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Abstract
This paper explores a behavior planning approach to automatically generate realistic motions for animated char-
acters. Motion clips are abstracted as high-level behaviors and associated with a behavior finite-state machine
(FSM) that defines the movement capabilities of a virtual character. During runtime, motion is generated automat-
ically by a planning algorithm that performs a global search of the FSM and computes a sequence of behaviors for
the character to reach a user-designated goal position. Our technique can generate interesting animations using a
relatively small amount of data, making it attractive for resource-limited game platforms. It also scales efficiently
to large motion databases, because the search performance is primarily dependent on the complexity of the behav-
ior FSM rather than on the amount of data. Heuristic cost functions that the planner uses to evaluate candidate
motions provide a flexible framework from which an animator can control character preferences for certain types
of behavior. We show results of synthesized animations involving up to one hundred human and animal characters
planning simultaneously in both static and dynamic environments.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism:Animation

1. Introduction

Creating realistic motion for animated characters is an im-
portant problem with applications ranging from the special
effects industry to interactive games and simulations. The
use of motion capture data for animating virtual characters
has become a popular technique in recent years. By captur-
ing the movement of a real human and replaying this move-
ment on a virtual character, the resulting motion exhibits a
high degree of realism. However, it can be difficult to re-use
existing motion capture data, and to adapt existing data to
different environments and conditions.

This paper presents a behavior planning approach to au-
tomatically generate realistic motions for animated charac-
ters. We first organize motion clips into an FSM of behav-
iors. Each state of the FSM contains a collection of motions
representing a high-level behavior. Given this behavior FSM
and a pre-defined environment, our algorithm searches the
FSM and plans for a sequence of behaviors that allows the
character to reach a user-specified goal. The distinguishing
features of our approach are the representation of motion as
abstract high-level behaviors, and the application of a global
planning technique that searches over these behaviors.

We represent sequences of motion capture clips as high-
level behaviors, which are then connected together into an

Figure 1: Planned behaviors for 100 animated characters
navigating in a complex dynamic environment.

FSM of behaviors. There are a number of techniques that
generate motion from a graph-like data structure built from
motion capture data [AF02, KGP02, LCR∗02]. These meth-
ods utilize search techniques that explore links between large
databases of individual poses of motion data. In contrast, our
planning algorithm searches over the behavior states of the
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FSM. Each state consists of a collection of long sequences
of individual poses that represent a high-level behavior. The
output of the planner is a sequence of behaviors that moves
the character to a specified goal location. Our planner does
not need to know the details of the underlying motion or
poses. This abstract representation of motion offers a num-
ber of advantages over previous methods detailed in Sec-
tion 2 of the paper.

Our planning technique synthesizes motion by perform-
ing a global search of the behavior FSM. Previous methods
synthesize final motion by using a local policy mapping from
state to motion. Gleicher et al.’s [GSKJ03] method builds a
data structure of motion clips and then replays these clips to
generate motion. At runtime, the graph of motions is used
as a policy that specifies a motion for the character depend-
ing on the state the character is in. The game industry uses
move trees [Men99,MBC01] to generate motion for human-
like characters. These approaches are reactive, and typically
make decisions based only on local information about the
environment. In contrast, our approach plans and searches
through the FSM to explore candidate behavior sequence so-
lutions. It builds a search tree of the states in the FSM, and
considers many different possible paths in a global sense be-
fore deciding on the final output motion. This enables our
algorithm to avoid many of the pitfalls that purely reactive
techniques are prone to, such as escaping local minimas in
the environment.

2. Background and Motivation

A number of methods have been proposed in the anima-
tion literature for generating motion for synthetic characters.
Because virtual environments require continuous streams of
motion, approaches that only create individual, static clips
cannot be readily utilized. These include keyframing, mo-
tion capture editing [BW95, WP95, Gle98, LS99, PW99],
and motion interpolation [WH97,RCB98]. By contrast, pro-
cedural animation techniques can generate arbitrarily long
streams of motion. These include behavior scripting [PG96]
and physically based methods that simulate natural dynam-
ics [LP02,HWBO95,SHP04,FP03]. The key issues with us-
ing physically-based techniques for interactive environments
have been high computational costs, and providing the ap-
propriate amount of high-level control.

