
Video-based 3D Motion Capture through Biped Control

Marek Vondrak∗

Brown University
Leonid Sigal†

Disney Research Pittsburgh
Jessica Hodgins‡

Disney Research Pittsburgh
Odest Jenkins§

Brown University

Figure 1: Controller Reconstruction from Video: We estimate biped controllers from monocular video sequences (top) together with a
physics-based responsive character (bottom left) that we can simulate in new environments (bottom right).

Abstract

Marker-less motion capture is a challenging problem, particularly
when only monocular video is available. We estimate human mo-
tion from monocular video by recovering three-dimensional con-
trollers capable of implicitly simulating the observed human be-
havior and replaying this behavior in other environments and under
physical perturbations. Our approach employs a state-space biped
controller with a balance feedback mechanism that encodes control
as a sequence of simple control tasks. Transitions among these tasks
are triggered on time and on proprioceptive events (e.g., contact).
Inference takes the form of optimal control where we optimize a
high-dimensional vector of control parameters and the structure of
the controller based on an objective function that compares the re-
sulting simulated motion with input observations. We illustrate our
approach by automatically estimating controllers for a variety of
motions directly from monocular video. We show that the estima-
tion of controller structure through incremental optimization and
refinement leads to controllers that are more stable and that better
approximate the reference motion. We demonstrate our approach
by capturing sequences of walking, jumping, and gymnastics.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.4.8 [Image Processing and
Computer Vision]: Scene Analysis—Tracking;

Keywords: video-based motion capture, bipedal control

Links: DL PDF

∗e-mail: marek@cs.brown.edu
†e-mail: lsigal@disneyresearch.com
‡e-mail: jkh@disneyresearch.com
§e-mail: cjenkins@cs.brown.edu

1 Introduction

Motion capture is a popular approach for creating natural-looking
human characters. Traditionally, the data is captured using optical
marker-based systems. However, such systems require instrumen-
tation and calibration of the environment and the actor. One way
to mitigate this limitation is to perform motion capture from video
of an unmarked subject. This approach is particularly appealing
for monocular video, which potentially allows motion capture from
legacy footage. We address this problem by estimating controllers
that are capable of simulating the observed human behavior.

The problems of video-based motion capture and biped control
have been addressed independently by several research communi-
ties. Video-based pose tracking (or marker-less motion capture),
has been a focus of much research in computer vision. Biped con-
trol, on the other hand, has evolved as a prominent area in computer
graphics and robotics. In our formulation, we combine these two
problems. Casting the video-based motion capture problem as one
of direct estimation of underlying biped control leads to the follow-
ing two benefits: (1) the physics-based biped controller can serve
as an effective motion prior for estimating human motion with ele-
ments of physical realism from weak video-based observations, and
(2) the recovered controller can be used to directly simulate respon-
sive virtual characters.

We argue that by restricting kinematic motion to instances gener-
ated by a control structure (parameters of which we optimize), we
can approximate general principles of motion, such as balance and
contact, allowing response behaviors to emerge automatically. Be-
cause our controller structure is sparse, we are able to integrate in-
formation locally from multiple (tens of) image frames which in-
duces smoothness in the resulting motion and resolves some of the
ambiguities that arise in monocular video-based capture, without
requiring a user-in-the-loop. The use of a controller also eliminates
unrealistic behaviors such as ground or segment penetrations which
are often found in results obtained by typical video-based motion
capture approaches.

We recover both the structure and parameters for a (sparse) con-
troller through incremental optimization and subsequent refine-
ment. To help resolve camera projection ambiguities and to re-
duce the number of optimized parameters, we also make use of
a weak motion capture-based PCA prior for the control pose tar-
gets encoded in each state. Our results are preliminary, but promis-

SIGGRAPH '12, August 05 - 09 2012, Los Angeles, CA, USA
Copyright 2012 ACM 978-1-4503-1433-6/12/08…$15.00.

http://doi.acm.org/10.1145/2185520.2185523
http://portal.acm.org/ft_gateway.cfm?id=2185523&type=pdf

ing. We are able to estimate controllers that capture the motion of
the subject automatically from monocular video. However, when
compared to most recent motion-specific controller architectures
obtained by optimizing biomechanically inspired objectives [Wang
et al. 2010] or using motion-capture as reference [Kwon and Hod-
gins 2010; Liu et al. 2010], the motions resulting from simulations
of our controllers appear somewhat robotic and overpowered. We
believe these issues are primarily due to approximations in the pa-
rameters of our model that make optimization from weaker and
noisier monocular image inputs tractable. In particular, we allow
joint torque limits that are higher than typical for a human. Other
flaws result from properties that are difficult to detect in monocular
video, such as the distinction between single and double support.

For many applications, particularly in graphics, the kinematic pose
trajectories recovered using marker or marker-less motion capture
technologies may not be sufficient as they are difficult to modify.
Consider a video-based marker-less motion capture system as an
input device for a video game. Recovering the skeletal motion may
not be sufficient because the game requires a responsive virtual
character that can adapt to the changing game environment (e.g.,
sloped ground plane). Such features currently fall outside the scope
of motion capture techniques and intermediate processing is typi-
cally necessary to produce a responsive character. The overarching
goal of this research is to directly recover controller(s) from video
capable of performing the desired motion(s). The proposed method
and illustrated results are a step towards that ambitious goal; that,
we hope, will serve as a stepping stone for future research. We
view this form of capture of the control parameters, in addition to
the joint angles, as a next step in the evolution of motion capture.

1.1 Related Work

The problems of video-based motion capture and bipedal control
have been studied extensively in isolation in the computer vision,
robotics, and computer graphics literature. Despite their research
history, both remain open and challenging problems. Approaches
that utilize physics-based constraints in estimation of human mo-
tion from video have been scarce to date. Given the significant
literature in the area, we focus on the most relevant literature.

Video-based Motion Capture: The problem of 3D motion cap-
ture from a relatively large number (4-8) of camera views is well
understood with effective existing approaches [Gall et al. 2009].
Three-dimensional motion-capture from monocular videos is con-
siderably more challenging and is still an open problem. Most ap-
proaches in computer vision that deal with monocular video either
rely on forms of Bayesian filtering, like particle filters, with data-
driven statistical prior models of dynamics (e.g., GPDM [Urtasun
et al. 2006]) to resolve ambiguities, or alternatively, on discrimi-
native, regression-based, predictions [Bo and Sminchisescu 2010]
that estimate the pose directly based on image observations and (op-
tionally) on a sequence of past poses [Sminchisescu et al. 2007].
Generative approaches tend to require knowledge of the activity a
priori, and both often produce noticeable visual artifacts such as
foot skate and inter-frame jitter. Below we review, in more detail,
relevant methods that focus on physics-based modeling as a way of
addressing these challenges.

The earliest work on integrating physical models with vision-based
tracking can be attributed to [Metaxas and Terzopoulos 1993; Wren
and Pentland 1998]. Both employed a Lagrangian formulation of
dynamics, within a Kalman filter, for tracking of simple upper body
motions using segmented 3D markers [Metaxas and Terzopoulos
1993] or stereo [Wren and Pentland 1998] as observations; both
also assumed motions without contacts. More recently, Brubaker
et al. [2008; 2007] introduced two 2D, biomechanically inspired

models that account for human lower-body walking dynamics; their
models were capable of estimating walking motions from monocu-
lar video using a particle filter as the inference mechanism. Simi-
lar to our approach in spirit, the inference was formulated over the
control parameters of the proposed model. In contrast, our model is
formulated directly in 3D and is not limited to walking.

Vondrak and colleagues [2008] proposed a full-body 3D physics-
based prior for tracking. The proposed prior took the form of a
control loop, where a model of Newtonian physics approximated
the rigid-body motion dynamics of the human and the environ-
ment through the application and integration of forces. This prior
was used as an implicit filter within a particle filtering framework,
where frame-to-frame motion capture-based kinematic pose esti-
mates were modified by the prior to be consistent with the underly-
ing physical model. The model, however, was only able to bias
results towards more physically plausible solutions and required
Gaussian noise to be added to the kinematic pose at every frame
to deal with noisy monocular image observations. In contrast, the
results obtained in this paper are directly a product of a simulation.

Wei and Chai [2010] proposed a system, where a physics-based
model was used in a batch optimization procedure to refine kine-
matic trajectories in order to obtain realistic 3D motion. The
proposed framework relied on manual specification of pose key-
frames, and intermittent 2D pose tracking in the image plane, to
define the objective for the optimization. In contrast, we optimize
control structure and parameters and do not rely on manual inter-
vention in specifying the target poses for our controller; we also
do not rely on manual specification of contacts or foot placement
constraints as in [Wei and Chai 2010] or [Liu et al. 2005].

There has also been relevant work on identification of models and
contacts. Bhat and colleagues [2002] proposed an approach for tak-
ing the video of a tumbling rigid body in free fall, of a known shape,
and generating a physical simulation of the object observed in the
video. Conceptually, their approach is similar to our goal, however,
they only dealt with a simple rigid object. Brubaker et al. [2009]
developed a method for factoring the 3D human motion (obtained
using a marker-based or standard marker-less multi-view motion
capture setup) into internal actuation and external contacts while
optimizing the parameters of a parametric contact model.

