TC

∂ω

”
∆ω

(6)

where FVC, TVC denote current virtual coupling force and
torque [2], and FC, TC denote the sum of all contact forces and
torques. We displace the virtual object such that the net force
and torque on the object vanish under this first-order model, by
solving the non-symmetric 6x6 linear system of Equations 5,6
for (∆x, ∆ω) using LU decomposition (fast, ∼ 5µs per solve).
Finally, we compute the virtual coupling force and torque with
respect to the new simulation position, and render them to the
user. Virtual coupling gradients are determined through analytical

differentiation of the virtual coupling forces and torques. Gradi-
ents of contact forces and torques are computed by treating each
contact point as undergoing contact with an infinite halfspace
(wall), oriented according to the contact normal (details in [34]).

In our deformable distance field simulations, there are three
haptic object configurations at any moment of time: the manip-
ulandum position and orientation, the rigid simulation position
and orientation (blue color in Figure 13), and the complete
simulation configuration where the haptic object’s deformations
are added to the rigid simulation position and orientation. The
virtual coupling forces and torques are computed with respect to
the manipulandum and rigid simulation positions and orientations.
Rigid body motion of the deformable haptic object is set to the
static equilibrium between virtual coupling forces and the defo-
defo contact forces determined during the tree traversal, in the
same way as with rigid haptic objects. The deformation of the
haptic object’s distance field is held fixed during the tree traversal.
One timestep of haptic object’s deformations is performed at
the end of each haptic cycle, using the defo-defo contact forces
as external forces. Note that our haptic object deformations are
decoupled from rigid body motion; this approximation is very
common in computer graphics for its simplicity and plausible
results [5].

A simple calculation shows that the maximum stiffness felt by
the user if ` points are in contact is 1/(1/(` · kC) + 1/kVC);

therefore kVC presents an upper bound on the stiffness ever
rendered to the haptic device, regardless of `. Since time is
sampled discretely, simulation stability is improved if kC is scaled
down when there are multiple points in contact; as in VPS, we
replace kC with kCL/` whenever ` ≥ L (we use L = 10). The
displacement-force relationship of virtual coupling is designed to
be linear only up to a certain displacement, after which it saturates
to some maximum force value (c.f. virtual proxy [46], [47]).

Quasi-static damping: The lack of dissipation in the static
virtual coupling model can lead to slight instabilities, such as
during fast sliding contact. We augmented the static virtual cou-
pling model by introducing a quasi-static damping, or a damped
state update: after ∆x, ∆ω are computed, we only change the
simulation position and rotation by (1−α)∆x, (1−α)∆ω, where
α ∈ [0, 1) controls the amount of static damping. Such damping
exponentially restores the simulation position to the manipulan-
dum position, similar to critical damping in mass-spring-damper
dynamic virtual coupling models [1]. We set α = 0.5 in all our
simulations; high values of α are avoided since they introduce a
surface stickiness effect.

VI. RESULTS

Statistics on all haptic rendering examples are provided in Ta-
ble I. Haptic demos (executables for Sensable’s Phantom Premium
6DOF, 3DOF, and Omni devices) are freely available at:
http://graphics.cs.cmu.edu/projects/defoContact/demo/index.html.

In our first 6-DoF haptic rendering example, we simulate
a detailed deformable bridge in contact with a detailed rigid
dinosaur (see Figure 2). We recorded a characteristic manipulan-
dum trajectory, and report simulation data under this trajectory
computed offline under different force approximations (see Fig-
ure 11). We also present a detailed deformable dragon in contact
with a rigid Buddha mesh. Figure 12 gives a haptic gaming
example demonstrating that pointshells with a million points can
be simulated when our method is used for rigid simulations only.



IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. YY, MONTH YEAR 10

TABLE I
MODEL STATISTICS FOR REPRESENTATIVE CONTACT CONFIGURATIONS

Contact case; Contact Pointshell Dist. field Traversed nodes Points in LOD Timings [µs]
pointshell+distance field depicted in levels points resolution with TC TC off contact VC StVK TT total TL

knight(r) + axe(r) Results 6 1.02 M 256 2050 3400 820 6 90 0 780 870 80,000
bridge(d) + dinosaur(r) Figure 2 4 85K 256 1989 5200 426 4 90 45 710 845 12,200

CAD scene 1(d) + metal part(r) Figure 3 4 80K 128 530 1520 50 4 90 45 125 260 6,600
dragon(d) + Buddha(r) Figure 4 5 256K 256 1750 2900 650 5 90 45 615 750 29,800

dragon(r) + dragon hole(r) Figure 16 5 256K 256 1701 2642 843 2 90 0 722 812 45,000
CAD scene 2(d) + hose(d) Figure 13 5 256K 256 537 1720 40 5 90 190 507 787 210,000

dragon(d) + dinosaur(d) Figure 13 5 256K 256 245 1390 24 3 90 90 531 711 590,000

Timings generated on an Intel Core 2 Duo 2.66 GHz processor with 2 Gb RAM. All deformable models use r=15 deformation modes, except CAD scene 2 +
hose (r=20 for both models). LEGEND: r=rigid, d=deformable, VC=virtual coupling and manipulandum transformations, StVK=deformable FEM dynamics,
TT=tree traversal, TC=temporal coherence, LOD=level of detail rendered (in the particular configuration), TL=time under a tree-less pointshell traversal.

Fig. 11. Illustration of graceful degradation (GD): Simulation data for
a pre-recorded manipulandum trajectory is rendered in two ways: using GD
(in red) with warm threshold at 600 nodes; without GD (in black) with all
four tree levels. The pointshell has 85, 018 points total. The common x-axis
corresponds to haptic frames. This data was recorded on a three-year-old
3.0 GHz dual Intel Xeon processor with 2.75 Gb of memory, illustrating
algorithm’s adaptivity to different computer speeds. On the (faster) machine
of Table I, the black timing curve reaches a maximum of ∼800 µs.

We demonstrate “defo-defo” contact by simulating a deformable
dragon in contact with a deformable dinosaur, and a deformable
mechanical structure in contact with a deformable hose (Fig-
ure 13). Figure 16 demonstrates the benefits of graceful degrada-
tion to simulate very large contact areas. Interactive (dis)assembly
and path planning are illustrated in Figure 3 by example where the
user can manipulate a metallic rigid component in contact with
deformable hose geometry typical of modern airplanes. Large
hose deformations allow the operator to interactively navigate the

component in between the hoses.

Fig. 12. Interactive haptic gaming is an
emerging application area. In this example,
the user can swing a detailed rigid axe to
“interact” with an armored rigid knight. This
example demonstrates crisp contact with de-
tailed million-point pointshells possible when
our method is used for rigid-only simulations.
The pointshell is resolved at the deepest level
when poking the knight with the blade of
the axe. Our graceful degradation algorithm
reduces the LOD to maintain haptic update
rates if the axe is positioned in flat contact
against the knight.

VII. CONCLUSION

We have demonstrated that real-time time-critical haptic render-
ing of distributed contact between geometrically complex models
is possible for both rigid and reduced deformable models. A
key ingredient has been the exploitation of low-dimensional
parameterizations of deformable models for fast dynamics, point-
based deformation bounds, and output-sensitive evaluation of
pointshell points and contact normals.

Discussion: Our deformations are reduced and not fully
general; in the future, fully general complex FEM deformable
objects might run at haptics rates on commodity workstations,
but this is not the case today. Our deformable model is adaptive:
more basis vectors can be added to the basis as processor speeds
will increase. While our current demonstrations run on standard
Windows or Linux platforms, simulation on operating systems and
parallel architectures that can guarantee hard real-time scheduling
is a natural area of exploration. The simulation can be simplified if
the signed distance field is replaced by a simpler implicit function
with an analytical formula. Our offset surfaces are not reaching
down to the exact geometry in case of “polygon soup” input
geometry, when the contact surface is not well-defined. Quality
of the offset surface degrades under offsets too small compared
to distance field resolution. Large deformations can potentially
introduce undersampled pointshell surface regions; however this
was not problematic in our case of deformations mostly consisting
of large rotations and small strain.

