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A variety of dynamic objects, such as faces, bodies, and cloth, are repre-
sented in computer graphics as a collection of moving spatial landmarks.
Spatiotemporal data is inherent in a number of graphics applications includ-
ing animation, simulation, and object and camera tracking. The principal
modes of variation in the spatial geometry of objects are typically modeled
using dimensionality reduction techniques, while concurrently, trajectory
representations like splines and autoregressive models are widely used to
exploit the temporal regularity of deformation. In this article, we present the
bilinear spatiotemporal basis as a model that simultaneously exploits spatial
and temporal regularity while maintaining the ability to generalize well to
new sequences. This factorization allows the use of analytical, predefined
functions to represent temporal variation (e.g., B-Splines or the Discrete Co-
sine Transform) resulting in efficient model representation and estimation.
The model can be interpreted as representing the data as a linear combina-
tion of spatiotemporal sequences consisting of shape modes oscillating over
time at key frequencies. We apply the bilinear model to natural spatiotem-
poral phenomena, including face, body, and cloth motion data, and compare
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it in terms of compaction, generalization ability, predictive precision, and
efficiency to existing models. We demonstrate the application of the model
to a number of graphics tasks including labeling, gap-filling, denoising, and
motion touch-up.
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1. INTRODUCTION

We present a compact and generalizable model of time-varying spa-
tial data that can simultaneously capture the spatial and the temporal
correlations inherent in the data while remaining efficient in its re-
quirements of training data and memory. Time-varying spatial data
is widely used to represent animated characters in computer games,
marker data in motion capture, and surface meshes in physical sim-
ulators. A variety of analysis tasks are performed on this type of
data such as performance animation [Chai and Hodgins 2005], gap-
filling [Liu and McMillan 2006], motion editing [Gleicher 2001],
correspondence [Wand et al. 2007], and data compression [Arikan
2006]. In theory, as many of these tasks are highly underconstrained,
estimation algorithms exploit the natural regularity that exists as a
point cloud moves over time.

The correlation between the spatial locations of nearby points has
been captured using dimensionality reduction techniques in several
contexts, including statistical shape modeling [Cootes et al. 1995],
cloth animation [de Aguiar et al. 2010], face animation [Li et al.
2010a], and nonrigid structure from motion [Bregler et al. 2000].
Typically, each instantaneous shape is represented as a linear com-
bination of a compact set of basis shapes. The correlation between
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Fig. 1. We present a compact model of spatiotemporal data with the ability
to generalize to unseen data and to accurately predict missing data even when
it is learned from a single training sequence. This figure illustrates the model
being used within an expectation maximization routine to simultaneously
estimate labels for all points in all frames of an unlabeled time-varying point
cloud.

the location of a point at successive time instances has also been
used to compactly represent the motion of a point using autoregres-
sive models, via splines [Gleicher 1998], and through dimensional-
ity reduction over trajectories [Torresani and Bregler 2002; Akhter
et al. 2008]. When dimensionality reduction is used to capture the
principal modes of variation of the shape geometry, the correlation
between temporally successive points is ignored; conversely, when
dimensionality reduction is performed on trajectories, the correla-
tion between spatially adjacent trajectories is ignored. Discarding
these correlations leads to an overparameterization of the data and
ignores relationships that are useful for performing analysis tasks.

To utilize spatiotemporal regularity, previous research has
proposed directly learning a linear basis that spans the space
of fixed-duration spatiotemporal sequences [Hamarneh and
Gustavsson 2004; Min et al. 2009]. As the dimensionality of such
a concatenated linear basis is high, a large amount of training data
is required to avoid overfitting, that is, learning spatiotemporal
correlations that are sequence specific. Filtering approaches, such
as Kalman or particle filters, are also popular approaches to analyze
time-varying spatial data [Thrun et al. 2006]. They represent the
instantaneous configuration of spatial data by state variables and
represent temporal variation in terms of a dynamical function that
relates the state at a time instant in terms of the state at the preceding
time instant (or instances). Linear dynamical models are widely
used, and extensions to nonlinear dynamical models (e.g., Wang
et al. [2008]) have emerged. Due to the temporally incremental form
of dynamical models, they are inherently online models that are
designed to produce estimates of the state variables as data arrives
sequentially.

In this article, we present a new model of time-varying spatial
data as a linear combination of spatiotemporal sequences, each of
which may be intuitively interpreted as shape modes oscillating
over time at key frequencies. We demonstrate that such a model can
be expressed in a simple bilinear form, which separately but simul-
taneously exploits both the spatial and the temporal regularities that
exist in data. The separation between the spatial and the temporal
modes allows us to condition the model by leveraging analytical
trajectory bases, such as the Discrete Cosine Transform (DCT) or
B-splines. Such conditioning allows the model to generalize well
to sequences of arbitrary length from a small number of training
sequences while remaining tractable and highly compact. We ana-
lyze the form thoroughly, providing bounds on reconstruction error
and experimental validation on four measures of performance: com-
paction, generalization ability, computational efficiency, and predic-
tive precision. Using these measures we compare our model to linear

dynamical models, shape basis models, splines, trajectory basis
models, and linear spatiotemporal basis models. We demonstrate
the broad applicability of the model by directly embedding it in
standard algorithms, such as expectation maximization, and per-
forming a number of analysis tasks, such as data labeling, denoising,
gap-filling, and editing for face, body, and cloth data.

2. RELATED WORK

The representation of time-varying spatial data is a well-studied
problem in computer graphics, computer vision, and applied math-
ematics; an overview of representation and analysis techniques has
been covered by Bronstein and colleagues [2008]. A widely used
approach, due to its simplicity and effectiveness, is to represent the
data as a compact linear combination of basis vectors. Principal
Component Analysis (PCA) or a similar dimensionality reduction
technique is applied to a training set to determine the most signif-
icant modes of deformation, and data samples are then described
as a linear combination of these modes. This general approach has
subsequently been extended using nonlinear dimensionality reduc-
tion techniques, in particular through the use of kernel methods in
Kernel PCA [Schölkopf et al. 1997] and Gaussian Process Latent
Variable Models (GPLVMs) [Lawrence 2004]. For spatial data, the
linear model is commonly called a point distribution model and
was established through the work of Mardia and Dryden [1989],
Le and Kendall [1993], and Cootes and colleagues [1995]. For
temporal data, dimensionality reduction has also been applied to
learn a compact linear basis of trajectories [Sidenbladh et al. 2000;
Torresani and Bregler 2002; Akhter et al. 2008].

Linear models that jointly span both space and time have been
used to track shapes deforming over time and to describe their prin-
cipal modes of spatiotemporal variation [Hamarneh and Gustavsson
2004], for registration in both space and time [Perperidis et al. 2004],
for spatiotemporal segmentation [Mitchell et al. 2002], for motion
synthesis [Urtasun et al. 2004; Min et al. 2009], and for denoising
[Lou and Chai 2010]. Typically, joint spatiotemporal models are
a direct application of linear dimensionality reduction where each
spatiotemporal sequence is vectorized and represents one sample.
These models are often specific to the particular sequence length
that was chosen during training and correlations between points
at different space-time locations are explicitly learned. These cor-
relations are most prominent in periodic motions. To generalize
beyond specific spatiotemporal correlations, joint linear spatiotem-
poral models therefore require a large training set, as we show in
this article.