Biped Control: Biped controllers have a long history in computer
graphics and robotics. Existing approaches can be loosely catego-
rized into two classes of methods: data-driven and model-based.
Data-driven controllers rely on motion capture data and attempt to
track it closely while typically adding some form of bipedal bal-
ance (e.g., through quadratic programming [Silva et al. 2008], a
linear quadratic regulator [Silva et al. 2008], or non-linear quadratic
regulator [Muico et al. 2009]). The benefit of such methods is the
added naturalness in the motion that comes from motion capture
data. With data-driven methods, however, it is often difficult to
handle large perturbations and unanticipated impacts with the envi-
ronment. A notable exception is the approach of [Liu et al. 2010]
which allows physics-based reconstruction of a variety of motions
by randomized sampling of controls within user-specified bounds.
As a result, the original motion capture trajectories are effectively
converted into open-loop control. Model-based approaches typi-
cally correspond to sparse controllers represented by finite state ma-
chines for phase transition control (with optional feedback balanc-
ing mechanisms). Our approach falls within this category, which
we broadly refer to as state-space controllers. The benefit of this
class of models is their robustness and versatility.

State-space controller design has been one of the more success-
ful approaches to closed-loop simulation for human figures, dating
back to Hodgins et al. [1995]. State-space controllers encode de-

SIGGRAPH '12, August 05 - 09 2012, Los Angeles, CA, USA
Copyright 2012 ACM 978-1-4503-1433-6/12/08…$15.00.

sired motion as a sequence of simple control tasks and this strategy
has been effective in modeling variety of motions, including walk-
ing, running, vaulting and diving. Most methods augment such
models with balance control laws [Hodgins et al. 1995], making
them less reliant on environment and terrain. A particularly effec-
tive balance control law for locomotion tasks was introduced by
Yin and colleagues [2007]. State-space controllers have also been
shown to be composeable [Chu et al. 2007; Coros et al. 2009] and
even capable of encoding stylistic variations [Wang et al. 2010].
Until recently, however, most models relied on manual parameter
tuning. Several recent methods addressed automatic parameter es-
timation through optimization [Wang et al. 2009; Wang et al. 2010;
Yin et al. 2008]. In our formulation, we leverage work from this
literature (primarily [Wang et al. 2009]).

The simple control tasks within our state-space controller employ
constraint-based inverse dynamics actuation to drive the character
towards a target pose. This type of control is related to ideas of crit-
ically damped PD control dating back to [Ngo and Marks 1993].
However, unlike our controller, the constraints in their work are de-
fined and solved individually for each joint degree of freedom. A
very similar approach to ours, in terms of constraint-based control,
has recently been proposed by Tsai and colleagues [2010]. How-
ever, their goal was to track dense motion capture trajectories.

Contributions: To our knowledge, this paper is the first to pro-
pose a method for recovery of full-body bipedal controllers directly
from single-view video. Our method is capable of automatically
recovering controllers for a variety of complex, three-dimensional,
full-body human motions, including walking, jumping, kicking and
gymnastics. The inference is cast as a problem of optimal control,
where the goal is to maximize the reward function measuring con-
sistency of the simulated 3D motion with image observations (or
motion capture). The sparse nature of our controller allows esti-
mation of parameters from noisy image observations without over-
fitting. Recovered controllers also contain a feedback balancing
mechanism that allows replay in different environments and under
physical perturbations. With respect to previous work in charac-
ter bipedal control, our key contribution is the ability to optimize
controller structure and parameters from monocular video.

2 Overview

The goal of our method is to estimate motion and controller from
monocular video (or reference motion capture data). We optimize
the controller structure and parameters such that the resulting mo-
tion produces a good match to image observations. Our approach
has three important components:

Body model and motion: We start by introducing the basic for-
malism required to model the human body, its actuation and in-
teractions with the environment. The 3D kinematic pose of an ar-
ticulated human skeleton at time t is represented by a state vector
xt = [ρt,q

r
t ,q

k
t], comprising root position (ρt), root orientation

(qrt) and joint angles (qkt). Articulated rigid-body dynamics and in-
tegration provide a function for mapping the dynamic pose, [xt, ẋt],
at time t to the pose at the next time instant, [xt+1, ẋt+1] (where
ẋt is the time derivative of xt):

[xt+1, ẋt+1] = f([xt, ẋt], τt). (1)

This function is typically a numerical approximation of the con-
tinuous integration of internal joint torques, τt, with respect to the
current dynamic pose, [xt, ẋt].

Actuation: We propose a state-space controller for the actuation of
the body that divides the control into a sequence of simple atomic

(a) (b) (c)

Figure 2: Body Model and Likelihoods: Illustration of the body
model and the collision geometry used for simulation in (a) (see
Section 3); (b) and (c) illustrate the motion capture and image-
based likelihoods respectively (see Section 5).

actions, transitions among which occur on time or contact (see Sec-
tion 4.1). We formulate constraint-based action controllers that are
tasked with driving the simulated character towards a pre-defined
posture. More formally, the joint torques, τt, in Eq. (1) are pro-
duced by a controller π:

τt = π([xt, ẋt];SM ,Θ) (2)

where SM is the structure of the controller, M is the number of
states in the control structure (see Section 4.1) and Θ is a vector of
controller parameters. A particular controller structure SM induces
a family of controllers, where the parameters Θ define the behavior
of the controller. The simulation proceeds by iteratively applying
Eq. (1) and (2), resulting in a sequence of kinematic poses, x1:T ;
because this formulation is recursive, initial kinematic pose x0 and
velocities ẋ0 are also needed to bootstrap integration.

Estimating controllers: The key aspect of our method is optimiza-
tion of the controller structure (S∗M), the parameters of the con-
troller (Θ∗), the initial pose (x∗0) and the velocities (ẋ∗0) in order
to find a motion interpretation that best explains the observed be-
havior. This optimization can be written as a minimization of the
energy function:

[Θ∗,S∗M ,x∗0, ẋ∗0] = arg min
Θ,SM ,x0,ẋ0

E(z1:T), (3)

that measures the inconsistency between the poses produced by the
dynamic simulation (integration) with the controller and the image
(or reference motion capture) observations, z1:T . In order to pro-
duce controllers that can generalize, the energy function also mea-
sures the quality of the controller itself in terms of its robustness
and stability.

Because optimizing both controller structure and parameters is dif-
ficult, we first formulate a batch optimization over the controller
parameters assuming a fixed controller structure and then introduce
an incremental optimization procedure over the structure itself by
utilizing the batch optimization as a sub-routine. We further re-
fine the structure of the resulting controllers, by applying structural
transformations and re-optimizing the parameters. The exact for-
mulation of our objective function is given in Section 5.

3 Body Model and Motion

We use a generic model of the human body that represents an av-
erage person. We encode the human body using 18 rigid body seg-
ments (with upper and lower segments for arms and legs, hands,
two segment feet, three segment torso, and head). The center of
mass and inertial properties of the segments are taken from popula-
tion averages and biomechanical statistics [Dempster 1955]. For the

SIGGRAPH '12, August 05 - 09 2012, Los Angeles, CA, USA
Copyright 2012 ACM 978-1-4503-1433-6/12/08…$15.00.

after 0.20 s

on left foot
contact

after 0.27 s

on right
foot

contact

on right foot
contact

Figure 3: State-space Controller: Walking motion as an iterative
progression of simple control tasks (circles), transitions (arrows)
and the initial pose (yellow box); structure and controller parame-
ters were obtained by Algorithm 4 applied on the fast walk motion.

purposes of simulation, each segment is parameterized by position
and orientation in 3D space and has an associated collision geom-
etry composed of geometric primitives (see Figure 2(a))1. Physical
and environment restrictions are encoded using constraints. In par-
ticular, we impose (i) joint constraints that ensure that segments
stay attached at the joints and have only certain relative degrees
of freedom (e.g., we model the knee and elbow as 1 DOF hinge
joints), (ii) joint limit constraints that ensure that unconstrained de-
grees of freedom are only allowed to articulate within allowable
ranges (e.g., to prevent hyperextension at elbows and knee joints),
(iii) body segment non-penetration constraints and environmental
constraints that model contact and friction. All three types of con-
straints are automatically generated by the simulator. Note that even
though in simulation the state of our character is∈ R108 (18 parts×
6 DOFs per part), for the purposes of actuation and control we only
consider the state xt = [ρt,q

r
t ,q

k
t] ∈ R40 comprising root posi-

tion, root orientation and joint angles; where xt effectively spans
the null space of the joint constraints.

These constraints result in a large system of equations that can
be expressed as a mixed linear complementarity problem (Mixed
LCP), see [Pang and Facchinei 2003; Tsai et al. 2010]. Mixed
LCP solvers can be used to solve this problem efficiently, yield-
ing a set of forces (and torques) required to satisfy all of the above
mentioned constraints; we use a publicly available implementation
[Crisis 2006]. We provide more complete details of the Mixed LCP
formulation, solution and contact model in the Appendix.