A variety of planning and search techniques have been
used previously to create meaningful movements for ani-
mated characters. Planning approaches that preprocess sta-
tic environment geometry with graph structures, and sub-
sequently use motion capture data can produce human-
like motion [CLS03, PLS03]. Preprocessing the environ-
ment with a roadmap has also been used for generating
flocking behaviors [BLA02]. Animations of object manip-
ulation tasks have been synthesized using planning tech-
niques [KKKL94, YKH04]. Planning algorithms have also
been used to generate cyclic motions such as walking and

crawling [SYN01]. Techniques incorporating the search of
control actions or motion primitives include examples in-
volving grasp primitives [KvdP01], various body controllers
[FvdPT01], and precomputed vehicle trajectories [GVK04].

Our work is closely related to recent techniques [AF02,
KGP02, LCR∗02, PB02, GSKJ03] that build graph-like data
structures of motions. These approaches facilitate the re-use
of large amounts of motion capture data by automating the
process of building a graph of motion. In contrast, our algo-
rithm requires the existence of a behavior FSM and motion
data that has been appropriately segmented. However, we
have found that it is not difficult to construct and re-use our
FSMs because of their small size. More importantly, we be-
lieve that by abstracting the raw motion data into high-level
behaviors, our approach offers a number of advantages over
previous techniques:

Scalability and Efficiency: Our approach can scale to a
large amount of data. Gleicher et al. [GSKJ03] described
how unstructured motion graphs can be inappropriate for
interactive systems that require fast response times. Lee et
al. [LL04] explains similarly that for a large motion set, the
time required for searching a motion graph is the bottleneck
of the method. The number of behavior states in our FSMs
(25 in our largest example) is relatively small compared to
motion graph approaches, which typically have on the order
of thousands of nodes corresponding to individual poses of
motion (and potentially tens of thousands of edges). Because
of the small size of our FSM, and the fact that our branching
factor can be very small compared to that for unstructured
graphs, our planner is able to generate long animation se-
quences very efficiently. Moreover, once we have an FSM
that is large enough to produce interesting motions, the in-
clusion of additional motion data to existing behavior states
does not change the complexity; it will only add to the va-
riety of the synthesized motions. In Figure 2 for example,
the addition of another jog left motion clip leads to the same
FSM. This is in contrast to unstructured motion graph ap-
proaches [KGP02, LCR∗02] that require recomputation of
the graph if an additional motion data is added.

Memory Usage: Our method requires a relatively small
amount of data in order to generate interesting motions,
making it particularly appealing to resource-limited game
systems. As an example, our synthesized horse motions
(Figure 8) are generated from only 194 frames of data. While
these motions do not have as much variety as the synthesized
human motions, they may be appropriate for simple charac-
ters in some games.

Intuitive Structure: Because the FSM of behaviors is well-
structured, the solutions that the planner returns can be un-
derstood intuitively. The high-level structure of behaviors
makes it easier for a non-programmer or artist to understand
and work with our system. For example, a virtual charac-
ter that wants to retrieve a book from inside a desk in an-
other room needs to do the following: exit the room it is
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in, get to the other room, enter it, walk over to the desk,
open the drawer, and pick up the book. It is relatively dif-
ficult for previous techniques to generate motion for such a
long and complex sequence of behaviors. Because the FSM
effectively partitions the motions into distinct high-level be-
haviors, planning a solution and synthesizing a resulting an-
imation can be performed in a natural way.