Multilinear methods have been used in a number of computer
graphics applications, including expression retargeting [Chuang
and Bregler 2005; Vlasic et al. 2005], approximating multi-array
visual data [Wang et al. 2005], factoring temporal variations
from time-lapse videos [Sunkavalli et al. 2007], and representing
textures [Vasilescu and Terzopoulos 2004]. Min and colleagues
used a multilinear motion model to synthesize, edit, and retarget
motion styles and identities [Min et al. 2010]. Bilinear models
have been applied to separate style and content by Tenenbaum
and Freeman [2000] and have been applied to cardiac data by
Hoogendoorn and colleagues [2009]. The principal difference is
that while Tenenbaum and Freeman’s symmetric model factors
the coefficients into bilinear style and content terms which are
combined by a shared mixing basis, our model factors the basis
into spatial and temporal variations and unifies the coefficients.
Restating, the Tenenbaum and Freeman approach computes bilinear
factorizations of the coefficients of each sample, while our model is
linear in coefficients and a bilinear factorization of the basis. From a
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practical perspective, this switch allows for least squares estimation
of the coefficients rather than requiring nonlinear iterative mini-
mization. When conditioned using a predefined trajectory basis, our
approach also allows a closed-form solution for model estimation.
From a conceptual perspective, our form, when conditioned using
DCT, encodes a spatiotemporal sequence as a linear combination
of spatial modes of variation oscillating at key frequencies.

This interpretation of our bilinear model also finds empirical
support in studies of receptive field dynamics [DeAngelis et al.
1995] and biological motion [Troje 2002; Sigal et al. 2010], where
a similar sine-wave decomposition of the PCA modes was shown
to capture the most prominent features of human gaits. The DCT
trajectory basis has also proven useful in nonrigid structure from
motion [Akhter et al. 2008; Gotardo and Martinez 2011]. In particu-
lar, Gotardo and Martinez impose a DCT basis on shape coefficients
to model smooth object deformations. This representation can be
expressed in terms of the bilinear model presented in this article.

Time-varying spatial data has also been modeled as a dynamical
system, where a fixed rule describes transitions across time
[Thrun et al. 2006]. Compared to basis representations, dynamical
systems model the evolution of a process as transitions between
time-steps, making them especially attractive for online processing.
Conversely, because it is a model of the process rather than a
direct model of the data, operations affecting the entire sequence
are usually more costly. Li and colleagues [2009] model marker
trajectories as a Linear Dynamical System (LDS) to infer missing
markers. Nonlinear dynamical systems have also been successfully
applied to motion data, most notably Gaussian Process Dynamical
Models (GPDMs) [Wang et al. 2008], which have been shown to be
an excellent model for synthesis and inference. The main drawback
of Gaussian process models is significant computational and mem-
ory cost, making them impractical for very large datasets. Inference
is usually iterative in the case of missing data. Model estimation
is costly as well, and typically accomplished using a nonlinear
optimization (expectation-maximization) that requires adequate
initialization. In comparison, these operations have efficient
closed-form solutions for our DCT-conditioned bilinear model.

From an application perspective, spatiotemporal models are of in-
terest in analyzing, editing, synthesizing, compressing, and denois-
ing time-varying spatial data. For motion capture data in particular,
missing markers, occlusions, and broken trajectories are often sig-
nificant issues, and spatiotemporal models are used to infer marker
data across long occlusions and during dropouts. For full-body mo-
tion capture applications, the models used often constrain spatial
variation using an articulated skeletal model [Herda et al. 2001;
Hornung et al. 2005], or bone-length constraints incorporated into
an LDS framework [Li et al. 2010b]. The focus of this work is on
spatial data where an articulated model is not appropriate, such as
dense facial motion capture, where most of the motion is due to
nonrigid deformations. A data-driven approach is that of Liu and
McMillan [2006], who learn piece-wise linear models from large
datasets of motion capture examples for inference. Other work in
motion capture of skin deformations includes Park and Hodgins
[2006] and Anguelov and colleagues [2005] who use sparse motion
capture supplemented by a detailed skin model to label and im-
pute missing data. Current practice in the industry is for animation
houses to employ motion capture clean-up professionals who create
a marker-set, label the points, reconstruct the missing points, and
finally retouch the data, smoothing out noisy points.

Spatiotemporal representations have also been considered for the
tasks of motion editing and motion adaptation. Methods related
to spacetime constraints [Witkin and Kass 1988] aim to globally
modify the character motion to meet certain requirements; these
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f1 f2 f3
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p2

Linear Shape Basis
Linear Trajectory Basis
Linear Spatiotemporal Basis
Linear Dynamical Model
Bilinear Spatiotemporal Basis

ĉ
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T

Fig. 2. Graphical model showing parameter dependencies for various mod-
els of time-varying spatial data. In this figure, pi refers to a particular point
index, fi refers to a particular time frame, ωi is a shape coefficient at time
fi , and ai is a trajectory coefficient associated with pi . ĉ is a coefficient
of a linear spatiotemporal basis, and c is a coefficient of the bilinear spa-
tiotemporal basis. T refers to the transition matrix of a linear dynamical
system.

methods commonly aim to produce physically realistic motions by
minimizing an energy function. Most approaches focus on carefully
formulating the optimization function to enforce the characteristics
of spatiotemporal data and not on the representation itself. Typi-
cally, the representation is based on keyframe interpolation of joint
angles (for articulated characters) or rig parameters (for facial an-
imation). For body motion, a related approach is the per-frame in-
verse kinematics + filtering method of Gleicher [2001], who offers
an extensive review of this method and related techniques. Other
approaches to motion transformation use dimensionality reduction
in the configuration space of the character to constrain the motion
optimization process [Safonova et al. 2004; de Aguiar et al. 2010],
or to match the parameters of a rig [Lewis and Anjyo 2010].

3. METHOD

The time-varying structure of a set of P points sampled at F time
instances can be represented as a concatenated sequence of 3D
points:

SF×3P =

⎡
⎢⎣

X1
1 . . . X1

P

...
...

XF
1 . . . XF

P

⎤
⎥⎦ , (1)

where Xi
j = [

Xi
j , Y

i
j , Z

i
j

]
denotes the 3D coordinates of the j -

th point at the i-th time instance,1 denoted by one of the gray
nodes in Figure 2. Thus, the time-varying structure matrix S con-
tains 3FP parameters. This representation of the structure is an
overparametrization because it does not take into account the high
degree of regularity generally exhibited by motion data.

One way to exploit the regularity in spatiotemporal data is to
represent the 3D shape at each time instance2 as a linear combination
of a small number of shape basis vectors bj weighted by coefficients

1As a matter of standard notation, we indicate row-index as superscript and
column-index as subscript.
2The rigid component of deformation is typically compensated for using
Procrustes analysis [Dryden and Mardia 1998]. For clarity of exposition, we
do not include the transformation explicitly in our development.
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ωi
j [Cootes et al. 1995; Bregler et al. 2000],

si =
∑

j

ωi
j bT

j . (2)

Thus, the complete structure matrix, S, which is a row-wise con-
catenation of F 3D shapes, can be represented as

S = �BT , (3)

where B is a 3P × Ks matrix containing Ks shape basis vectors,
each representing a 3D structure of length 3P , and � is an F × Ks

matrix containing the corresponding shape coefficients ωi
j , shown

as orange nodes in Figure 2 representing all points at a particular
time frame. The number of shape basis vectors used to represent a
particular instance of motion data is Ks ≤ min{F, 3P }.