Distance fields can be memory-consuming; for example, a
256x256x256 32-bit floating point distance field occupies about
64 Mb of memory. This was not a limiting factor in our imple-
mentations where the manipulated object carries a distance field.
In virtual assembly simulations, the manipulated object is often



IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. YY, MONTH YEAR 11

Fig. 13. Deformable vs deformable contact: (Top) A deformable dinosaur
(haptic object; deformable distance field; five domains; k = 5) in contact with
a deformable dragon (rooted to ground; deformable pointshell). (Bottom) A
deformed hose (haptic object; deformable distance field; one domain; k =
5) in contact (at three separate locations, indicated by green arrows) with
a deformed mechanical structure (rooted to ground; deformable pointshell).
Blue=deformable distance field object rigid configuration; black=pointshell
object rigid configuration.

the tool; greater accuracy is typically needed to represent the
virtual environment (pointshell object in our case). While we did
not pursue out-of-core approaches that would enable one, say, to
render the interior of an entire airplane, we believe our nested
point hierarchy would be very effective in quickly ruling much
of the airplane out of collision. The point hierarchy could be
preceded with a few coarse standard hierarchy levels to cover
major individual airplane parts before diving into the individual
point hierarchies. To reduce distance-field memory, a hybrid data
structure would be possible, using a wide-bit voxmap in free
space, and a distance field accessed via a hash table in the shallow
contact force layer surrounding the object. Distance field could
also be sampled adaptively [48].

Our rendered level of detail is selected globally for the entire
object. In some situations, it might be advantageous to be able to
select LODs locally, for example, if the haptic object touches
a large flat panel on one side, and a thin wire on the other
side. Such an algorithm would need to minimize the number
of LOD transitions and could employ a perception error met-
ric [6] to balance accuracy against performance. Although our
implementation is not highly optimized, we did implement some
time-critical routines in assembly (SSE2 multimedia instructions),
and carefully laid out data in memory to optimize cache perfor-
mance, resulting in a system speedup of about 2 × . Perceptual

Fig. 14. Our method can render small features: (Left (top and bottom))
Resolution in our method is high enough for the user to feel the bumps on the
back of the rigid dinosaur (distance field object, 256x256x256), by sliding the
back of the dinosaur against the upper shelf of the bridge (pointshell object).
The red arrows are indicating the direction of the dinosaur’s sliding. Both
objects are rigid in this experiment. Bridge pointshell has five levels of detail
with 256,000 points. (Right) The force magnitude rendered to the user, under
progressively finer pointshells and a pre-recorded manipulandum trajectory.
Sampling rate is 1000 frames per second. The user caused six bumps total to
touch the bridge (one after another, in tangential motion, while simultaneously
also pushing the dinosaur in a normal direction against the bridge). The impact
of each individual bump can be clearly seen in the haptic signal, and felt in
the haptic simulation.

studies may be useful in determining speed-accuracy trade-offs,
such as maximum necessary contact resolution or perception of
deformation complexity, similar to other studies done in rigid-
rigid contact rendering [25]. Another interesting area of future
work is simulating friction, which can play an important role
in applications such as analysis of mechanical part removability
and accessibility. With reduced nonlinear FEM models, some
applications may be limited by the fact that modification or cutting
of the models is prohibited by the preprocessing employed for
performance. Although unaddressed in our implementation, large
deformations can necessitate self-collision processing, and this
remains a significant computational challenge for hard real-time
haptic rendering applications (c.f. [49]).

ACKNOWLEDGMENT

This research was sponsored by the Boeing Company, the Na-
tional Science Foundation (CAREER-0430528), the Link Foun-
dation, Pixar, Nvidia, Intel, and donation of Maya licenses from
Autodesk.

REFERENCES

[1] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, “Six degree-of-
freedom haptic rendering using voxel sampling,” in Proc. of ACM
SIGGRAPH 99. ACM, 1999, pp. 401–408.

[2] M. Wan and W. A. McNeely, “Quasi-Static Approximation for 6
Degrees-of-Freedom Haptic Rendering,” in Proc. of IEEE Visualization
2003, 2003, pp. 257–262.

[3] W. McNeely, K. Puterbaugh, and J. Troy, “Voxel-Based 6-DOF Haptic
Rendering Improvements,” Haptics-e, vol. 3, no. 7, 2006.

[4] J. Barbič and D. L. James, “Real-Time Subspace Integration for St.
Venant-Kirchhoff Deformable Models,” ACM Transactions on Graphics
(SIGGRAPH 2005), vol. 24, no. 3, Aug. 2005.