Generality: We can apply our algorithm to different charac-
ters and environments without having to design new behav-
ior FSMs. For example, we generated animations for a skate-
boarder and a horse (Figure 8) using essentially the same
FSM (Figure 3). In addition, by representing the motion data
at the behavior level, there is no dependence on any partic-
ular environment structure. While others have demonstrated
synthesized motion for a single character navigating in a flat
empty environment or heavily preprocessed terrain, we show
examples of up to 100 characters moving simultaneously in
a variety of complex dynamic environments.

Optimality: Our method computes optimal sequences of be-
haviors. The maze example in Lee et al. [LCR∗02] uses a
best first search technique to synthesize motion for a char-
acter to follow a user sketched path. The user specified path
is useful for providing high-level control of the character.
However, the greedy nature of these searches may cause un-
expected or undesirable deviations from the path. Our ap-
proach overcomes this limitation because our FSM is small
enough to perform optimal planning. In some cases, gen-
erating optimal sequences of motion may be undesirable.
For these situations, we can relax the optimality criteria and
use other non-optimal search techniques inside the plan-
ning module. In addition to providing optimality, carefully
designed behavior FSMs can provide coverage guarantees,
which is an issue for unstructured graphs [RP04]. Unstruc-
tured graphs have no pre-determined connections between
motions, and can make no guarantees about how quickly one
motion can be reached from another.

Anytime Algorithm: For game systems with limited CPU
resources and real-time constraints, our planning algorithm
can be interrupted at any time and asked to return the best
motion computed up until that point as in [GVK04].

3. Behavior Planning

We explain our behavior planning approach in more detail.
The algorithm takes as input an FSM of behaviors, informa-
tion about the environment, and starting and goal locations
for the character. It uses an A*-search planner [HNR68] to
find a sequence of behaviors that allows the character to
move from the start to the goal.

3.1. Behavior Finite-State Machine

The behavior FSM defines the movement capabilities of the
character. Each state consists of a collection of motion clips
that represent a high-level behavior, and each directed edge

Figure 2: A simple FSM of behaviors. Arcs indicate allow-
able transitions between behavior states. Each state contains
a set of example motion clips for a particular behavior.

represents a possible transition between two behaviors. Fig-
ure 2 shows a simple FSM. The start state allows the char-
acter to transition from standing still to jogging, and the end
state allows the character to transition from jogging to stand-
ing still. We define a behavior to be the same as a state. How-
ever, we may have more than one state labeled, for example,
“jog left”. This is because it is possible to have multiple “jog
left” states, each with different transitions and different con-
nections within the FSM.

There can be multiple motion clips within a state. Having
multiple clips that differ slightly in the style or details of the
motion adds to the variety of the synthesized motions, espe-
cially if there are many characters utilizing the same FSM.
However, clips of motions in the same state should be fairly
similar at the macro scale, differing only in the subtle details.
For example, if a “jog left” clip runs a significantly longer
distance than another “jog left” clip, they should be placed
in different states and assigned different costs.

Individual clips of motions may be extracted from longer
clips of motion. Each motion clip has transition labels that
correspond to the first and last frame of every clip along
with their nearby frames, taking the velocities of the char-
acter into account. Transitions are possible if the end of one
clip is similar to the beginning of another. It is advantageous
to have the beginning and end of every clip to be similar.
This means that every clip would be able to transition to all
the others, allowing for a larger variety in the number of pos-
sible output motions. In practice, we have found that it is a
good idea to include some motion clips that are relatively
short compared to the length of the expected solutions. This
makes it easier for the planner to globally arrange the clips
in a way that avoids the obstacles even in cluttered environ-
ments.