An alternate representation of the time-varying structure is to
model it in the trajectory subspace, as a linear combination of tra-
jectory basis vectors θ i [Torresani and Bregler 2002; Akhter et al.
2008],

sj =
∑

i

a
j

i θ i , (4)

where a
j

i is the coefficient weighting each trajectory basis vector
(denoted by a green node in Figure 2 representing a particular
point across all frames). In this case, the structure matrix S may be
considered as the column-wise concatenation of P 3D trajectories,
as

S = �AT , (5)

where � is an F × Kt matrix containing Kt trajectory basis as its
columns, and A is a 3P ×Kt matrix of trajectory coefficients. Here,
Kt ≤ min{F, 3P } is the number of trajectory basis vectors spanning
the trajectory subspace. Note that if orthonormal bases are used in
both representations, then BT B = IKs×Ks

and �T � = IKt ×Kt
,

because the basis vectors are arranged along the columns of B and
�.

3.1 Bilinear Spatiotemporal Basis

The key insight of this article is the observation that using a shape
basis or a trajectory basis independently fails to exploit the full
range of generalizable spatiotemporal regularities. In the shape ba-
sis representation, the temporal regularity of trajectories is ignored;
removing temporal regularity by shuffling the frames in time to a
random arrangement only results in a corresponding shuffling of the
coefficients. The same is true for the trajectory basis representation,
in which case each spatial location is treated independently; hence,
their spatial ordering becomes immaterial. Thus, both representa-
tions are overparameterizations because they do not capitalize on
either the spatial or the temporal regularity.

This article presents a bilinear representation of S linking both
shape and trajectory bases in a single model.

THEOREM 1. If S can be expressed exactly as S = �BT and
also S = �AT , then there exists a factorization

S = �CBT , (6)

where C = �T � = AT B is a Kt × Ks matrix of spatiotemporal
coefficients.3

3For clarity, Theorems 1 and 2 are stated assuming orthogonal bases. Equiv-
alent proofs for nonorthogonal bases can be derived by using the pseudo-
inverses of � and B instead of transposes.

PROOF. Equating the two forms of S in Eqs. (3) and (5), it fol-
lows that AT = �T �BT . Substituting this into Eq. (5) yields
S = ��T �B, where we define C = �T �. The same result
can be derived in a dual fashion for �, yielding C = AT B.

Eq. (6) describes the bilinear spatiotemporal basis, which con-
tains both shape and trajectory bases linked together by a common
set of coefficients. These coefficients can be visualized in two equiv-
alent ways as indicated by the two definitions of C given before:
(1) C = �T � implies the projection of shape coefficients � onto
the trajectory basis, �, and (2) C = AT B implies the projection of
trajectory coefficients A onto the shape basis B.

For an intuitive understanding of the bilinear spatiotemporal
model, consider the coefficient ci

j at the i-th row and the j -th col-
umn in C (denoted by the red node in Figure 2). This coefficient
represents the weight of the outer product of the i-th trajectory basis
vector, θ i , and the j -th shape basis vector, bj . This outer product
will result in a time-varying structure sequence in which all points
of a single shape mode (as defined by the j -th shape basis) will
vary over time (as defined by the i-th trajectory basis). The sum of
all such outer products θ ibT

j , weighted by the corresponding coef-
ficient, ci

j , results in the bilinear representation of S, equivalent to
Eq. (6).

S =
∑

i

∑
j

ci
jθ ibT

j (7)

This is best illustrated as an animation of each shape basis vector
bj modulated over time according to each trajectory basis vector
θ i , as shown in the accompanying video (in the vignette titled “Bi-
linear Spatiotemporal Modes”). Under our bilinear basis model,
spatiotemporal data is represented as a linear combination of each
of these modulated spatiotemporal sequences.

3.2 Bounds on Reconstruction Error

In Theorem 1, the bilinear spatiotemporal model is derived for
the case of perfect representation of time-varying structure. We
can also use the bilinear basis (Eq. (6)) with a reduced number of
basis vectors. In the following theorem, we describe bounds on the
bilinear spatiotemporal model error as a function of approximation
errors of the shape and trajectory models.

THEOREM 2. If the reconstruction error of the trajectory model
is εt = ‖S − �AT ‖F , and the error of the shape model is εs =
‖S − �BT ‖F , then the error of the bilinear spatiotemporal model
ε = ‖S−�CBT ‖F is upper bounded by εt + εs and lower bounded
by max(εt , εs), where ‖ · ‖F is the Frobenius norm.

PROOF. The approximate model may be expressed as

S = �AT + �⊥A⊥T , (8)

S = �BT + �⊥B⊥T , (9)

where the columns of �⊥ and B⊥ form a basis for the nullspaces of
�T and BT respectively. A⊥T and �⊥ are the coefficients of these
nullspaces. Here εt = ‖�⊥A⊥T ‖F and εs = ‖�⊥B⊥T ‖F . Setting
Eqs. (8) and (9) equal and noting �T �⊥ = 0 we get

S = �CBT + ��T �⊥B⊥T + �⊥A⊥T . (10)

By inspection we see that ε = ‖��T �⊥B⊥T + �⊥A⊥T ‖F . From
the triangle inequality we get ε ≤ ‖��T �⊥B⊥T ‖F + εt . As ��T

is an orthogonal projection matrix onto the range of �, it follows
that ‖��T �⊥B⊥T ‖ ≤ ‖�⊥B⊥T ‖ = εs . Therefore, ε ≤ εt + εs . A
dual equality can be written where ε = ‖�⊥A⊥T BBT + �⊥B⊥T ‖
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can be derived. As ε must be greater than εs and εt it follows that
ε ≥ max(εt , εs).

Theorem 2 states that the bilinear spatiotemporal model error
cannot exceed the sum of errors of the shape and trajectory models.
This error, however, is reached with far fewer coefficients for the
bilinear model as compared to the shape or trajectory models; this
parsimony will be demonstrated in Section 3.6.

3.3 Comparison with Linear Spatiotemporal Basis

It is instructive to compare the bilinear spatiotemporal basis with
a linear spatiotemporal representation. In the latter case, S is vec-
torized into a single column vector which can be represented by a
linear spatiotemporal basis

vec (S) = �ĉ, (11)

where vec(S) is a column-wise vectorized version of S, � is a
3FP×K matrix representing K linear spatiotemporal basis vectors,
and ĉ is a K ×1 column vector of coefficients (denoted by the white
node in Figure 2). We can write the bilinear spatiotemporal basis as
a linear model

vec (S) = (B ⊗ �) vec (C) , (12)

where ⊗ denotes the Kronecker Product [Jain 1989]. Hence, for Ks

shape and Kt trajectory bases in the bilinear model, an equivalent
linear model will have K = KsKt columns in �. Note, however,
that not all linear spatiotemporal basis can be factored into bilinear
spatiotemporal basis.