4 Actuation

We formulate our controller using constraints and directly integrate
these constraints with the body and simulator-level constraints dis-
cussed above. As a result, the augmented Mixed LCP solution
takes the actuation torques into account to ensure that the constraint
forces anticipate the impact of actuation on the system.

We assume a SIMBICON [Yin et al. 2007] style controller, where
a motion can be expressed as a progression of simple control tasks.
Such paradigms have also been proposed in biomechanics (e.g.,
[Schaal and Schweighofer 2005]) and amount to a hypothesis that
the control consists of higher level primitives that compose to create
the desired motion.

1We make the collision geometries for the upper legs shorter to avoid
unintended collisions.

4.1 State-space Controller

An action-based (state-space) controller can be expressed as a fi-
nite state machine (see Figure 3) with M states, where states cor-
respond to the atomic control actions and transitions encode the
rules under which the actions switch. Actions switch on timing or
contact events (e.g., foot-ground contact). For example, a walking
controller that can be expressed in this way (and estimated by our
method) is shown in Figure 3.

We denote the structure of the controller by SM . The structure
describes which atomic actions need to be executed and how the
actions switch in order to produce a desired motion for the char-
acter. We characterize the structure using a schematic representa-
tion that consists of (1) actions, denoted by �i, (2) the types of
transitions among those actions, which are denoted by arrows with
associated discrete variables κi, i ∈ [1,M], indicating when the
transition can be taken (e.g., κi = T for transition on time, κi = L
for transition on left foot contact, and κi = R for transition on
right foot contact), and (3) a symbol ⊕ −→ to indicate initial pose
and velocity at simulation start. A chain controller for one sin-
gle walk cycle in our representation may look something like this:
S4 = {⊕ −→ �1

κ1=L−→ �2
κ2=T−→ �3

κ3=R−→ �4}.

The behavior of the controller is determined by parameters describ-
ing the actions and transitions within the given controller struc-
ture. The parameters of a state-space controller can be expressed
as Θ = [(s1, θ1, ϑ1), (s2, θ2, ϑ2), . . . , (sM , θM , ϑM), ν1, ν2, . . .],
where si is the representation of the target pose, for the angular
configuration [qr,qk] of the body that the controller is trying to
achieve while executing �i and θi and ϑi are parameters of the
corresponding control and balance laws, respectively, used to do
so; νi are transition timings for those states where transitions hap-
pen based on time (κi = T). We also define a function g(si) that
maps si into the angle representation2 of [qr,qk].

State-space controllers allow concise representation of motion dy-
namics through a sparse set of target poses and parameters; in
essence allowing a key-frame-like representation [Wei and Chai
2010] of the original motion. The use of this sparse representa-
tion allows more robust inference that is not as heavily biased by
the noise in the individual video frames. Despite the sparsity, how-
ever, the representation still allows the expressiveness necessary to
model variations in style and speed [Wang et al. 2010] that we ob-
serve in video.

4.1.1 Encoding Atomic Control Actions

The function of the atomic controller is to produce torques neces-
sary to drive the pose of the character towards a target pose g(si)
while keeping the body balanced. We extend the method of Yin and
colleagues [2007] for control and balance to set up the control laws.
As in [Yin et al. 2007], we maintain balance of the body by (1) us-
ing an active feedback mechanism to adjust the target pose and (2)
applying torques on the body in order to follow the prescribed target
orientation for the root segment. To make the method more robust,
we replace Yin’s Proportional Derivative (PD)-servo with control
based on inverse dynamics. The control behavior is determined by
the values of the control parameters θi and balance parameters ϑi.
Intuitively, these parameters encode how the target pose should be
adjusted by the balance feedback mechanism and define the speed
with which the adjusted pose should be reached.

2The simplest case is where the encoding of the target pose is the same
as [qr,qk], g(si) = si; a more effective representation is discussed in
Sec. 4.1.2.

SIGGRAPH '12, August 05 - 09 2012, Los Angeles, CA, USA
Copyright 2012 ACM 978-1-4503-1433-6/12/08…$15.00.

Algorithm 1 : Application of control forces
1: Solve for τt using inverse dynamics to satisfy Eq. (4) and Eq. (5) and apply τt
2: Determine by how much Eq. (6) is violated:

τrerror = τrt +
∑

k∈Neighbor(r)

τkt

3: Apply−τrerror to the swing upper leg

Control: We formulate our atomic controllers based on constraints
(similar to [Tsai et al. 2010]). Assuming that the body is currently
in a pose xt, and the state-machine is executing an action from the
finite state �i, we define an atomic controller using pose differ-
ence stabilization. A stabilization mechanism imposes constraints
on the angular velocity of the root, q̇rt , and joint angles, q̇kt , [Cline
2002] in order to reduce the difference between the current pose
and the adjusted target pose [qrd,q

k
d], where [qrd,q

k
d] is obtained

by modifying the target pose g(si) from the machine state by the
balance feedback. As a result, the atomic controller defines these
constraints:

{q̇rt = −αri (qrt − qrd)} (4)

{q̇kt = −αki (qkt − qkd)}, (5)

parameterized by αi. The set of control parameters for our model
is then θi = {αi}. To reduce the number of control parameters that
are optimized, left side and the right side of the body share the same
parameter values.

Underactuation: The formulation above directly controls the
global orientation of the root, which is essential for balance. As
in Yin and colleagues [2007], it does so by directly applying forces
on the root segment. However, actuation forces should only be pro-
duced by joints in the body model and the root should be unactu-
ated. Consequently, this control is only valid if the net torque on
the root segment is equal and opposite to the sum of torques of all
connected segments:

{τrt = −
∑

k∈Neighbor(r)

τkt }. (6)

Because we cannot express Eq. (6) directly as a constraint with
Eq. (4) and Eq. (5), we employ a prioritized approach. This ap-
proach satisfies Eq. (6) exactly and uses a “best effort” strategy to
satisfy the other two constraints (Eq. (4) and Eq. (5)). Towards that
end, we use the method from Yin and colleagues [2007] to decom-
pose extra torques applied at the root to additional reaction torques
applied at the thighs (see Algorithm 1).

We first solve for the torques τt that satisfy Eq. (4) and Eq. (5) us-
ing inverse dynamics (ignoring Eq. (6)) and apply the torques to
the character. We then compute τrerror — the amount of violation
in Eq. (6). The value of τrerror equals exactly the “extra” torque
received by the root segment that is not “explained” by any of the
joints attached to the root. To alleviate this error, we apply the cor-
responding reaction torque−τrerror to the swing upper leg segment
(to ensure that Eq. (6) holds). This approach is similar to Yin and
colleagues [2007]. As a result of this correction, Eq. (6) and Eq. (4)
hold exactly and Eq. (5) may slightly be violated due to the−τrerror
torque applied at the swing upper leg.

Balance feedback: The constraints on the root segment attempt to
maintain the world orientation of the character. Active feedback
mechanisms, however, may be necessary to prevent falling when
the environment changes or perturbations are applied. We general-
ize the balance feedback mechanism of Yin and colleagues [2007]
to dynamically adjust the target orientation of the swing upper leg
from g(si). The feedback mechanism uses three additional control
parameters encoded into a vector ϑi ∈ R3.

d

COP

Desired pose for
swing leg from state

COM Ground-plane projection
d┴ of d

Adjusted desired
pose for swing leg

Desired pose for
stance leg from state

Figure 4: Balance Feedback: Target orientation of the swing up-
per leg (yellow) is the result of blending between the target orien-
tation stored in the state (green) and an orientation where the leg
points along the ground-plane projection d⊥ of d (red), produced
by the feedback mechanism.

Intuitively, the purpose of the balance control law is to affect the
motion of the swing foot in order to move the character toward a
balanced pose where the center of mass (COM) is above the center
of pressure (COP). The feedback is implemented by synthesizing
a new target orientation for the swing upper leg and using it as a
target (Figure 4). The controller will then track an adjusted target
pose [qrd,q

k
d], where the target orientation qk,SULd for the swing

upper leg is set as qk,SULd = slerp(g(si)
k,SUL, orient(d⊥), ϑi,3),

where slerp is a spherical linear interpolation function, SUL refers
to the DOFs representing the orientation of the swing upper leg in
the pose, d = ϑi,1(COM−COP) +ϑi,2(˙COM− ˙COP), d⊥

is d projected to the ground plane and orient(d⊥) produces a leg
orientation such that the leg’s medial axis points along d⊥. The
remaining DOFs within [qrd,q

k
d] are copied from g(si).

Force Limits: To ensure that the controller does not apply super-
human forces, we limit the joint torques via limits on the solu-
tion to the Mixed LCP problem. We limit the torques generated
about the individual joint axes, where a joint is defined between
parent and child segments with masses mparent and mchild, us-
ing a single parameter γ = 120: −γmparent+mchild

2
≤ τaxist ≤

γ
mparent+mchild

2
. Intuitively, these bounds implement the notion

that heavier body segments contain larger muscle volume and hence
can apply larger torques about the joint.