Figure 3 shows an example of the FSM used for the
human-like character. The most complicated FSM that we
used has a similar structure, except for: (1) additional jog-
ging states mostly connected to each other; and (2) more spe-
cialized behaviors such as jumping. We captured our human
motion data using a Vicon optical system, at a frequency of
120 Hz. We used seven types of jogging behaviors: one mov-
ing forward, three types of turning left, and three of turning
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Figure 3: An example FSM used for a human character that
includes special jumping and crawling behavior states.

right. In addition to “jump” and “crawl”, there are also states
for: duck under an overhanging obstacle, different types of
jumps, and stop-and-wait. The “stop-and-wait” behavior al-
lows the character to stop and stand still for a short while
during a jog. These behaviors all have the same transition la-
bels. We also have a few jogging behaviors that are relatively
shorter in length; some of these have different transition la-
bels from the other states at either the beginning or the end
of the clip. For our experiments, the raw motion capture data
was downsampled to 30 Hz. Our most complicated FSM has
1648 frames of data, 25 states, and 1 to 4 motion clips per
state. Each of the seven types of jogging mentioned above
has about 25 frames of data per motion clip. Each of the spe-
cialized behaviors has about 40 to 130 frames, and each of
the shorter jogging states has about 15 frames. In addition,
there are 8 frames of data before and after each motion clip
that are used for blending.

The FSMs for the skateboarder and the horse are similar to
the one in Figure 3. For the skateboarder, there are five glid-
ing behaviors: one moving forward, two types of left turns,
and two types of right turns. In addition, there are states for
jumping, ducking, and stopping-and-waiting. All of the mo-
tion clips have the same transition labels. The FSM has 835
frames of data, 11 states, and 1 motion clip per state. Each
motion clip has about 60 frames of data, and an additional
16 frames used for blending. For the horse, we only had ac-
cess to a single keyframed motion of a forward gallop. We
defined a total of five galloping behaviors: one moving for-
ward, two types of turning left, and two turning right. All
turning motions were keyframed from the forward motion.
The FSM has 194 frames of data, 5 states, and 1 motion clip
per state. Each of the clips consists of 20 frames of data, and
an additional 12 frames used for blending.

3.2. Environment Abstraction

For static environments, we represent the environment e as
a 2D heightfield gridmap. This map encodes the obstacles
that the character should avoid, the free space where the
character can navigate, and information about special obsta-
cles such as an archway that the character can crawl under.
This information can be computed automatically given the
arrangement of obstacles in a scene. The height value is used
so that we can represent terrains with slopes or hills. For

each of the special obstacles, we compute: a set of near re-
gions where the character is near the obstacle and some spe-
cial motions such as jumping can be performed, and a within
region where the character can be in the process of execut-
ing the special motions. We assume our environments are
bounded by obstacles that prevent the character from navi-
gating into infinite space.

The virtual character is bounded by a cylinder with radius
r. The character’s root position is the center of this cylinder.
The character is not allowed to go anywhere within a dis-
tance r of an obstacle. As is standard in robot path planning,
we enlarge the size of the obstacles by r so that the character
can then be represented as a point in the gridmap [LaV].

Each of the special motions such as crawling need to be
pre-annotated with the type of corresponding special obsta-
cle. In addition, the motion clips that are more complex can
be optionally pre-annotated with the time that the special
motion is actually executed. For example, a long jumping
motion clip where the character might take a few steps be-
fore the jump can be annotated with the time where the jump
actually takes place. If there is no such annotation, we can
simply assume that the jump occurs in the middle of the mo-
tion clip.

Our algorithm handles dynamic environments, given that
we know a priori how each obstacle moves. Given the mo-
tion trajectories of all the moving objects, we define a func-
tion E(t) that given a time t, returns the environment e at
that time. For static environments, this function is constant.
Note that if the motion of moving objects is unknown, the
planner can utilize estimates of the future trajectories (e.g.
by extrapolation) to predict their future positions and plan
accordingly. Our method is generally fast enough to allow
iterative replanning should these predictions turn out to be
wrong.