While the linear and the bilinear spatiotemporal models can
model both spatial and temporal regularity, linear spatiotemporal
bases will need substantial amounts of data to generalize beyond
sequence-specific correlations. The linear basis learns any correla-
tion within the fixed spatiotemporal window, whereas the bilinear
basis must be separable. This becomes crucial when learning from
sequences that are not temporally aligned, for example, facial mo-
tion from utterances of different speech content.

3.4 Conditioned Bilinear Bases

We observe that while appropriate shape basis will often have to
be learned to suit particular datasets,4 the high degree of temporal
smoothness in natural motions allows a predefined analytical trajec-
tory basis to be used for a wide variety of datasets without signifi-
cant loss in representation. The conditioned bilinear spatiotemporal
representation is thus a special case of Eq. (6),

S = �̃CBT + ε, (13)

where �̃ contains the first Kt vectors of the predefined trajectory
basis arranged along its columns, each of length F . The ability to
use a predefined trajectory basis yields closed-form and numerically
stable solutions, for both the estimation of the shape basis and
coefficients in Eq. (6). The benefit of using a trajectory basis for
which an analytical expression exists is that the same model can
represent time-varying structures of arbitrary durations.

A particularly suitable choice of a conditioning trajectory basis
is the Discrete Cosine Transform (DCT) basis. Figure 3 shows
that the optimal PCA basis learned from a large number of varied
facial motion capture sequences converges to the DCT basis. This

4In some cases using a predefined shape basis may be possible. Examples
include character animation, where blendshapes may be artist defined, or
physical simulations where an analytical shape basis may be obtained.

DCT

PCA 10

PCA 100

PCA 1000

Fig. 3. For large training sets of natural motion (including nonperiodic
motion), the PCA-learned trajectory basis approaches DCT. Ordered left-to-
right, top-to-bottom, comparison of the first 10 DCT basis vectors (orange)
with the first 10 data-specific PCA trajectory basis vectors learned on a
varying number of facial motion capture training sequences: 10 sequences
(light gray), 100 sequences (dark gray), and 1000 sequences (black). Each
sequence and each vector depicted here is 100 frames in length.

result is consistent with Akhter and colleagues [2010] who have
demonstrated a similar experiment for human body sequences, and
with Arikan [2006] who uses the DCT basis to compress motion-
capture data. Indeed, it is well known that the DCT basis approaches
the optimal PCA basis if the data is generated from a stationary first-
order Markov process [Rao and Yip 1990]. Given the high temporal
regularity present in almost all human motions, it is not surprising
that we empirically find DCT to be an excellent basis for trajectories
of varied types.

Other choices of a conditioning trajectory basis are possible and
may be preferable in specific applications. While DCT shows com-
paction that is close to optimal, the support of each basis vector is
global and each coefficient affects the entire sequence. This may be
undesirable in some cases, and therefore overlapped-block versions
such as the modified DCT are often used in online signal processing
tasks. A practical alternative with localized basis support is the B-
spline basis [Deboor 1978], commonly used to approximate smooth
functions while offering local control over the shape of the curve.
The B-spline basis is not orthogonal, which results in a slightly
more expensive solution for estimating the coefficients, as will be
shown in Section 3.5.

Using a predefined trajectory basis is a major strength of the
bilinear representation, which not only reduces the complexity of
estimating bilinear bases to being nearly identical to shape-only
models, but also provides good generalization capabilities, and the
ability to handle sequences of arbitrary duration. In contrast, for
the linear spatiotemporal model given in Eq. (11), the spatial and
the temporal components do not factor out separately, and hence it
is not possible to use a predefined basis for one mode of variation
and a data-driven basis for the other.

3.5 Parameter Estimation

An important strength of the conditioned bilinear model is that
the estimation of coefficients and basis have closed-form solutions
requiring only linear least squares and SVD routines. Hence, the es-
timation is efficient, optimal, and numerically stable. Learning the
bilinear basis given a set of example sequences has been studied for
the more general cases of bilinear and multilinear models [Magnus
and Neudecker 1999]. While several competing tensor decomposi-
tions exist, one possibility is to iteratively project and take the SVD
in each of the two subspaces, analogous to the process of estimating
the bilinear coefficients Tenenbaum and Freeman [2000]. Another
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option is to stack the sequences as a third-order tensor and factorize
it using Higher-Order SVD (HOSVD), a generalization of SVD for
tensors. However, the conditioned bilinear representation results in
simplified estimation, because in this case one of the three matrices
in the model is already known. In the following subsections, we
first discuss the problem of computing the coefficients, C, given
known bases � and B. Subsequently, in Section 3.5.2 we address
the problem of estimating the shape basis.

3.5.1 Estimating the Coefficients of a Bilinear Model. Given
a shape basis B and a trajectory basis �, we wish to compute the
bilinear model coefficients C, that minimize the reconstruction error
for a given S.

The solution may be estimated by minimizing the squared recon-
struction error

C = arg min
C

∣∣∣∣(S − �CBT
)∣∣∣∣2

F
(14)

For any bases � and B, the general solution for optimal C is in
terms of the pseudo-inverses

C = �+S
(
BT

)+
, (15)

where superscripted + denotes the Moore-Penrose pseudo-inverse.
For the case when both � and B have full column-rank, the pre-
ceding solution is unique. If the bases are orthogonal, then the
solution simplifies to C = �T SB, which implies simply projecting
the structure S onto each of the bases sequentially. This simplifica-
tion applies to the DCT basis, but not to the B-spline basis, since
that basis is not orthonormal.

3.5.2 Conditioned Shape Basis Estimation. While HOSVD or
iterative SVD may be used to estimate bilinear bases in general,
the estimation of the conditioned bilinear bases is significantly sim-
pler. This is because the trajectory basis are already known. Hence,
given a set of training examples, the appropriate shape basis for the
conditioned bilinear model may be estimated using the following
theorem.

THEOREM 3. Given a trajectory basis � and a set of training
sequences of time-varying structure, S1, S2, . . . , SN , the optimal
shape basis which minimizes the squared reconstruction error is
given by the row-space computed through SVD of the matrix

� = [
ŜT

1 , ŜT
2 , . . . , ŜT

N

]T
, (16)

where Ŝi = ��+Si denotes the reconstruction of S from its trajec-
tory projection.

PROOF. For one sequence, expanding S into its components that
span the trajectory basis and its null space, the optimal shape basis
minimizes

arg min
B

‖��+S + �⊥A⊥T − ��+S(BT )+BT ‖2
F . (17)

Observing that, for a fixed �, �⊥A⊥T does not depend on the choice
of B, then the optimal rank-Ks orthogonal B can be computed as
the row space of Ŝ via SVD. For more than one structure sequence,
the optimal shape basis B will result from the SVD of the matrix
formed by stacking the sequences Ŝi into an FN × 3P matrix �,
defined before. The error to be minimized is equivalent to ||� −
�(BT )+BT ||2F .

Fig. 4. The model is applied to represent cloth and full body motion. The
heat maps on the meshes denote the reconstruction error induced by project-
ing the data onto the bilinear spatiotemporal basis and then reconstructing
the data from the projection. Data is from the Pants dataset [White et al.
2007] and the Performance Capture database [de Aguiar et al. 2008].