[5] D. L. James and D. K. Pai, “BD-Tree: Output-Sensitive Collision
Detection for Reduced Deformable Models,” ACM Trans. on Graphics,
vol. 23, no. 3, pp. 393–398, 2004.

[6] M. A. Otaduy and M. C. Lin, “A Modular Haptic Rendering Algorithm
for Stable and Transparent 6-DoF Manipulation,” IEEE Trans. on
Robotics, vol. 22, no. 4, pp. 751–762, 2006.



IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. YY, MONTH YEAR 12

Fig. 15. Asymmetric contact model: The contact force changes under role
reversal, however the difference is reasonably small. The first contact case
(rigid green dragon=pointshell, rigid brown dragon=signed distance field) is
depicted with a solid red line, the reverse case (rigid green dragon=signed
distance field, rigid brown dragon=pointshell) is shown in dashed blue. Both
lines show the contact force (without virtual coupling) on the green (i.e.,
moving) dragon. The top-right image shows the configurations at samples
900 and 1800, respectively. The bottom-right images depict points in contact
(red=in contact, blue=traversed by tree, but not in contact). Note that the z-
axis is aligned with the direction of motion, and is (about) normal to the
contact areas; z-force is therefore the normal contact force and is as such
substantially larger than tangential forces. Penetration depths are large in this
experiment; in our simulations, virtual coupling coupling saturation would
prevent penetrations deeper than about 1 voxel. The vertical green line denotes
the sample index where penetration reaches 1 voxel. The bottom image shows
the shallow penetration part of the top image in greater detail. Contact force
differences can be seen to be small.

[7] M. A. Otaduy and M. Gross, “Transparent Rendering of Tool Contact
with Compliant Environments,” in Proc. of the World Haptics Confer-
ence, 2007, pp. 225–230.

[8] S. Laycock and A. Day, “A Survey of Haptic Rendering Techniques,”
Computer Graphics Forum, vol. 26, pp. 50–65, 2007.

[9] U. Kühnapfel, H. Çakmak, and H. Maaß, “Endoscopic surgery training
using virtual reality and deformable tissue simulation,” Computers &
Graphics, vol. 24, pp. 671–682, 2000.

[10] O. Astley and V. Hayward, “Multirate Haptic Simulation Achieved by
Coupling Finite Element Meshes Through Norton Equivalents,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation, 1998.

[11] G. Debunne, M. Desbrun, M.-P. Cani, and A. H. Barr, “Dynamic Real-
Time Deformations Using Space & Time Adaptive Sampling,” in Proc.
of ACM SIGGRAPH 2001, August 2001, pp. 31–36.

[12] C. Mendoza and C. O’Sullivan, “Interruptible collision detection for
deformable objects,” Computer & Graphics, vol. 30, no. 2, 2006.

[13] M. Bro-Nielsen and S. Cotin, “Real-time Volumetric Deformable Models

Fig. 16. Graceful degradation supports large conforming contacts
to allow time-critical approximation of very difficult contact configurations
(here under 1 millisecond). (Top Left) A dragon “peg” inserting into a
matching dragon “hole” obtained via CSG difference. (Top Middle) Dragon
manipulated haptically into the hole. (Top Right) Large contact area with
traversed points in blue (43% of all L2 points), and contacting points in red
(21% of all L2 points). (Bottom Graphs) Simulation data for a pre-recorded
manipulandum trajectory is rendered in two ways: using GD (in red) with
warm threshold at 2000 nodes; without GD (in black) with all five tree levels.
Same machine as in Table I. The common x-axis corresponds to haptic frames.

for Surgery Simulation using Finite Elements and Condensation,” Comp.
Graphics Forum, vol. 15, no. 3, pp. 57–66, 1996.

[14] S. Cotin, H. Delingette, and N. Ayache, “Realtime Elastic Deformations
of Soft Tissues for Surgery Simulation,” IEEE Trans. on Vis. and Comp.
Graphics, vol. 5, no. 1, pp. 62–73, 1999.

[15] D. L. James and D. K. Pai, “A Unified Treatment of Elastostatic Contact
Simulation for Real Time Haptics,” Haptics-e, The Electronic J. of
Haptics Research (www.haptics-e.org), vol. 2, no. 1, September 2001.

[16] ——, “Multiresolution Green’s Function Methods for Interactive Sim-
ulation of Large-scale Elastostatic Objects,” ACM Trans. on Graphics,
vol. 22, no. 1, pp. 47–82, 2003.