3.3. Behavior Planner

The search algorithm uses two interrelated data structures:
(1) a tree with nodes that record explored states in the FSM
that is continually expanded during the search; and (2) a pri-
ority queue of FSM states ordered by cost, which represent
potential nodes to be expanded during the next search itera-
tion. Each node in the tree stores the motion clip or action a
chosen at that state, and the position, orientation, time, and
cost. This means that if we choose the path from the root
node of the tree to some node n, the position stored in n cor-
responds to the character’s global position if it follows the
sequence of actions stored along the path. The purpose of
the queue is to select which nodes to expand next by keeping
track of the cost of the path up to that node and expected cost
to reach the goal. The priority queue can be implemented ef-
ficiently using a heap data structure.

In order to get the position, orientation, time, and cost at
each node during the search, we first compute automatically
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Algorithm 1: BEHAVIOR PLANNER

Tree.Initialize(sinit);
Queue.Insert(sinit,DistToGoal(sinit,sgoal));
while !Queue.Empty() do

sbest← Queue.RemoveMin();
if GoalReached(sbest,sgoal) then

return sbest;
end
e← E(sbest.time);
A← F(sbest,e);
foreach a ∈ A do

snext← T (sbest,a);
if G(snext,sbest,e) then

Tree.Expand(snext,sbest);
Queue.Insert(snext,DistToGoal(snext,sgoal));

end
end

end
return no possible path found;

the following information for each action a: (1) the rela-
tive change in the character’s root position and orientation
(x(a),y(a),θ(a)), (2) the change in time t(a) (represented
by the change in number of frames), and (3) the change in
cost cost(a).

Pseudocode for the behavior planner is shown in Algo-
rithm 1. The planner initializes the root of the tree with the
state sinit, which represents the starting configuration of the
character at time t = 0. Most of our synthesized results were
generated using A* search, so the total cost is the sum of
the cost of the path up to that node and the expected cost
to reach the goal (DistToGoal). In addition to A*-search, we
also experimented with using truncated A* and inflated A*
search. For inflated A*, we set the relative weight for the es-
timated cost to reach the goal to be twice the weight of the
cost of the path taken so far. The planner iteratively expands
the lowest cost node sbest in the queue until either a solution
is found, or until the queue is empty, in which case there
is no possible solution. If sbest reaches sgoal (within some
small tolerance ε), then the solution path from the root node
to sbest is returned. Otherwise, the successor states of sbest
are considered for expansion.

The function F returns the set of actions A that the char-
acter is allowed to take from sbest. This set is determined
by the transitions in the FSM. Some transitions may only be
valid when the character’s position is in the near regions of
the special obstacles. Moreover, F can add more variety to
the synthesized motion by randomly selecting a motion clip
within each chosen state, if there are multiple clips in a state.

The function T takes the input state sin and an action a as
parameters and returns the output state sout resulting from
the execution of that action (Equation 1). The function f
represents the translation and rotation that may take place

for each clip of motion. The cost of each clip is computed
by the distance that the root position travels multiplied by a
user weight. The distance that the root position travels is es-
timated by the Euclidean distance between the start and end
frame projections onto the ground plane. If there are multi-
ple clips in a state, their costs should be similar; otherwise
they should be in different states. Each state has only one
cost. For multiple clips in the same state, we take the aver-
age of the cost of each clip. The search algorithm is optimal
with respect to the states’ cost.

sout .pos = sin.pos+ f (sin.ori,x(a),y(a),θ(a))

sout .ori = sin.ori+θ(a)

sout .time = sin.time+ t(a)

sout .cost = sin.cost + cost(a) (1)

The user weights assigned to each action correspond to the
character’s preference for executing a particular action. For
example, the weights for jogging-and-turning are set slightly
higher than the weights for jogging forward. The weights for
jumping are higher than any jogging motions, reflecting the
relatively higher effort required to jump. Hence the charac-
ter will prefer to jog rather than jump over the same distance
whenever jogging is possible. The stopping and waiting mo-
tions have the highest weights; the character should prefer
the other motions unless it is much better to stop and wait
for a short time. There is also an additional cost for walking
up or down a sloped terrain. This makes it more preferable
to choose a path that is flat, if such a path exists, than one
that requires traversing a rough terrain. The user can easily
change these relative weights in order to define a particular
set of preferences for the character’s output motion. Because
the number of behavior states in the FSM is relatively small,
we have not found parameter tuning to be a major issue in
practice.