When we solve for control torques, control constraints are automat-
ically combined with all other constraints in our simulator to antic-
ipate effects of body articulation and contact. Our constraint-based
control is different from a PD-servo. A PD-servo assumes that the
control torques are linear functions of the differences between the
current and the target poses of the body. It also assumes that each
degree of freedom can be controlled independently and relies on a
feedback mechanism to resolve the resulting interactions within the
system. In contrast, our control mechanism solves for the torques
necessary to approach the target pose, by explicitly taking into con-
sideration constraints present among rigid body segments and the
environment. Because we may not want to reach the target pose
immediately, parameters αi modulate the fraction of the pose dif-
ference to be reduced in one simulation step. More exact control
and less reliance on feedback allow us to simulate at much lower
frequencies (e.g., 120 Hz).

4.1.2 Parameterization for si

The vector si encodes the representation of the target pose g(si)
for the machine state �i, where the function g(si) maps si into the
angle representation of [qr,qk]. For a given class of motions, it
is reasonable to assume that g(si) should lie within a manifold of
poses likely for that motion. To this end, we propose a PCA prior

SIGGRAPH '12, August 05 - 09 2012, Los Angeles, CA, USA
Copyright 2012 ACM 978-1-4503-1433-6/12/08…$15.00.

for g(si). We learn a linear basis U from training motion capture
data3 using SVD and let,

g(si) = Usi + b. (7)

We then only need to store PCA coefficients si in the parameter
vector Θ. We keep enough principal components to account for
95% of the variance in the data. The PCA representation of poses
significantly reduces the dimensionality of our pose search space
from 40M (whereM is the number of states in the state-space con-
troller) to roughly 8M for most motions. We also found this method
to lead to faster and more robust convergence. We add a uniform
prior on si such that the coefficients are within ±4σ. Similarly, we
assume that the initial kinematic pose can be encoded in the same
PCA space, so that x0 = Us0 + b, and optimize s0 instead of x0.

We train activity-specific PCA priors from marker-based motion
capture obtained off-line. In this way, we obtain a family of models
{Ui,bi} where i is over the set of activities considered (five PCA
models for walk, jump, spin kick, back handspring and cartwheel)
as well as an activity-independent model {U0 = I40×40,b0 =
040}. Because, in practice, we do not know the type of activity be-
ing performed at test time, we run our framework with each prior
and choose the resulting controller that best fits observations ac-
cording to the objective function E(z1:T).

Unlike traditional kinematic prior models, we use PCA priors in a
very limited way — to parameterize target poses in the controller
so that we can capture important correlations between joint angles
that otherwise may not be observable, or well constrained, by the
image observations. In doing so, we do not make use of any tempo-
ral information present in the data and allow targets to significantly
exaggerate poses. We found PCA priors unnecessary when opti-
mizing from less ambiguous data (e.g., reference motion capture or
favorable videos).

4.1.3 Transitions

In our framework, state transitions within a state-space controller
can happen on timing (κi = T) or contact events (κi ∈ {L,R}).
Transitions on timing happen once the simulation time spent in the
state is ≥ νi for the current state i. Transitions on contact events
happen when the associated body segment is supported by a contact
force, as determined by the simulator.

5 Estimating Controllers

In order to obtain a controller that approximates the motion in the
video (or in the reference motion capture), we need to estimate both
the structure of the controller appropriate for the given motion, SM
(including number of states M and the types of transitions κi) and
parameters, Θ, of the controller optimized to fit the observations
and the priors; as well as the initial pose, x0, and velocities, ẋ0.
This optimization amounts to minimizing the objective function, in
Eq. (3) with respect to SM , Θ, x0 and ẋ0. Our objective function,

E(z1:T) = λlElike + λsEstability + λpEprior + λcEcontact, (8)

contains four terms measuring the inconsistency of the simulated
motion produced by the controller with the image-based (or refer-
ence motion capture) observations and the quality of the controller
itself; where λi are weighting factors designating the overall impor-
tance of the different terms. We now describe the four error terms.

Image-based Likelihood: The key component of the objective
function is the likelihood term, Elike. In the image case, it mea-
sures the inconsistency of the simulated motion, x1:T , with the

3We encode each angle as [sin(·), cos(·)] to avoid wrap around.

foreground silhouettes, z1:T . Assuming that the likelihood is inde-
pendent at each frame, given the character’s motion, we can mea-
sure the inconsistency by adding up contributions from each frame.
We determine this contribution by projecting a simulated character
into the image (assuming a known camera projection matrix) and
computing the difference from image features at each pixel. We
adopt a simple silhouette likelihood [Sigal et al. 2010] and define a
symmetric distance between the estimated binary silhouette mask,
Ses (see Figure 2 (c), green blob), at time s, and the image binary
silhouette mask, Sit (see Figure 2 (c), red blob), at time t. This ap-
proach results in the following formulation for the energy term that
we optimize as part of the overall objective:

Elike =

T∑
t=1

Bt,t
Bt,t + Yt,t

+
Rt,t

Rt,t + Yt,t
, (9)

where the Yt,s, Rt,s and Bt,s terms count pixels in the
Sit ∧ Ses , Sit ∧ ¬Ses and ¬Sit ∧ Ses masks, that is, Yt,s =∑

(x,y) S
i
t(x, y)Ses(x, y), Rt,s =

∑
(x,y) S

i
t(x, y) [1− Ses(x, y)]

and Bt,s =
∑

(x,y)

[
1− Sit(x, y)

]
Ses(x, y). We estimate silhou-

ettes in video using a standard background subtraction algorithm
[Elgammal et al. 2000]. The background model comprised the
mean color image and intensity gradient, along with a single 5D
covariance matrix (estimated over the entire image).

Motion Capture Likelihood: To use reference motion capture data
instead of video data to estimate controllers, we define a motion
capture likelihood as a sum of squared differences between the
markers attached to the observed skeleton and the simulated mo-
tion. In particular, we attach three markers to every segment and let

Elike =

T∑
t=1

18∑
j=1

3∑
k=1

||mi
t,j,k −me

t,j,k||22 (10)

wheremi
t,j,k ∈ R3 is the location of the k-th marker attached to the

j-th segment at time t (computed using forward kinematics) from
the reference motion capture and me

t,j,k ∈ R3 is the location of
k-th marker attached to the j-th segment of the simulated character.

Stability: The likelihood defined above will result in controllers
that may fail near the end of the sequence because the optimiza-
tion has a short horizon. We make an assumption that subjects in
our video sequence end up in a stable posture. To ensure that the
controller ends up in a similar, statically stable pose, we add an ad-
ditional term that measures inconsistency of the simulation for time
∆T past time T , where T is the time of the last observation. We
reuse the formulation of Elike in Eq. (9) and define this term as

Estability =

T+∆T∑
t=T+1

BT,t
BT,t + YT,t

+
RT,t

RT,t + YT,t
. (11)

Prior: To bias the solution towards more likely interpretations, we
propose a prior over the state-space control parameters. Gener-
ally, there are four types of parameters that we optimize: repre-
sentation of the target poses for atomic controllers, si, parameters
of atomic controllers, αi, transition times, νi, and balance feed-
back parameters, ϑi; in addition, we optimize the initial pose x0

and velocities ẋ0. For αi, νi, ϑi we use uninformative uniform
priors over the range of possible values: αi ∼ U(0.001, 0.2),
νi ∼ U(0.1, 0.5), ϑi,1 ∼ U(−1, 1), ϑi,2 ∼ U(−1, 1) and ϑi,3 ∼
U(0, 1). We also impose a uniform prior on si, si ∼ U(−4σ, 4σ).
The uniform priors over parameters are encoded using a linear
penalty on the values of the parameters that are outside the valid
range. In particular, for every variable, v, with a uniform prior
v ∼ U(a, b), we add the following term to the prior, Eprior(Θ):
|max(0, v − b)|+ |min(0, v − a)|.

SIGGRAPH '12, August 05 - 09 2012, Los Angeles, CA, USA
Copyright 2012 ACM 978-1-4503-1433-6/12/08…$15.00.

Contact: In our experience, controllers optimized with these ob-
jectives often result in frequent contact changes. This issue is par-
ticularly problematic for low clearance motions like walking. For
example, a walking controller may stumble slightly if that helps to
produce a motion that is more similar to what is observed in video
or reference motion capture. This behavior hinders the ability of
the controller to be robust to perturbations in the environment. To
address this issue, we assume that there is no more than one con-
tact state change between any two consecutive atomic actions in the
state-space controller. This policy is motivated by the observation
that contact state change yields discontinuity in the dynamics and
hence must be accompanied by a state transition. State transitions,
however, may happen for other reasons (e.g., performance style).
To encode this knowledge in our objective, we define a contact state
change penalty term: Econtact =

∑M−1
i=i c(i), where

c(i) =

{
0 0 or 1 contact change between �i and �i+1

10, 000 > 1 contact change between �i and �i+1

We define a contact state change as one or more body segments
changing their contact state with respect to the environment.

5.1 Optimization

Now that we have defined our objective function, we need to opti-
mize it with respect to SM , Θ, x0, ẋ0 to obtain the controller of in-
terest. The parameters Θ are in general closely tied to the structure
of the controller SM . We first formulate a batch optimization over
the controller parameters assuming a known and fixed controller
structure SM and then introduce an iterative optimization over the
structure itself by utilizing the batch optimization as a sub-routine.