[17] S. Jun, J. Choi, and M. Cho, “Physics-based s-adaptive haptic simulation
for deformable object,” in Proc. of the Symp. on Haptic Interfaces For
Virtual Environment and Teleoperator Systems, 2006, pp. 72–78.

[18] M. Renz, C. Preusche, M. Pötke, H.-P. Kriegel, and G. Hirzinger, “Stable
haptic interaction with virtual environments using an adapted voxmap-
pointshell algorithm,” in Proc. of Eurohaptics, 2001, pp. 149–154.



IEEE TRANSACTIONS ON HAPTICS, VOL. XX, NO. YY, MONTH YEAR 13

[19] S. Rusinkiewicz and M. Levoy, “Qsplat: A multiresolution point ren-
dering system for large meshes,” in Proceedings of ACM SIGGRAPH
2000, ser. Computer Graphics Proceedings, Annual Conference Series,
Jul. 2000, pp. 343–352.

[20] R. Keiser, M. Müller, B. Heidelberger, M. Teschner, and M. Gross,
“Contact Handling for Deformable Point-Based Objects,” in Proc. of
Vision, Modeling, Visualization 2004, 2004, pp. 339–346.

[21] M. Pauly, D. K. Pai, and L. Guibas, “Quasi-Rigid Objects in Contact,”
in Proc. of the Symp. on Comp. Animation 2004, 2004.

[22] P. M. Hubbard, “Collision Detection for Interactive Graphics Appli-
cations,” Ph.D. dissertation, Department of Comp. Science, Brown
University, 1995.

[23] Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha, “Six degree-of-
freedom haptic display using incremental and localized computations,”
Presence-Teleoperators and Virtual Environments, vol. 12, no. 3, pp.
277–295, 2003.

[24] M. Ortega, S. Redon, and S. Coquillart, “A Six Degree-of-Freedom
God-Object Method for Haptic Display of Rigid Bodies with Surface
Properties,” IEEE Trans. on Visualization and Computer Graphics,
vol. 13, no. 3, pp. 458–469, 2007.

[25] M. A. Otaduy and M. C. Lin, “Sensation Preserving Simplification for
Haptic Rendering,” in Proc. of ACM SIGGRAPH 2003. ACM, 2003,
pp. 543–553.

[26] C. Duriez, F. Dubois, A. Kheddar, and C. Andriot, “Realistic Haptic
Rendering of Interacting Deformable Objects in Virtual Environments,”
IEEE Trans. on Vis. and Comp. Graphics, vol. 12, no. 1, pp. 36–47,
2006.

[27] N. Galoppo, S. Tekin, M. A. Otaduy, , M. Gross, and M. C. Lin, “Haptic
Rendering of High-Resolution Deformable Objects,” in Proc. of 12th
International Conference on Human-Computer Interaction, 2007.

[28] J. Barbič and D. L. James, “Time-critical distributed contact for 6-DoF
haptic rendering of adaptively sampled reduced deformable models,” in
Proc. of the Symp. on Comp. Animation 2007, July 2007, pp. 171–180.

[29] T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares, “Efficient implemen-
tation of Marching Cubes’ cases with topological guarantees,” Journal
of Graphics Tools, vol. 8, no. 2, pp. 1–15, 2003.

[30] C. Shen, J. F. O’Brien, and J. R. Shewchuk, “Interpolating and approx-
imating implicit surfaces from polygon soup,” in Proceedings of ACM
SIGGRAPH 2004. ACM Press, Aug. 2004, pp. 896–904.

[31] G. Turk, “Re-Tiling Polygonal Surfaces,” Computer Graphics (Proc. of
ACM SIGGRAPH 92), vol. 26, no. 2, pp. 55–64, 1992.

[32] A. P. Witkin and P. S. Heckbert, “Using particles to sample and control
implicit surfaces,” in Proceedings of SIGGRAPH 94, ser. Computer
Graphics Proceedings, Annual Conference Series, Jul. 1994, pp. 269–
278.

[33] G. Turk, “Texture Synthesis on Surfaces,” in Proceedings of ACM SIG-
GRAPH 2001, ser. Computer Graphics Proceedings, Annual Conference
Series, Aug. 2001, pp. 347–354.