The function G determines if we should expand snext as
a child node of sbest in the tree. First, collision checking is
performed on the position of snext. This also checks the in-
termediate positions of the character between sbest and snext.
The discretization of the positions between these two states
should be set appropriately according to the speed and dura-
tion of the action. The amount of discretization is a tradeoff
between the search speed and the accuracy of the collision
checking. For the special actions such as jumping, we also
check to see if the character is inside the within regions of
any corresponding obstacles during the execution of the ac-
tion. In the case of a jumping motion, for example, since we
have annotated when the jump occurs, we can add this time
to the accumulated time at that point (sbest.time) and use the
total time to index the function E.

As a final step for function G, we utilize a state-indexed
table to keep track of locations in the environment that have
previously been visited. If the global position and orienta-
tion of a potential node snext has been visited before, the
function G will return false, thereby keeping it from being
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expanded. This prevents the search from infinitely cycling
between different previously explored positions. Hence the
algorithm will terminate in finite time if no solution exists.

3.4. Motion Generation and Blending

After the search algorithm returns a sequence of behav-
iors, we convert that sequence into an actual motion for
the character. In order to smooth out any slight disconti-
nuities where the transitions between behaviors occur, we
linearly interpolate the root positions and use a smooth-in,
smooth-out slerp interpolation function for the joint rota-
tions. More sophisticated blending techniques could be used,
such as [RCB98,GSKJ03]. We use the height map of the ter-
rain to adjust the elevation of the character; we smooth these
elevation values by averaging any adjusted value with those
in the neighboring frames. It is also possible to utilize con-
straints or inverse kinematics techniques to fix the locations
of certain end effectors in the skeleton, although we did not
perform this in our experiments.

We synthesized motions for multiple characters by doing
prioritized planning. We plan the motion for the first charac-
ter as usual; each additional character’s motion is then syn-
thesized by assuming that all previous characters are moving
obstacles. Prioritized planning does not guarantee a globally
optimal solution for a given group of characters, as solving
this multi-agent planning problem is known to be PSPACE-
hard [LaV]. Although it is neither fully general nor optimal,
we have found that prioritized planning is efficient and per-
formed very well in our experiments. However, if the envi-
ronment contains narrow tunnels or bridges that will gener-
ate path conflicts and impasse, then prioritized planning may
not be appropriate.

4. Results

Figure 4 shows an example of a search tree generated by the
planner. We used here the behavior FSM for the human-like
character described in Section 3.1. The larger green sphere
is the starting position of the character, the smaller green
sphere represents the starting orientation, and the large red
sphere is the goal position. The obstacle near the bottom of
the figure and two of the smaller obstacles near the middle
are rendered at a lower height than they really are. This was
done to show the search nodes more clearly. The long obsta-
cle on the right side of the figure has two parts: one where
the character must crawl under, and one where the charac-
ter must jump over. The points that are plotted represent the
nodes of the tree, which are the states in the FSM. The tree
in Figure 4 has 2241 nodes. Each point’s location is the pro-
jection of the character’s root position onto the ground. The
color represents the total cost of each node, and it ranges
from blue to red.