3.6 Properties of Bilinear Spatiotemporal Models

We now analyze the properties of the bilinear representation in
terms of compactness, generalization ability, predictive precision,
and computational efficiency compared to five other commonly
used representations of time-varying spatial data. We contrast the
properties of the bilinear spatiotemporal models (Eqs. (6) and (13))
and compare them to the shape model (Eq. (3)) the trajectory model
(Eq. (5)) and the linear spatiotemporal model (Eq. (11)). In addition,
we also compare our model to a Linear Dynamical System (LDS)
approach, where reconstruction is implemented as Kalman smooth-
ing and the model is trained using Expectation Maximization (EM),
and to a B-spline basis representation of the time-varying point-
clouds.5 The conceptual relationship between these approaches can
be compared through Figure 2.

3.6.1 Compactness. Compactness, or parsimony, is the ability
of a model to represent data with fewer parameters. Since the bi-
linear representation exploits both spatial and temporal regularity,
it requires far fewer coefficients for the same reconstruction error
compared to shape or trajectory representations. The number of
coefficients in Eqs. (6) or (13) is Kt × Ks . Note that for a sub-
space representation to be useful, typically Kt � F and Ks � 3P .
Hence, the Kt × Ks coefficients in C are far fewer than the F × Ks

coefficients in � or the Kt × 3P coefficients in A. Figure 4 shows
cloth data and full body scans reconstructed by reprojecting the data
from the bilinear spatiotemporal basis.

Empirically, the conditioned bilinear spatiotemporal models
show a reduction of nearly an order of magnitude for the same re-
construction error when compared to the shape or trajectory models.
Figure 5(a) shows the compaction performance of several models
on dense facial motion capture data. We use 50 temporally nonover-
lapping face sequences extracted from 18 different facial motion-
capture sentence sequences of a single actor. The plots show recon-
struction error in average marker displacement (millimeters) when
varying the number of coefficients in each model. The results indi-
cate that an average reconstruction error of about 0.5mm is achieved
with approximately 500 bilinear-DCT or bilinear-B-spline coeffi-
cients, but requires around 2,000 shape coefficients (approximately
20 coefficients per frame) or 2,500 trajectory coefficients (approxi-
mately 40 coefficients per point) to reach similar error values.

The conditioned bilinear spatiotemporal model is also compared
against a bilinear spatiotemporal model that uses a data-driven

5For LDS we use the Kalman filtering toolbox by Kevin Murphy, available
at http://www.cs.ubc.ca/∼murphyk/Software/Kalman/kalman.html. As a
B-spline basis, we used a cubic B-spline basis defined by an open uni-
form knot vector, where the number of coefficients for this trajectory basis
was Kt = n + k, with n the number of internal knots and k = 4 for cubic
degree splines.
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Fig. 5. Compactness and generalization ability. (a) Average reconstruction error in marker displacement for a varying number of model parameters. The
reconstruction error is the average marker displacement computed across all frames on 50 distinct dense facial motion capture sequences of 100 frames each.
The bilinear spatiotemporal model achieves the same average error as the shape and trajectory models with much fewer coefficients. (b) Reconstruction error
on unseen test sequences for varying amounts of training data. Here, the models are learned on training sequences and fit on an unseen testing set. For fair
comparison, the sizes of the latent spaces for all models were chosen such that the reconstruction error on the full training set was less than 0.5 mm with
minimal number of coefficients. The relative rate of improvement rather than the final error is the more relevant measure in this graph.

trajectory basis. The two methods perform similarly, indicating
no significant loss of representation by choosing the generic
DCT or B-spline basis over a data-driven trajectory basis. The
DCT-conditioned model has similar, though slightly improved,
compaction ability when compared to a B-spline conditioned
bilinear spatiotemporal model, indicating that the bilinear models
require roughly similar number of coefficients for a reasonable
choice of predefined basis. However, if a B-spline basis is used
as a trajectory-only model without combining them in a bilinear
representation, compaction is significantly reduced. We also
compare with a Linear Dynamical System (LDS) model, where the
number of latent variables required to reach the same reconstruction
error is an order of magnitude more than for bilinear models.

In comparison to the bilinear spatiotemporal model, the linear
spatiotemporal model requires even fewer coefficients. In this ex-
periment, 50 coefficients will always suffice to represent the training
data with zero error, because that equals the number of training se-
quences. However, such training constitutes an exact overfit and will
not generalize to other sequences. The length of each linear basis
vector becomes prohibitively large even for sequences of moderate
size. For the experiment reported earlier, each basis vector in the
linear representation will contain 3 × 100 × 63 = 18,900 terms,
compared to each DCT basis of length 100 and each shape basis is
of length 3 × 63 = 189 in the bilinear model.

3.6.2 Generalization Ability. Generalization is the ability of a
model to describe instances outside its training set. For the same
number of coefficients, the bilinear basis has far fewer model pa-
rameters than the linear spatiotemporal basis. Consequently, model
estimation suffers relatively less from the curse of dimensional-
ity and therefore requires fewer training examples to generalize.
Because the bilinear model will not learn spatiotemporal correla-
tions that cannot be factored across space and time, it is especially
attractive for applications where the data need not be temporally
aligned.

Figure 5(b) empirically validates these observations. For this ex-
periment, we took 18 motion-capture sequences of an actor and ex-
tracted around 5,000 overlapping subsequences of 96 frames, each

offset by 2 frames. For comparison with the linear spatiotemporal
model and LDS, it was necessary to subsample the spatial resolution
to only 32 points in each frame due to the large memory and compu-
tational footprint of these methods. Of these sequences, roughly two
thirds were set aside for training and the remaining third was used for
testing. By varying the number of training examples used for train-
ing the models, we computed the reconstruction error on the testing
dataset. The results, plotted on log-scale in Figure 5(b), confirm that
bilinear spatiotemporal models have superior generalization ability
to the linear spatiotemporal model, showing smaller error on test
sequences for the same number of training sequences. The bilinear
basis estimated through iterative SVD generalizes very similarly
to the conditioned bilinear basis. We observe that the learned
trajectory basis approaches the DCT, as discussed earlier. A large
number of training sequences is necessary for the linear model to
generalize.

The properties of compaction and generalization ability com-
pete: better compaction often comes at the cost of generalization
ability. Studying Figures 5(a) and 5(b) together shows that bilinear
models provide a good trade-off between these two properties. The
linear spatiotemporal model is highly compact (at least in number
of coefficients), but extremely poor in the ability to generalize. All
trajectory-only models using predefined basis generalize very well
because the basis is chosen to suit a large number of sequences, but,
for the same reason, have significantly lower compaction. LDS and
shape-only models have roughly equivalent generalization ability
as bilinear models at the cost of significantly poorer compaction.