For all our optimizations we use gradient-free Covariance Matrix
Adaptation (CMA) [Hansen 2006]. CMA is an iterative genetic
optimization algorithm that maintains a Gaussian distribution over
parameter vectors. The Gaussian is initialized with a mean, µ, en-
coding initial parameters, and diagonal spherical covariance matrix
with variance along each dimension equal to σ2. CMA proceeds by:
(1) sampling a set of random samples from this Gaussian, (2) eval-
uating the objective E(x1:T) for each of those samples (this step
involves simulation), and (3) producing a new Gaussian based on
the most promising samples and the mean. The number of samples
to be evaluated and to be used for the new mean is chosen automat-
ically by the algorithm based on the problem dimensionality.

5.1.1 Batch Optimization of Controller Parameters

Given a state-space controller structure, SM , batch optimization in-
fers the controller parameters Θ = [(s1, α1, ϑ1), (s2, α2, ϑ2), . . .,
(sM , αM , ϑM), ν1, ν2, . . .] and the initial pose x0 and velocity
ẋ0 of the character by minimizing the objective function E(z1:T).
The optimization procedure (integrated with CMA) is illustrated in
Algorithm 2. Batch optimization is useful when we have a reason-
able guess for the controller structure. Batch optimization of cyclic
controllers is particularly beneficial because weak observations for
one motion cycle can be reinforced by evidence from other cycles,
making the optimizations less sensitive to observation noise and
less prone to overfitting to local observations.

Reliance of Θ on the controller structure SM suggests an approach
where we enumerate the controller structures, estimate parameters
in a batch, as above, and choose the best structure based on the over-
all objective value. Unfortunately, such an enumeration strategy is
impractical because the number of possible controllers is exponen-
tial in M . For example, see Figure 8 for an illustration of a com-
plicated gymnastics motion that we estimate to require M = 20
states. In addition, without good initialization, in our experience,

Algorithm 2 : Controller batch optimization using CMA
[Θ,x0, ẋ0, E] = BatchOp (SM ,x0,Z,U,b,Θ, ẋ0)

Input: State-space controller structure (SM); initial pose (x0); PCA prior (U, b);
observations / image features (Z = {z0, z1, . . . , zT })

Optional Input: Controller parameters (Θ); initial velocity (ẋ0);
Output: Controller parameters (Θ); initial pose (x0); initial velocity (ẋ0); objective

value (E)
1: if ẋ0 = ∅, Θ = ∅ then
2: Initialize initial velocity: ẋ0 = 0
3: Initialize controller parameters (Θ):

si = s0, αi = 0.1, ϑi = [0, 0, 0], νi = 0.25 ∀i ∈ [1,M]
4: end if
5: Project initial pose onto PCA space: s0 = U−1(x0 − b)
6: Initialize variance: Σ = Iσ
7: Initialize mean: µ = [Θ, s0, ẋ0]T

8: for i = 1→ NITER do
9: for j = 1→ NPOPULATION do

10: Sample controller parameters and initial pose:
[Θ(j), s

(j)
0 , ẋ

(j)
0] ∼ N (µ,Σ)

11: Reconstruct initial pose:
x
(j)
0 = Us

(j)
0 + b

12: for t = 1→ T + ∆T do
13: Control and simulation:[

x
(j)
t

ẋ
(j)
t

]
= f

([
x
(j)
t−1

ẋ
(j)
t−1

]
, π

([
x
(j)
t−1

ẋ
(j)
t−1

]
,Θ(j)

))
14: end for
15: Compute objective:

E(j) = λlElike + λsEstability + λpEprior + λcEcontact

16: end for
17: [µ,Σ] = CMA update (µ,Σ, {Θ(j), s

(j)
0 , ẋ

(j)
0 , E(j)})

18: end for
19: Let j∗ = arg minj E

(j)

20: return Θ(j∗), x
(j∗)
0 , ẋ

(j∗)
0 , E(j∗)

optimization of the high-dimensional parameter vector often gets
stuck in local optima. To alleviate these problems, we propose an
approach for estimating the controller structure incrementally that
also gives us an ability to have better initializations for optimization
of control parameters.

5.1.2 Incremental Optimization of Controller Structure

Our key observation is that we can optimize controllers incremen-
tally, such that the controller structure can be estimated locally
and simultaneously with estimation of control parameters. Our ap-
proach greedily selects the structure and the parameters of the con-
troller as new observations are added (see Figure 5). The basic
idea is to divide the hard high-dimensional batch optimization over
the entire sequence into a number of easier lower-dimensional opti-
mization problems over an expanding motion window. To this end,
we start with a simple generic initial controller with one state and
incrementally construct a state chain in stages that eventually ex-
plains the entire motion observed in the video. At each stage, we
expand the current window by Ts frames and re-optimize the cur-
rent controller to fit the frames in the window, adding new states to
the chain as is necessary (see Algorithm 3).

The incremental optimization proceeds in stages. At the first stage,
the first Ts frames of the video sequence (the initial motion win-
dow) are optimized using batch optimization (see Algorithm 3,
lines 2-3), assuming a fixed initial controller structure with only one
state, S1 = {⊕ −→ �1}. At all later stages, the current motion
window is expanded by the subsequent Ts frames from the video
sequence (or reference motion capture) and the new window is re-
optimized using a number of local optimizations until the whole
motion is processed. The purpose of the local optimizations is to
propose possible updates to the current controller (mainly the addi-
tion of a state to the current chain). At each stage, the addition of
a state to the current chain is proposed and tested by re-optimizing
the controller with and without this addition. The controller for

SIGGRAPH '12, August 05 - 09 2012, Los Angeles, CA, USA
Copyright 2012 ACM 978-1-4503-1433-6/12/08…$15.00.

Algorithm 3 : Incremental optimization of chain controller
[SM ,Θ,x0, ẋ0, E] = IncremOp (x0,Z,U,b)

Input: Initial pose (x0); PCA prior (U, b); observations / image features (Z =
{z0, z1, . . . , zT })

Output: State-space controller structure (SM); controller parameters (Θ); initial
pose (x0); initial velocity (ẋ0); objective value (E)

1: Number of observations to add per stage:
Ts = T/NSTAGES

2: Initialize controller structure:
M = 1 S1 = {⊕ −→ �1}

3: Optimize parameters:
[Θ,x0, ẋ0, E] = BatchOp (S1,x0, z1:Ts ,U,b)

4: for i = 2→ NSTAGES do
5: Re-optimize parameters:

[Θ,x0, ẋ0, E] = BatchOp (SM ,x0, z1:iTs ,U,b,Θ, ẋ0)
6: Try to add a state:

S+
M = {SM

κM=T
−→ �M+1}

[Θ+,x+
0 , ẋ

+
0 , E

+] = BatchOp (S+
M ,x0, z1:iTs ,U,b,Θ, ẋ0)

7: ifE+ < E then
8: SM+1 = S+

M M = M + 1

9: [Θ,x0, ẋ0, E] = [Θ+,x+
0 , ẋ

+
0 , E

+]
10: end if
11: end for

St
ag

e
1

St
ag

e
2

Initial pose and velocities
State in the controller

Stage 3

States being optimized

Frames used in objective function

3×

3×

3×

3×

3×

3×

3×

3×

3×

Figure 5: Incremental Optimization: Illustration of the incre-
mental construction of the state chain. At each stage, a number of
local changes are proposed to the current controller. The new con-
trollers are reoptimized and the controller with the lowest objective
value is chosen for the next stage.

the next stage is chosen based on the best objective value after re-
optimization. See Figure 5 for an illustration of the process.

Implementation Details: To avoid the optimization of longer and
longer chains and to make the optimizations efficient, we only opti-
mize the last one or two states in the controller (this approximation
gives us a fixed compute time regardless of the number of states in
the controller structure). Note this approximation is not illustrated
in Algorithm 3 due to the complexity of notation it would entail (but
it is illustrated in Figure 5). In addition, we found it effective to run
multiple BatchOp optimizations when executing Algorithm 3. In
particular, for every instance of BatchOp in Algorithm 3 we run six
BatchOp optimizations: optimizing the last one or two states, each
with three different seeds, and choose the best.

5.1.3 Controller Structure Refinement

The incremental optimization described in the previous section al-
lows us to fit control to video or reference motion capture. The
chain structure of the controller and transitions on timing make the

Algorithm 4 : Complete optimization with structure refinement
[SM ,Θ,x0, ẋ0, E] = IncremPlusRefinement (x0,Z,U,b)

Input: Initial pose (x0); PCA prior (U, b); observations / image features (Z =
{z0, z1, . . . , zT })

Output: State-space controller structure (SM); controller parameters (Θ); initial
pose (x0); initial velocity (ẋ0); objective value (E)

1: Incremental optimization:
[SM ,Θ,x0, ẋ0, E] = IncremOp (x0,Z,U,b)

2: Structure transformation (for contact transitions):
S
′
M = T⊥(SM)

[Θ
′
,x
′
0, ẋ
′
0, E

′
] = BatchOp (S

′
M ,x0,Z,U,b,Θ, ẋ0)

3: ifE
′
< E(1 + δ) then

4: [SM ,Θ,x0, ẋ0, E] = [S
′
M ,Θ

′
,x
′
0, ẋ
′
0, E

′
]

5: end if
6: Structure transformation (for cyclicity):

S
′
M = T∞(SM)

[Θ
′
,x
′
0, ẋ
′
0, E

′
] = BatchOp (S

′
M ,x0,Z,U,b,Θ, ẋ0)

7: ifE
′
< E(1 + δ) then

8: [SM ,Θ,x0, ẋ0, E] = [S
′
M ,Θ

′
,x
′
0, ẋ
′
0, E

′
]

9: end if

controller well behaved and easier to optimize. However, this con-
trol structure may not be optimal in terms of stability or compact-
ness. Therefore, we propose an additional refinement on the con-
troller structure.