We compare the search trees generated for A*-search,
truncated A*, and inflated A* search (Figure 5). The tree for

Figure 4: Perspective and top views of an example search
tree generated by the A* search planner (2241 nodes).

truncated A* has 1977 nodes, while the one for inflated A*
has 1421. The three searches each took less than 0.4 seconds,
and they all spend a large proportion of the time exploring
the area where there is a local minimum. The bottom row
of images shows the final paths the planner returned. Each
plotted point represents the end of the selected motion clip,
or the global position of the corresponding node in the search
tree. The three final paths look fairly similar, except for the
last part of the path for inflated A*. This last part is not a
direct path towards the goal, which reflects the non-optimal
nature of inflated A*. These results demonstrate the typical
characteristics of the three searches. In general, as we move
from A*-search to truncated A* to inflated A*: (1) the size
of the search tree decreases, (2) the search time decreases,
and (3) the quality of the solution decreases. Hence there
is a tradeoff between the search time and the quality of the
output motion.

We now present some experimental results that demon-
strate the effectiveness of our approach. Figure 6 shows
three human characters navigating in an environment with a
cylinder-shaped tree obstacle that gradually falls down. The
first character jogs past this obstacle before it falls, while the
two that follow jump over it after it has fallen. Our planner
takes less than one second to synthesize about 10 seconds
of animation for each character. In general, the amount of
search time is significantly less than the amount of motion
that the planner generates.

The example in Figure 7 demonstrates three concepts.
First, our algorithm can deal with simple rough terrain en-
vironments: the character successfully jogs up and down the
small rough terrain area. However, if the terrain consists of
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A* search truncated A* inflated A*

Figure 5: A comparison of search methods. The top row illustrates the complete search trees colored according to cost, and
the bottom row shows the waypoint nodes along the final paths returned by the planner for each search method.

Figure 6: A dynamic environment with a falling tree. Left: Before it falls, the characters are free to jog normally. Center: As it
is falling, the characters can neither jog past nor jump over it. Right: After it has fallen, the characters can jump over it. See
the accompanying video for the animation.

steeper slopes, it would be best to include a “jog up ter-
rain” behavior in our FSM. Second, an animator can con-
trol a character’s preferences for certain types of behavior
by adjusting cost functions that the planner uses to evaluate
candidate motions. In the example, one solution (the light
blue path) is generated using the normal costs for jumping
and navigating uphill. Another solution (the dark blue path)
is generated using very high costs for these two motions,
with everything else being the same. The one with normal
costs produces a more direct path: the character jogs through
the terrain and executes a jumping motion. The one with
higher costs produces a longer path, but it is optimal with
respect to the costs given that the character prefers neither to
jump nor navigate the elevated part of the terrain if possible.
Third, our technique scales efficiently to large motion data-
bases since the search performance is primarily dependent
on the complexity of the behavior FSM rather than on the
amount of motion data. We artificially create an FSM with

over 100000 motion clips by including the same motion clip
into a state 100000 times. This does not affect the resulting
motion, but it simulates a large database of motion. For this
artificial example, the database size increased by about 1000
times (from 2000 frames to 2000000), and the search time
only doubled (from about 2 seconds to 4).

Figure 8(top) shows a skateboarder stopping and then
jumping over a moving hook-shaped obstacle. It executes a
“stop and wait” motion so that it can prepare for the timing
of its jump. The planner takes about one second to generate
20 seconds of motion.

An example of three horses simultaneously avoiding each
other and a number of moving obstacles is shown in Fig-
ure 8(bottom). The motions of the moving obstacles are pre-
generated from a rigid-body dynamics solver. Their posi-
tions at discrete time steps are then automatically stored into
the time-indexed gridmaps representing the environment. In
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Figure 7: An environment with an area of elevated terrain.
The two synthesized paths were generated with different rel-
ative costs for jumping and climbing uphill and downhill.

Figure 8: Top: Snapshots of a skateboarder stopping and
jumping over a moving obstacle. Bottom: Three horses gal-
loping across a field of fast-moving obstacles.

the animation, the horses appear to move intelligently, plan-
ning ahead and steering away from the moving obstacles in
advance. Our algorithm takes roughly half of one second to
generate approximately 16 seconds of motion for each horse.