3.6.3 Predictive Precision. Predictive precision is the ability
of a model to impute missing data accurately. To compare predic-
tive precision of different models, we took 50 face sequences, split
25-25 into training and testing sequences. As in the generaliza-
tion ability experiment, the bases were learned from the training
sequences. However, instead of estimating the coefficients from a
complete test sequence, random gaps in the data were synthetically
introduced to simulate missing data. Four types of occlusion simu-
lations were conducted to compare predictive precision across both
space and time in Figure 6: (a) randomly occluded points with some
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(d) clustered imputation

Fig. 6. Predictive precision in synthetically generated occlusion scenarios. In (a–c) randomly selected points were occluded whereas in (d) a contiguous
chunk of 15 randomly selected trajectories were occluded. For training, 25 sequences were used and another 25 were used for testing. Each sequence has 100
frames and 63 points. The number of bases was selected to ensure 0.5mm reconstruction error on the training data. Bilinear models show remarkably better
performance compared to other methods in all four scenarios. The trajectory models cannot be applied in (a) and (c) because some of the trajectories are
completely missing. Similarly, the shape model cannot be applied in (b) and (c) because some of the frames are completely missing.

trajectories completely occluded across all time instances, (b) ran-
domly occluded points with some frames completely occluded at
some time instances, (c) randomly occluded points with some tra-
jectories completely occluded across all time instances and some
frames completely occluded at some time instances, and (d) random
occlusion of spatiotemporally contiguous chunks of data to simulate
practical scenarios.

Figure 6 shows greater predictive precision for the bilinear
model compared to other models. In the spatial imputation ex-
periment (Figure 6(a)), the bilinear spatiotemporal model, the
DCT-conditioned model, and the B-spline conditioned model show
markedly improved performance compared to the shape model,
LDS, and the linear spatiotemporal model. The trajectory models
are not used because it is impossible to use them to impute com-
pletely occluded trajectories. The results of the temporal imputation
experiment (Figure 6(b)) are similar; the three bilinear models show
better imputation with significant percentage of missing data. Shape
models could not be used in this experiment as they cannot impute
completely missing frames. In the spatiotemporal imputation exper-
iment (Figure 6(c)), neither shape-only nor trajectory-only models
could be used. Again, bilinear models show significantly better per-
formance for a range of missing percentage of points. Finally, for the
last experiment in which spacetime chunks of data were occluded
(Figure 6(d)), the bilinear models and the LDS showed comparable
performance, superior to other models.

3.6.4 Efficiency. Finally, we discuss the computational effi-
ciency of the two most common operations when working with data
models: data reconstruction given the coefficients, and coefficient
estimation given the data. In terms of storage, the bilinear models
require almost the same order of magnitude storage for the basis as
the shape or trajectory models, which is a significant saving over the
linear spatiotemporal representation. In terms of coefficients, they
are much more compact than shape or trajectory models, and their
cost of reconstruction is not significantly higher.

The computational complexity of reconstruction for the bilinear
model (Eq. (6)) is due to multiplication by the shape basis and
trajectory basis matrices. Depending on the order of operations,
this will be O(FKs[3P + Kt ])6 when multiplying by the trajectory
basis first, or O(3PKt [F + Ks]) when multiplying by the shape
basis first. Reconstruction for the corresponding shape-only and

6Multiplication cost for matrices m × p by p × n is assumed O(mpn).

Table I. Memory Requirements and Computational Cost for the
Bilinear, Conditioned Bilinear, Shape, Trajectory, Linear, and LDS
Method Model storage Coefficients Reconstruction cost

Bilinear 3PKs + FKt KsKt
O(FKs [3P + Kt ])

or O(3PKt [F + Ks ])
Bilinear

3PKs KsKt
O(FKs [3P + Kt ])

(conditioned) or O(3PKt [F + Ks ])
Shape 3PKs FKs O(3PFKs )

Trajectory FKt 3PKt O(3PFKt )

Linear 3PFKtKs KsKt O(3PFKsKt )
LDS 3PKs + K2

s FKs O(3PFKs )
For the purposes of comparison we assume that the number of coefficients of the linear
model is K = KsKt . For LDS, we assume that the size of the latent space is Ks , and
we have disregarded the storage cost for the noise covariance matrices.

trajectory-only models is O(3PFKs) and O(3PFKt ) respectively,
which is on the order of FKsKt (or 3PKsKt ) fewer operations
at the expense of a larger memory footprint. Reconstruction for
a corresponding linear spatiotemporal model with Ks × Kt basis
vectors is O(3PFKsKt ) which usually will be the most expensive
method.

Similarly, the cost of estimating the bilinear coefficients given a
spatiotemporal sequence is O(3PKt [F +Ks]) (multiplication by the
trajectory basis first), or O(FKs[3P + Kt ]) (shape basis first). The
cost of coefficient estimation for the shape-only, trajectory-only, and
linear spatiotemporal models is the same as that of the corresponding
reconstruction computation. In comparison, the cost of the Kalman
filter implementation in our experiments was dominated by a term
O(F (3P )3) related to the observation covariance.7 Coupled with
the need for several iterations during learning made the LDS model
substantially slower than all other methods.

4. APPLICATIONS

The conditioned bilinear model is applicable to a range of problems
which require a compact representation of motion data. We demon-
strate its efficacy for analysis tasks in the motion capture pipeline:
denoising and marker labeling of raw data, gap-filling, and mo-
tion touch-up. The following subsections demonstrate: (1) marker
labeling and denoising for dense facial motion capture, requiring

7Implementations of the Kalman filter exist that improve on this cost.
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Fig. 7. Point clouds reconstructed from motion capture systems usually
suffer broken trajectories and mislabeled points. The figure shows frames
56, 84, 100, 320, and 560 of a motion capture session (first row), raw
motion capture data (second row), and our labeling results (third row). As
time progresses, errors propagate and more points are mislabeled. Image
used with permission of Elizabeth Carter.

just a few minutes of cleanup compared to the current standard
of several hours of professional time, (2) gap-filling and imputa-
tion on face sequences given appropriately learned bases, and (3) a
motion touch-up tool which allows plausible deformations of an
entire motion capture sequence by moving only a few points and
without employing any kinematic or skeletal model. Each of these
applications exploits the DCT-conditioned bilinear model.

4.1 Motion Capture Labeling and Denoising

Reconstruction using motion capture systems often requires te-
dious postprocessing for data cleanup, to connect broken trajec-
tories, impute missing markers, correct mislabeled markers, and
denoise trajectories, as illustrated in Figure 7. We have developed a
semiautomatic tool which simultaneously labels, denoises and im-
putes missing points, and drastically reduces the time required for
cleanup while generating reconstructions qualitatively and quantita-
tively similar to those by industry professionals. The process often
generates error-free labels, but when it does not, our semiauto-
mated tool allows a few user-identified corrections to automatically
propagate temporally, hence reducing cleanup time. Our approach
is based on using the DCT-conditioned bilinear representation to
compute marker labels. Given the bases, the bilinear coefficients
and marker labels are interdependent and are iteratively estimated
using an Expectation Maximization (EM) algorithm.