We make the following observation: there exists an equivalence
class of controllers all of which can simulate the same motion. For
example, a one-and-a-half cycle walking controller can be repre-
sented in at least three different ways:
(1) using a chain controller with transitions on timing:
S6 = {⊕ −→ �1

κ1=T
−→ �2

κ2=T
−→ �3

κ3=T
−→ �4

κ4=T
−→ �5

κ5=T
−→ �6}

(2) using a chain controller with some transitions on contact:
S
′
6 = {⊕ −→ �1

κ1=L
−→ �2

κ2=T
−→ �3

κ3=R
−→ �4

κ4=T
−→ �5

κ5=L
−→ �6} , or

(3) using a cyclic controller:
S4 = {⊕ −→ �1

κ1=L
−→ �2

κ2=T
−→ �3

κ3=R
−→ �4

κ4=T
−→ �1} .

All of these controllers produce exactly the same simulation results
with the same atomic action controllers (assuming stable gait and
that transitions on time in S6 are chosen coincident with contact
events in S

′
6 and S4). However, S

′
6 and S4 are more robust and S4

is more compact in terms of representation; so in practice we would
likely prefer S4 over the alternatives.

In the chain controllers obtained in the previous section, we of-
ten see that transitions on time encoded in the control structure
coincide with contact events (within a few frames). In fact, the
contact term in our objective function implicitly helps to enforce
such transitions. We take advantage of this observation and propose
two transformation functions that can take the chain controllers and
transform their structure to make them more robust and compact as
above (Algorithm 4). We define a transformation S

′
M = T⊥(SM)

that replaces transitions on timing with appropriate transitions on
contact in SM if the timing transition is within 0.2 s of the contact
(and there is only one contact change within the 0.2 s window).
Because timing events often do not happen exactly on contact, but
close to it (hence the time threshold), we also re-optimize parame-
ters with the Θ obtained in Section 5.1.2 as the initial guess. Sim-
ilarly, we define a transformation that greedily looks for cyclicity
S
′
M = T∞(SM) by comparing the type of transition, target pose

and control parameters to previous states. Again, after the transfor-
mation was applied, the parameters are re-optimized with a good
initial guess to account for minor misalignment. Transformed con-
trollers are chosen instead of the simple chain controller if the re-
sulting objective value is within δ = 15% of the original. This use
of δ approximates the minimum description length criterion that al-
lows us to trade off fit to data for compactness of representation.

SIGGRAPH '12, August 05 - 09 2012, Los Angeles, CA, USA
Copyright 2012 ACM 978-1-4503-1433-6/12/08…$15.00.

Motion (mocap) Frames Batch Inc Refined Structure
Fast walk 207 3.9 cm 2.3 cm 2.4 cm ⊕ −→ �1

κ1=R−→ �2
κ2=T−→ �3

κ3=L−→ �4
κ4=T−→ �5

κ5=R−→ �2

Jump 241 7.4 cm 4.6 cm 4.3 cm ⊕ −→ �1
κ1=T−→ �2

κ2=T−→ �3
κ3=T−→ �4

κ4=T−→ �5

Twist jump 226 7.0 cm 4.4 cm 4.4 cm ⊕ −→ �1
κ1=T−→ �2

κ2=T−→ �3
κ3=T−→ �4

κ4=L−→ �5
κ5=T−→ �6

Spin kick 131 10.6 cm 9.4 cm 9.2 cm ⊕ −→ �1
κ1=T−→ �2

κ2=T−→ �3
κ3=T−→ �4

Cartwheel 175 21.5 cm 11.8 cm 11.8 cm ⊕ −→ �1
κ1=T−→ �2

κ2=T−→ �3
κ3=R−→ �4

κ4=T−→ �5
κ5=L−→ �6

κ6=T−→ �7

Back handspring 775 — 6.3 cm 6.3 cm ⊕ −→ �1
κ1=T−→ �2

κ2=T−→ . . .
κ18=T−→ �19

κ19=T−→ �20

Figure 6: Controller optimization from reference motion capture: Incremental optimization performs better than batch optimization, and
the refinement step further improves the fit resulting in a more robust controller structure.

Motion (video) Frames Batch Inc Refined
Fast walk 207 6.7 cm 4.2 cm 4.2 cm
Jump 241 9.5 cm 6.8 cm 6.8 cm
Twist jump 226 11.9 cm 9.6 cm 9.6 cm
Back handspring 154 33.3 cm 17.6 cm 17.5 cm
VideoMocap jump 91 N/A N/A N/A

Figure 7: Controller optimization from monocular video: In-
cremental optimization performs considerably better than batch.

Figure 9: Video Result: Input jump sequence from VideoMocap
(top), reconstructed motion simulated by the controller estimated
from the video (middle), new motion simulated in a modified envi-
ronment (bottom).

6 Experiments

We collected a dataset consisting of motions with synchronized
video and motion capture data. Motion capture data was recorded at
120 Hz and video at 60 Hz using a progressive scan 1080P camera.
To speed up the likelihood computations, we sub-sample observed
silhouette images to 160 × 90. Motions in this dataset include:
jump, twist jump, spin kick, back handspring, cartwheel and fast
walk. To enable comparison with previous work, we also make
use of the 30 Hz jump sequence from VideoMocap [Wei and Chai
2010] in our experiments. For sequences where calibration is un-
available, we solve for calibration using an annotation of joint loca-
tions in the first frame, assuming a fixed skeleton for the character.
While the appearance of the subject in all these sequences is rela-
tively simple, we want to stress that we make no use of this aspect
in our likelihood or optimization and only use generic foreground
silhouettes as observations. All PCA models were learned from a
single adult male subject4, but are applied to other subjects in our
test set (e.g., jump from [Wei and Chai 2010]).

4We took motion capture from the subject performing fast walk, jump,
twist jump and spin kick to train our PCA models. For those sequences, we
used data from disjoint trials for training and testing.

We have estimated controllers from motion capture and video. We
test performance of the recovered controllers in their ability to re-
produce observed motions as well as to synthesize new motions in
novel environments and under the effect of external disturbances. In
all our experiments, we only rely on manual specification of a rough
estimate of the initial pose for the character and, for the video se-
quences, corresponding camera calibration information. We use the
same generic model of the human body with the same mass proper-
ties in all cases. We employ a marker-based error metric from [Sigal
et al. 2010] to evaluate accuracy of our pose reconstructions against
the ground truth, and report Euclidean joint position distance aver-
aged across joints and frames in cm. We first show results using
reference motion capture as an input and then illustrate our algo-
rithm on monocular videos.

6.1 Reference Motion Capture

We compare performance of the batch (Batch) method, that opti-
mizes parameters given a known controller structure SM (but no
initialization except for the initial pose), to the incremental (Inc)
method and the incremental method with refinement (Refined) that
recover the structure automatically (Figure 6). Despite the fact that
the batch method contains more information (controller structure),
our incremental method is substantially more accurate and the re-
finement step further improves the performance in all but one case.
Notice that for the back handspring, we were unable to run the batch
method, as it required optimization over a prohibitive number of
states and never converged. Furthermore, for a complicated motion,
knowing or guessing the controller structure a priori is difficult.
Our incremental method can estimate this structure automatically.
The structure of the resulting controllers, after refinement, are il-
lustrated in Figure 6 (last column). As a result of our optimization,
we automatically build controllers with varying numbers of states
(from 4 to 20) and the controllers can be both linear or cyclic (as in
fast walk).

We obtain controllers that represent the motion well, even in the
case of a long and complex gymnastic sequence in Figure 8 (top
and middle). In some cases, the quantitative errors are higher. We
attribute these errors to the sparse nature of our controller (that in-
advertently approximates the motion) and the inability of the op-
timizer to find the global optimum. Despite quantitative differ-
ences, the results are dynamically and visually similar (see video).
We are able to improve performance by reducing the length of our
stages, where the solution in the limit approximates inverse dynam-
ics. However, controllers obtained this way are less responsive and
are unusable for video because they severely overfit.

Robustness to changes in environment: We test robustness of the
recovered controllers by altering the environment, as shown in Fig-
ure 8 (bottom). Despite the dynamic environment and different ge-
ometry, the character is able to adapt and perform the desired mo-
tion. Further environment alteration tests are illustrated in the next
section, where we recover controllers from video.

SIGGRAPH '12, August 05 - 09 2012, Los Angeles, CA, USA
Copyright 2012 ACM 978-1-4503-1433-6/12/08…$15.00.