[34] J. Barbič, “Real-time Reduced Nonlinear Deformable Objects for Com-
puter Graphics and Haptics,” Ph.D. dissertation, Computer Science
Department, Carnegie Mellon University, Aug. 2007.

[35] G. Hirota, S. Fisher, A. State, C. Lee, and H. Fuchs, “An implicit finite
element method for elastic solids in contact,” in Proc. of Computer
Animation, Seoul, South Korea, 2001, 2001.

[36] A. Sud, N. Govindaraju, R. Gayle, and D. Manocha, “Interactive 3D
Distance Field Computation using Linear Factorization,” in Proc. ACM
Symposium on Interactive 3D Graphics and Games (I3D), 2006.

[37] A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha, “Fast
Proximity Computation Among Deformable Models using Discrete
Voronoi Diagrams,” in Proc. of ACM SIGGRAPH 2006, 2006.

[38] S.Fisher and M.C.Lin, “Fast penetration depth estimation for elastic
bodies using deformed distance fields,” in Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2001, pp. 330–336.

[39] C. Sigg, R. Peikert, and M. Gross, “Signed Distance Transform using
Graphics Hardware,” in Proceedings of IEEE Visualization Conference,
2003, pp. 83–90.

[40] M. Jones, J. Bærentzen, and M. Sramek, “3d distance fields: a survey of
techniques and applications,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 4, pp. 581–599, 2006.

[41] D. Marchal, F. Aubert, and C. Chaillou, “Collision Between Deformable
Objects Using Fast-Marching on Tetrahedral Models,” in Proc. of the
Symp. on Comp. Animation 2004, Aug 2004.

[42] C. Buehler, M. Bosse, L. McMillan, S. J. Gortler, and M. F. Cohen, “Un-
structured lumigraph rendering,” in Proceedings of ACM SIGGRAPH
2001, ser. Computer Graphics Proceedings, Annual Conference Series,
Aug. 2001, pp. 425–432.

[43] T. Beier and S. Neely, “Feature-Based Image Metamorphosis,” Computer
Graphics (Proc. of ACM SIGGRAPH 92), vol. 26(2), pp. 35–42, July
1992.

[44] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw, “Robust Quasistatic
Finite Elements and Flesh Simulation,” in 2005 ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, Jul. 2005, pp. 181–
190.

[45] J. Colgate, P. Grafing, M. Stanley, and G. Schenkel, “Implementation
of Stiff Virtual Walls in Force-Reflecting Interfaces,” in Proc. of IEEE
Virtual Reality Annual Int. Symp. IEEE, 1993, pp. 202–208.

[46] C. Zilles and J. Salisbury, “A Constraint-based God-object Method for
Haptics Display,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems. IEEE, 1995, pp. 146–151.

[47] D. C. Ruspini, K. Kolarov, and O. Khatib, “The Haptic Display of
Complex Graphical Environments,” in Proc. of ACM SIGGRAPH 97,
T. Whitted, Ed. Addison Wesley, Aug. 1997, pp. 345–352.

[48] S. Frisken, R. Perry, A. Rockwood, and T. Jones, “Adaptively Sampled
Distance Fields: A General Representation of Shape for Computer
Graphics,” in Proc. of ACM SIGGRAPH 2000. ACM, 2000, pp. 249–
254.

[49] N. K. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf, R. Gayle,
M. C. Lin, and D. Manocha, “Interactive collision detection between
deformable models using chromatic decomposition,” ACM Transactions
on Graphics, vol. 24, no. 3, pp. 991–999, Aug. 2005.

Jernej Barbič obtained his PhD from the Computer
Science Department at Carnegie Mellon University
(2007), and is now a post-doc at the Massachusetts
Institute of Technology. Jernej’s research interests
include real-time simulation, FEM deformable ob-
jects, haptic rendering of contact for geometrically
rich scenarios, sound simulation, and model reduc-
tion and control of nonlinear systems.

Doug L. James obtained his PhD from the Univ.
of British Columbia. Doug has been a professor
of Computer Science at Cornell since 2006; prior
to that, he was a Computer Science and Robotics
professor at Carnegie Mellon University (2002-
2006). Doug’s research interests include computer
graphics, physically based animation, computational
geometry, scientific computing, dimensional model
reduction, computational robotics, and haptic force-
feedback rendering.