4.1.1 Expectation Maximization. We model the marker data
using the DCT-conditioned bilinear basis. The observed 3D co-
ordinates of the pth marker in frame f is X̂p

f = Xp

f + e, where

e ∼ N (0, σ 2I) is measurement error, and Xp

f is the true value of X̂p

f

and σ denotes the standard deviation of the error. We want to assign
a label l

p

f ∈ {1, . . . , P } to each marker Xp

f associating it to a unique
trajectory, such that the rearranged matrix S = �CBT . The goal of
the EM algorithm is to estimate both the set of hidden variables l

p

f

as well as the model parameters, C and σ .
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Fig. 8. Accuracy plots for the Bilinear-DCT-based EM algorithm. We com-
pute the per frame average distance between our reconstruction and ground
truth for nine sequences. The figure shows close resemblance between the
two reconstructions in terms of the Cumulative Distribution Function (CDF)
of reconstruction errors.
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Fig. 9. Illustration of denoising: Comparison of raw point trajectories
(blue), clean-up by a professional (green), and clean-up by our method
(red). Our method adapts well to the raw trajectories while filtering out
high-frequency noise.

In the expectation step, we estimate the probabilistic labeling of
the spacetime points given an initialization of the bilinear coeffi-
cients C. In the maximization step, the probabilistic labeling is used
to estimate the maximum likelihood estimate of C. We found that
the running time of the algorithm can be significantly improved by
making a hard assignment of the unlabeled points, instead of doing
this probabilistically. This is sometimes referred to as the hard-EM
algorithm. This simplification reduces the expectation step to esti-
mating imputation using equation, Ŝ = �CBT and assigning labels
to raw data points based on the label of the closest imputed point in
each frame. In the maximization step, the raw points are arranged
into the structure matrix S. The coefficients are then estimated as
C = �T SB.

To initialize the marker labels for the EM algorithm, we exploit
the smoothness of trajectories to propagate labels from one frame to
the next. We do this by estimating the model coefficients using the
first N frames, and imputing the marker positions at frame N + 1
by using the analytical expression of the DCT trajectory basis to
extend the sequence length during reconstruction. The first frame
is initialized by assigning arbitrary labels to each point in a user-
selected frame containing all markers. Once an initial estimate of
the marker labels is known, we can estimate the shape basis B and
the coefficients C. These estimates will be used to initialize the EM
algorithm as described earlier.

To guard against errors in the labeling biasing the estimate of the
shape basis, we use an ordering constraint to find mislabeled data.
Errors in the initial labeling can often be identified because for each
mislabeled point, at least one of the triangles in the triangulated
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mesh containing that point as a vertex switches the direction of its
normal vector. Therefore by comparing the direction of a normal
vector of a triangle in the current frame with the one in the previous
frame, the consistency of labeling can be determined. This filtering
can be used to identify frames which do not have labeling errors; to
ensure correct estimation, the shape basis, B, is learned using only
these frames.

The labels computed by the EM algorithm may not always be
correct. In our setup, an interactive tool is used to review the tri-
angulated mesh output overlaid on raw motion capture data. Errors
in labeling can be corrected by clicking on the mesh and the corre-
sponding raw data point in one frame. This correction is propagated
automatically over time by recomputing the initialization procedure
described before. When the user is satisfied with all corrections we
reconstruct the final imputation by projecting the labeled data onto
the bilinear basis.

4.1.2 Evaluation. We extensively test our labeling algorithm
on 1114 dense facial motion capture sequences of five different
actors. Each actor performed roughly 200 sequences of varying
expressions and emotions, and the average sequence length was
854.6 frames. Completely automated labeling of these sequences
was carried out using the algorithm described earlier. About 10%
of the sequences were found to violate the ordering constraints;
the rest showed consistent labels, some of which were qualitatively
verified manually. The sequences which did violate the ordering
constraints were corrected manually using our interactive tool.
The average time to correct the labels of one such sequence was
10 to 15 minutes, depending on the number of errors. Labeling
such a large dataset with currently available industry standard
software would take prohibitive amounts of time. For a quantitative
comparison, we selected 9 face sequences at random and had
them labeled by an industry professional. The accompanying
video shows our labeling results compared against the professional
reconstruction. While both results are qualitatively similar, our
method takes about 10 minutes per sequence compared to ap-
proximately 2–3 hours to label a 1000-frames long sequence with
roughly 300 markers. Figure 8 shows the quantitative comparison
in terms of the Euclidean distance of each labeled point with its
ground-truth location, as determined by the industry professional.

Adapted
Original

Original frame 141 User added constraints
 and adapted shape

Time

Original and adapted trajectories

Adapted
Original
Constraint

Fig. 11. Motion touch-up of a motion captured jump. On the leftmost
panel, the character’s original motion fails to make contact with the ball.
The user can constrain points at the desired time (middle panel) in order to
satisfy the spacetime event. The bilinear model is then used to obtain the
modified trajectories of all points. No kinematic model is used, yet nonrigid
deformations such as bending the arms (middle panel) are possible with only
two point constraints. The rightmost panel shows the original and globally
modified trajectories with time on the x-axis. The source data is a cloud of
motion capture markers from the CMU Motion Capture Database.

The Cumulative Distribution Function (CDF) of the error shows
that almost all markers exhibit less than 2 mm displacement, attest-
ing to the quality of reconstruction and labeling. Figure 9 shows a
close-up example of a portion of the X- and Y -trajectories, showing
that our model inherently filters out high-frequency noise due to
the use of DCT as a trajectory basis, and adapts well to the raw data
trajectories.

4.2 Gap-Filling and Imputation

Missing data in both space and time can be reconstructed well
through the DCT-conditioned bilinear model. Since the representa-
tion is compact, a few points may be enough to reconstruct the entire
sequence provided that a good shape basis is learned. In several ex-
periments shown in the accompanying video, we estimated a shape
basis on Range-Of-Motion (ROM) sequences, because they capture
much of the variability of human expression. In Figure 10, the con-
ditioned bilinear model was trained on the second half of a single
ROM sequence and used to impute missing data on the first half on
the sequence. We randomly discard marker observations from the
unseen first half of the sequence, and estimate the coefficients from
the remaining points. The model yields a convincing reconstruction
with an average error of 1.6 mm for up to 99% missing observations.

4.3 Motion Touch-Up

Motion capture data often requires touch-ups or more extensive
editing to adapt the recorded motions to new situations. Examples
include preventing mesh interpenetrations after insertion into new
environments and matching up the motions of several characters.
In these scenarios, we require that the adapted motions meet new
constraints in spacetime, but we would like to retain most of the
original motion’s dynamics and spatial features [Gleicher 1997,
2001].

Tasks of this type fit into the framework of constraint-based
motion adaptation [Gleicher and Litwinowicz 1998]. The bilin-
ear spacetime formulation is readily applicable to this framework:
user-specified constraints can be directly incorporated into a system
of linear equations involving the model parameters. The solution of
this system yields globally modified marker trajectories while en-
suring a smooth, close fit to the original data. Because the fitting
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is performed in the model’s compact parameterization, the result-
ing motions match the statistics of the original data or that of the
training data used to build the bilinear model.