Figure 8: Motion Capture Result: Input reference motion capture (top), reconstructed motion simulated with our controller (middle),
simulated motion in a new environment (bottom).

Robustness to pushes: We quantify robustness of our controllers
to external disturbances with push experiments; after [Wang et al.
2009; Lee et al. 2010]. Because we have a different model for ac-
tuation and dynamics, it is difficult to match conditions to [Wang
et al. 2009; Lee et al. 2010] exactly. For this experiment, we choose
a cyclic walking controller that results from optimization with ref-
erence motion capture as an input. Despite the fact that we only
optimize the controller to match roughly 1.5 cycles of the motion,
the controller is able to produce a mostly stable gait (it sometimes
stumbles after 7 to 10 walk cycles, but always recovers afterwards).
We perform a test where we apply a push force to the center of mass
of the torso for 0.4 seconds once every 4 seconds. The controller
passes the test if the character still walks after 40 seconds. Our
controller can resists pushes of up to 210 N, 294 N, 273 N and 294
N from front, rear, right and left sides respectively when we use rel-
atively large joint torque bounds. When the controller has 75% of
the joint torque limits (just enough for the controller to walk with-
out substantially altering the gait), the character survives pushes of
up to 42 N, 67 N, 33 N and 42 N respectively.

6.2 Single-view Video

We report quantitative performance for controller optimization
from single-view video in Figure 7. The reconstruction error is
on average only 80% higher than that of optimizations from motion
capture, despite a substantially more complex problem and opti-
mization. For the batch optimizations, we report the best results
out of 15 independent optimization runs. In many cases, other runs
produced much inferior results. Our incremental method is much
more repeatable. Unlike optimizations from reference motion cap-
ture, we see less of a benefit for structure refinement in reducing
quantitative error when optimizing from video. The objective func-
tion is multimodal in this case, with the modes far apart (a well
known issue in the marker-less motion capture literature). While
the incremental optimization is very effective in finding good local
optima, escaping those optima is difficult through refinement.

Robustness to changes in environment: We made a number of
alterations to the environment. Jump: For a jump, we changed the
geometry of the ground plane, attached 3.5 kg skis to the feet and
dialed down the coefficient of friction by a factor of 2,000; these
alterations emulate a very slippery skiing slope. The results of such
alterations can be seen in Figure 1 and the accompanying video.
Notice that the character is able to perform the desired motion while
dynamically adjusting to the changed environment and maintaining
balance at the end. Twist jump: In this case, we give the character a
13 kg mass to carry with its right arm as it performs the jump. This

modification alters the upper body motion throughout the sequence.
At the end of the simulation the character leans forward to counter-
balance the weight in the hand, which needs to be held behind the
torso according to the last controller state. These results can be seen
in the video.

Comparison to Wei and Chai [2010]: We also compare the perfor-
mance of our method to the one described in [Wei and Chai 2010].
The two methods have a similar goal, but estimate the motion in
very different ways. In [Wei and Chai 2010] six keyframe anno-
tations, specification of the contact states and four additional 2D
refinement constraints have to be manually specified for the tested
jump sequence. In contrast, our approach is fully automatic and re-
quires only specification of a rough initial pose at the first frame; the
contact states are recovered implicitly through optimization. While
we are not able to recover the hand motion (in part because the
jumps in our PCA model are quite different from the one in video),
we are able to generate a controller capable of replaying the mo-
tion with all the intricacies of the dynamics. Furthermore, because
we are recovering a controller, we are able to put the character in a
different environment (on a trampoline) and see the motion under
physical and, in this case, dynamic perturbations (Figure 9). Our
fully automatic method achieves average reconstruction errors as
low as 4.2 cm which is comparable to the average error of 4.5 cm re-
ported in [Wei and Chai 2010].

Computation time: Incremental optimization for 200 frames of
motion capture data takes about 2.75 hours; the refinement pro-
cedure takes 15 minutes (single eight-core machine with a 2.8
GHz Core i7 CPU and 4 GB of RAM) — approximately 3 hours
total. Video optimizations take 40% longer due to use of more ex-
pensive likelihoods.

7 Discussion

We presented a novel approach for capturing bipedal controllers
directly from single-view video and in the process reconstructing
human motion from a single video stream. In doing so we simul-
taneously tackled two very challenging problems: bipedal control
from noisy data and marker-less motion capture. We believe that by
formulating the problem in such a way as to solve the two problems
simultaneously, we are better leveraging the information present in
the video of human motion and thereby simplifying the marker-less
tracking problem. We are able to estimate controllers for a vari-
ety of complex and highly dynamic motions. Controllers from both
sources of data are robust and can be used in new environments
with novel terrain and dynamic objects.

SIGGRAPH '12, August 05 - 09 2012, Los Angeles, CA, USA
Copyright 2012 ACM 978-1-4503-1433-6/12/08…$15.00.

While we are able to estimate controllers that are capable of gen-
erating motion, for a variety of human behaviors, some of the sub-
tleties in the motion are not accurately reconstructed; the motions
tend to look robotic and overpowered. We believe there are three
main sources of errors that are contributing to these artifacts. First,
the end effectors (feet and hands) are hard to observe in video and
are not well constrained by the image likelihood model. From a
sagittal view, it is also difficult to disambiguate single stance from
double stance. Second, parameters found by CMA are not guar-
anteed to be optimal, because we are solving a very difficult high-
dimensional optimization problem. Third, we believe the overpow-
ered balancing behavior observed is due to relatively high joint
torque bounds — our character by design has very strong joints,
including ankles and knees. Higher bounds make the optimization
easier. Improvements could probably be achieved for locomotion
and other highly dynamic behaviors by having more sophisticated
objectives that include energetics, as in [Wang et al. 2010]; we plan
to explore these objectives in the future.

While we took a puristic approach of only using single-view video,
in practice multiple views (or Xbox’s Kinect data) will undoubtedly
simplify the problem and lead to an improved ability to capture 3D
motion. While we do not utilize user-in-the-loop constraints, as we
opted for a completely automatic method, those can easily be added
to further refine the motions as was done by Wei and Chai [2010].
Preliminary experiments show that we can indeed achieve better
performance by having the user click on the joint locations in the
image. Our experiments with motion capture data (perfect 3D data)
further demonstrate this point.

The PCA priors that we introduced for representing the target poses
for the state proved to be quite useful. However, they are limited
to the motions we trained them on and not all stylistic variations
can be captured by a discrete set of such learned models. In the fu-
ture, we hope to explore refinement schemes where we can estimate
controllers with the motion prior and then perhaps refine them by
removing the prior term from the objective.

Acknowledgments: This work was supported in part by
ONR PECASE Award N000140810910 and ONR YIP Award
N000140710141. We would like to thank Moshe Mahler and Vale-
ria Reznitskaya for model creation, skinning and rendering; Xiaolin
Wei and Jinxiang Chai for data from [Wei and Chai 2010]; Katsu
Yamane, David J. Fleet and Jack M. Wang for useful discussions.

References

BARAFF, D. 1996. Linear-time dynamics using Lagrange multi-
pliers. In ACM SIGGRAPH.

BHAT, K. S., SEITZ, S. M., POPOVIC, J., AND KHOSLA, P. 2002.
Computing the physical parameters of rigid-body motion from
video. In ECCV, 551–566.

BO, L., AND SMINCHISESCU, C. 2010. Twin Gaussian processes
for structured prediction. IJCV 87, 1–2.

BRUBAKER, M. A., AND FLEET, D. J. 2008. The Kneed Walker
for human pose tracking. In IEEE CVPR.

BRUBAKER, M. A., FLEET, D. J., AND HERTZMANN, A. 2007.
Physics-based person tracking using simplified lower body dy-
namics. In IEEE CVPR.

BRUBAKER, M. A., SIGAL, L., AND FLEET, D. J. 2009. Estimat-
ing contact dynamics. In ICCV.

CHU, D., SHAPIRO, A., ALLEN, B., AND FALOUTSOS, P. 2007.
A dynamic controller toolkit. In ACM SIGGRAPH Video Game
Symposium (Sandbox), 21–26.

CLINE, M. 2002. Rigid Body Simulation with Contact and Con-
straints. Master’s thesis, The University of British Columbia.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2009. Ro-
bust task-based control policies for physics-based characters. In
ACM Transactions on Graphics, vol. 28.

CRISIS. 2006. http://crisis.sourceforge.net/.

DEMPSTER, W. T. 1955. Space requirements of the seated opera-
tor: Geometrical, kinematic, and mechanical aspects of the body
with special reference to the limbs. Tech. rep., Wright-Patterson
Air Force Base 55-159.

ELGAMMAL, A., HARWOOD, D., AND DAVIS, L. 2000. Non-
parametric model for background subtraction. In ECCV.

GALL, J., STOLL, C., DE AGUIAR, E., THEOBALT, C., ROSEN-
HAHN, B., AND SEIDEL, H.-P. 2009. Motion capture using
joint skeleton tracking and surface estimation. In IEEE CVPR,
1746–1753.

HANSEN, N. 2006. The CMA evolution strategy: A comparing
review. Towards a New Evolutionary Computation. Advances on
Estimation of Distribution Algorithms., 75–102.

HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND
O’BRIEN, J. F. 1995. Animating human athletics. In ACM
SIGGRAPH, 71–78.

KWON, T., AND HODGINS, J. 2010. Control systems for human
running using an inverted pendulum model and a reference mo-
tion capture sequence. In ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation.

LEE, Y., KIM, S., AND LEE, J. 2010. Data-driven biped control.
ACM Transactions on Graphics 29, 4.

LIU, C. K., HERTZMANN, A., AND POPOVIĆ, Z. 2005. Learning
physics-based motion style with nonlinear inverse optimization.
ACM Transactions on Graphics 24, 3.

LIU, L., YIN, K., VAN DE PANNE, M., SHAO, T., AND XU, W.
2010. Sampling-based contact-rich motion control. ACM Trans-
actions on Graphics 29, 4.

METAXAS, D., AND TERZOPOULOS, D. 1993. Shape and non-
rigid motion estimation through physics-based synthesis. IEEE
Transactions on PAMI 15, 6, 580–591.

MUICO, U., LEE, Y., POPOVIC, J., AND POPOVIC, Z. 2009.
Contact-aware nonlinear control of dynamic characters. ACM
Transactions on Graphics 28, 3.

NGO, T., AND MARKS, J. 1993. Spacetime constraints revisited.
In ACM SIGGRAPH.

ODE. 2006. http://www.ode.org/.

PANG, J. S., AND FACCHINEI, F. 2003. Finite-dimensional varia-
tional inequalities and complementarity problems (i). Springer.

SCHAAL, S., AND SCHWEIGHOFER, N. 2005. Computational
motor control in humans and robots. Cur. Op. in Neurobio., 6.

SIGAL, L., BALAN, A., AND BLACK, M. J. 2010. Humaneva:
Synchronized video and motion capture dataset and baseline al-
gorithm for evaluation of articulated human motion. Interna-
tional Journal of Computer Vision 87, 1–2, 4–27.

SILVA, M. D., ABE, Y., AND POPOVIC, J. 2008. Interactive
simulation of stylized human locomotion. ACM Transactions on
Graphics 27, 3.

SIGGRAPH '12, August 05 - 09 2012, Los Angeles, CA, USA
Copyright 2012 ACM 978-1-4503-1433-6/12/08…$15.00.

SMINCHISESCU, C., KANAUJIA, A., AND METAXAS, D. 2007.
Bm3e: Discriminative density propagation for visual tracking.
IEEE Transactions on PAMI 29, 11.

TSAI, Y.-Y., CHENG, K. B., LIN, W.-C., LEE, J., AND LEE, T.-
Y. 2010. Real-time physics-based 3d biped character animation
using an inverted pendulum model. IEEE Transactions on Visu-
alization and Computer Graphics 16, 2, 325–337.

URTASUN, R., J.FLEET, D., AND FUA, P. 2006. Gaussian process
dynamical models for 3d people tracking. In IEEE CVPR.

VONDRAK, M., SIGAL, L., AND JENKINS, O. C. 2008. Physical
simulation for probabilistic motion tracking. In IEEE CVPR.

WANG, J., FLEET, D. J., AND HERTZMANN, A. 2009. Optimizing
walking controllers. ACM Transactions on Graphics 28, 5.

WANG, J., FLEET, D. J., AND HERTZMANN, A. 2010. Optimizing
walking controllers for uncertain inputs and environments. ACM
Transactions on Graphics 29, 4.

WEI, X., AND CHAI, J. 2010. Videomocap: Modeling physically
realistic human motion from monocular video sequences. ACM
Transactions on Graphics 29, 4.

WREN, C. R., AND PENTLAND, A. 1998. Dynamic models of
human motion. In Automatic Face and Gesture Recognition.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. SIMBI-
CON: Simple biped locomotion control. ACM Transactions on
Graphics 26, 3.

YIN, K., COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M.
2008. Continuation methods for adapting simulated skills. ACM
Transactions on Graphics 27, 3.

Appendix: Simulation

Our controller is integrated directly with the simulation engine [Cri-
sis 2006] that represents system dynamics in maximal coordinates.
In doing so, we use constraints to update body pose over time and
to achieve articulation and perform control. [Crisis 2006] employs
simulation, constraint and contact model formulations that are iden-
tical to those in [ODE 2006]; we briefly outline them below.

Constraint Model: Identically to ODE, we formulate constraints
as linear equations over velocities of body pairs that should be
maintained subject to constraint force bounds, and use the Lagrange
multiplier method to express (impulsive, i.e., we compute forces
that realize the target velocities at the next time step) constraint
forces as a solution to a Mixed LCP problem built from the con-
straint specifications. Note, velocities and forces include both linear
and angular components. We use a generic constraint model capa-
ble of modeling both bilateral as well as unilateral constraints, soft
constraints and constraints with finite force bounds. For the pur-
poses of exposition, we assume each constraint is one dimensional
such that it removes one DOF from the system.

A constraint is described by (1) two indices A and B that iden-
tify the bodies in the rigid body system that the constraint acts on,
(2) two 1 × 6 Jacobian matrices JA and JB defining scaling fac-
tors for constrained body velocities in the constraint equation, (3) a
value c for the right-hand side of the constraint equation, (4) bounds
λlo ≤ 0 and λhi ≥ 0 on the unknown multiplier λ (to be solved
for) that scales the constraint force due to the constraint and (5) con-
straint softness parameter s ≥ 0 that defines the tradeoff between
maintaining the constraint exactly (as when s = 0) and minimiz-
ing the magnitude of the applied constraint force (proportional to

|λ|). The constraint holds if the generated constraint force, deter-
mined by λ, is within the bounds, λlo ≤ λ ≤ λhi and the following
complementarity conditions defining coupling between the result-
ing velocity of the rigid body system and the produced constraint
forces hold,

λ = λlo ⇒ (JA · vA + JB · vB) + sλ ≥ c (12)

λ = λhi ⇒ (JA · vA + JB · vB) + sλ ≤ c (13)

λlo < λ < λhi ⇒ (JA · vA + JB · vB) + sλ = c, (14)

where vA (or vB) is the linear and angular velocity of the body A
(or B) after all constraint forces due to all λ multipliers have been
applied on the system. Intuitively, the constraint attempts to main-
tain JA · vA + JB · vB = c subject to constraint force bounds
λlo ≤ 0 ≤ λhi, meaning the equation is allowed to be violated if
one of the constraint force bounds is hit. The bounds determine
whether the generated constraint force can “pull” (λlo < 0) or
“push” (λhi > 0) or do both and how strongly.

For example, to implement the control law from Eq. (5) for an angu-
lar DOF j between the segments parent and child with a common
axis a, we define the following 1-DOF constraint

a · (ωparent − ωchild) = −αk,ji (qk,jt − qk,jd) subject to

−γmparent +mchild

2
≤ λ ≤ γmparent +mchild

2
, (15)

where ωparent and ωchild are the angular velocities of the of two
body segments.

Contact Model: We use standard “friction pyramid” [ODE 2006]
approximation for modeling impulsive contact forces. At each con-
tact point that involves bodies A (e.g., ground surface geometry)
and B (e.g., foot), we impose three constraints to constrain rela-
tive body velocity along the three orthogonal directions: the contact
normal n that points away fromA towardsB, the first tangential di-
rection x and the second tangential direction y. The first constraint
acts along the normal direction and prevents body penetration, the
remaining two implement friction along the tangential plane:

vn = 0 subject to bounds 0 ≤ λn ≤ +∞ (16)
vx = 0 subject to bounds −µλn ≤ λx ≤ µλn (17)
vy = 0 subject to bounds −µλn ≤ λy ≤ µλn, (18)

where µ ≥ 0 is a friction coefficient, vn (or vx, vy) is velocity
of body B at the contact relative to the velocity of the other body
A along n (or x, y), λn (or λx, λy) is the Lagrange multiplier
associated with the constraint along n (or x, y).

Constraint Solver: The constraint solver solves for the λ multi-
pliers for the individual constraints such that the resulting forces
are all within the bounds and all complementarity conditions hold.
We use the method of [Baraff 1996] and a variant of the Dantzig
pivoting solver from [ODE 2006] to obtain valid λ multipliers for
constraints with fixed force bounds. To handle friction constraints
Eq. (17) and Eq. (18) with bounds depending on λn, we alternate
between fixing and re-estimating the bounds for the LCP. We solve
the LCP with fixed bounds in a loop, using the values of λn from
the current iteration to update and fix bounds for the λx and λy val-
ues in the next iteration. To minimize a risk of over-constraining the
LCP, we use soft constraints with s > 0. We also use constraints
with finite force bounds (e.g., for control) which can always be sat-
isfied by applying forces with maximum possible magnitudes.

Simulation: We use Newton-Euler equations of motion to describe
the motion of the simulated rigid body system under effects of ex-
ternal forces (e.g., gravity), actuation forces and constraint forces
produced by the constraint solver. We integrate the equations of
motion using Euler method with a fixed step size of 1/120 s.

SIGGRAPH '12, August 05 - 09 2012, Los Angeles, CA, USA
Copyright 2012 ACM 978-1-4503-1433-6/12/08…$15.00.