Perhaps the closest formulation of this optimization problem is
that of direct manipulation blendshapes [Lewis and Anjyo 2010].
In that work, the user constrains the position of individual points
and the optimization process solves for the coefficients of a shape
basis (blendshapes of a facial rig). In our work, the constraints are
spacetime events—a point constrained to a location at a particular
moment in time—and the coefficients are those of the bilinear ba-
sis. Formally, given a matrix Sc with the desired position of certain
points at specific frames, we can solve for the global motion param-
eters, C, that deviate as little as possible from the original motion
parameters, C0, but satisfy soft constraints on points in Sc,

min
C

λ
∥∥(

Sc − �cCBT
c

)∥∥2

Wc
+ ‖(C0 − C)‖2

W0
. (18)

The parameter λ is chosen to be a high value so that constraints are
approximately met. Vectorizing and expanding the matrix norms in
the previous expression results in a linear system of equations with
an efficient least-squares solution that can typically be solved in real
time to allow for interactive editing

e(c) =λ(s − �c)T Wc(s − �c) + (c0 − c)T W0(c0 − c),

where c = vec(C), and as before, � = B ⊗ �. Additionally, diag-
onal weighting matrices have been introduced. Wc controls which
points in s should be constrained (e.g., if the entry corresponding to
point p in frame f has weight 0, that point is unconstrained). The
diagonal matrix W0 allows for nonequal penalization of changes to
different coefficients. For example, by increasing the weight corre-
sponding to higher-frequency DCT components in W0, changes in
low-frequency coefficients will be preferred, resulting in smoother
changes to the trajectories. In our experiments, the weight assigned
to low-energy shape basis vectors was also increased.

5. DISCUSSION

Gabaix and Laibson [2008] postulated properties of good models
of data: parsimony, generalizability, tractability, empirical consis-
tency, predictive precision, conceptual insightfulness, and falsifi-
ability. The bilinear spatiotemporal model is highly compact and
when conditioned with DCT is shown to generalize well to new
data. The model is also tractable: the basis can be estimated using
singular value decomposition and the coefficients can be estimated
using least squares estimation. We empirically demonstrate that
our model is consistent with motion capture data, and that it can
accurately impute large portions of missing data. The model also
provides valuable insights into the data when visualized as decom-
posed fundamental frequencies of principal shapes. Finally, while
the model does satisfy falsifiability in the original sense of the
term, it is not falsifiable in one sense: the model is statistical—
learned from training data—and does not use spacetime physical
constraints as developed by Witkin and Kass [1988]. For instance, in
editing marker positions (see Figure 11), bone length will not nec-
essarily be kept constant by this model, nor does the model ensure
force-coherence of the motion. This limitation restricts the usage
to touch-ups where the linear approximation is valid. An impor-
tant direction of research lies in marrying the desirable properties
obtained from statistical modeling with the correctness of a physi-
cal grounding, especially if this can be done while maintaining the
numerical efficiency of the model.

A question not addressed in the present work is model selection.
It is unclear in what way the number of basis Kt and Ks should

be chosen. While cross-validation is an obvious first choice, it is
often the case that there is insufficient data to do this, or that the
properties of the data change too much from sequence to sequence
to make fixed assumptions about the distribution of the data. This
issue is related to choosing the amount of regularization, especially
when imputing large amounts of missing data.

We have presented a compact, generalizable model for motion
data that captures and exploits the dependencies across both the
spatial and temporal dimensions, and shown that it is an empirically
faithful model for various types of motion data. The bilinear spa-
tiotemporal basis model makes it possible to quickly and efficiently
label and denoise large databases of dense facial motion capture
data, and we have shown its application in gap-filling, key-frame
interpolation and motion adaptation. Motion data is crucial to appli-
cations in animation, robotics, and visual intelligence, and a good
representation is fundamental to any process to be built upon it.
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HOOGENDOORN, C., SUKNO, F., ORDÊS, S., AND FRANGI, A. 2009. BiLinear
models for spatio-temporal point distribution analysis. Int. J. Comput.
Vis. 85, 237–252.

HORNUNG, A., SAR-DESSAI, S., AND KOBBELT, L. 2005. Self-calibrating
optical motion tracking for articulated bodies. In Proceedings of Virtual
Reality Conference (VR). IEEE, 75–82.

JAIN, A. 1989. Fundamentals of Digital Image Processing. Prentice-Hall,
Upper Saddle River, NJ.

LAWRENCE, N. D. 2004. Gaussian process latent variable models for visu-
alisation of high dimensional data. In Advances in Neural Information
Processing Systems.

LE, H. AND KENDALL, D. G. 1993. The riemannian structure of euclidean
shape spaces: A novel environment for statistics. Ann. Statist 21, 3,
1225–1271.

LEWIS, J. P. AND ANJYO, K.-I. 2010. Direct manipulation blendshapes. IEEE
Comput. Graph. Appl. 30, 4, 42–50.

LI, H., WEISE, T., AND PAULY, M. 2010a. Example-Based facial rigging.
ACM Trans. Graph. 29, 4, 32:1–32:6.

LI, L., MCCANN, J., FALOUTSOS, C., AND POLLARD, N. 2010b. Bolero: A prin-
cipled technique for including bone length constraints in motion capture
occlusion filling. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation.

LI, L., MCCANN, J., POLLARD, N. S., AND FALOUTSOS, C. 2009. Dynammo:
Mining and summarization of coevolving sequences with missing values.
In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 507–516.

LIU, G. AND MCMILLAN, L. 2006. Estimation of missing markers in human
motion capture. Vis. Comput. 22, 721–728.

LOU, H. AND CHAI, J. 2010. Example-based human motion denoising. IEEE
Trans. Vis. Comput. Graph. 16, 870–879.

MAGNUS, J. R. AND NEUDECKER, H. 1999. Matrix Differential Calculus with
Applications in Statistics and Econometrics, 2nd Ed. John Wiley & Sons.

MARDIA, K. V. AND DRYDEN, I. L. 1989. Shape distributions for landmark
data. Adv. Appl. Probab. 21, 4, 742–755.

MIN, J., CHEN, Y.-L., AND CHAI, J. 2009. Interactive generation of human
animation with deformable motion models. ACM Trans. Graph. 29, 1,
9:1–9:12.

MIN, J., LIU, H., AND CHAI, J. 2010. Synthesis and editing of personal-
ized stylistic human motion. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games. 39–46.

MITCHELL, S., BOSCH, J., LELIEVELDT, B., VAN DER GEEST, R., REIBER, J.,
AND SONKA, M. 2002. 3-D active appearance models: Segmentation of
cardiac MR and ultrasound images. IEEE Trans. Med. Imaging 21, 9,
1167–1178.

PARK, S. I. AND HODGINS, J. K. 2006. Capturing and animating skin defor-
mation in human motion. ACM Trans. Graph. 25, 3, 881–889.

PERPERIDIS, D., MOHIADDIN, R., AND RUECKERT, D. 2004. Spatio-Temporal
free-form registration of cardiac MR image sequences. In Medical
Image Computing and Computer-Assisted Intervention, C. Barillot, D. R.
Haynor, and P. Hellier, Eds. Lecture Notes in Computer Science, vol. 3216.
Springer, 911–919.

RAO, K. AND YIP, P. 1990. Discrete Cosine Transform: Algorithms, Advan-
tages, Applications. Academic, New York.

SAFONOVA, A., HODGINS, J. K., AND POLLARD, N. S. 2004. Synthesizing
physically realistic human motion in low-dimensional, behavior-specific
spaces. ACM Trans. Graph. 23, 3, 514–521.

SCHÖLKOPF, B., SMOLA, A. J., AND MÜLLER, K.-R. 1997. Kernel principal
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