Figure 1 shows synthesized motion for 100 human char-
acters. In this example, it is important that the characters can
exhibit a “stop-and-wait” motion. If a character is temporar-
ily surrounded by moving obstacles (the other humans in this
case), it can stop and wait for them to move past before re-
suming forward motion. The high-level data representation
makes it intuitive to plan such a long and complex sequence
of motion. Each of the 100 characters used the same FSM
with approximately 55 seconds of animation, and the plan-
ner synthesized a total of 4000 seconds of motion. Given
that there were only 55 seconds of data, the resulting motion
has enough variety and complexity to be interesting. It takes
on average approximately 4 seconds to plan 40 seconds of
motion for each character.

The basic structure of the behavior FSM used to gener-
ate the motion of the skaterboarder, the horses, and all 100
of the human characters is similar to the one presented in
Figure 3. These examples demonstrate the ability of our be-
havior planning approach to adapt to characters with vastly
different kinematics and movement styles. In addition, the
same FSM can be re-used for any number of characters with
their own unique motion styles.

5. Discussion

We have presented a behavior planning approach to auto-
matically generate realistic motions for animated characters.
We model the motion data as abstract high-level behaviors.
Our behavior planner then performs a global search of a
data structure of these behaviors to synthesize motion. Al-
though a designer has to connect these behaviors together
into a behavior FSM, the tradeoff that comes from a well
organized data structure is that the graph size, behavior se-
mantics, search time, and level of control over the resulting
motion is vastly improved.

Our behavior planning approach can provide guarantees
of completeness and optimality. It is complete in the sense
that if a solution exists, the algorithm will find it, and if no
solution exists, it will fail in a finite amount of time. The
method is optimal with respect to the behavior costs defined
for the A* search. This optimality criteria, however, is not
a necessity. We have shown that other non-optimal searches
such as truncated or inflated A* can be used to produce rea-
sonable results. A limitation to being complete and optimal
is that A* search is an exponential search method. But this
does not present a problem in practice when applied to small
data structures such as our behavior FSMs. Our planner can
search through several thousand states in a fraction of a sec-
ond, and cover fairly long distances in a virtual environment.

The primary drawback of our approach compared to mo-
tion graphs [AF02, KGP02, LCR∗02] is that motion graphs
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can be constructed automatically from a general set of mo-
tion data. Our behavior planning approach relies on the exis-
tence of a behavior FSM, and motion data clips that have
been appropriately categorized into sets of behaviors. In
practice, we have found the FSM design process to be rel-
atively simple, and once the FSM is constructed, it can be
re-used for different characters and environments. Further-
more, we can add individual clips of motions to the states
easily once its basic structure is defined. The majority of the
work is, therefore, in the segmentation of data. We do re-
quire that the motions be carefully segmented and transition
labels be identified. However, the added benefit of having
abstracted motion clips organized into behaviors outweighs
the extra effort in manually segmenting the data; there are
many advantages (see Section 2) that come from building a
well defined FSM.

An issue regarding the organization of the motion clips
is that it is difficult to know when to group similar clips
into the same state. We currently assign a clip to an exist-
ing state if the motion matches the high-level description of
the behavior and it has the same transition labels of that state.
Otherwise, we assign a new state for the clip, or we elimi-
nate the clip completely if it does not fit into the states we
want to have in the FSM. This grouping process is qualita-
tive and is a potential candidate for automation in the future.
Arikan et al. [AF02] clustered the edges in their graph of
motion data. Lee et al. [LCR∗02] have tried clustering to
group similar poses. However, it is difficult to define an au-
tomatic algorithm to perform clustering on long sequences
of motion accurately for a general set of data. It is difficult
even for humans to group similar clips of motions together,
and hence getting the ground truth for comparison purposes
will be a challenge. The segmentation process requires iden-
tifying poses of the data that are similar, and can potentially
be automated in the future. Identifying similar poses from a
set of motion data is already a step that is automated when
building a motion graph, and this is an active area of re-
search [GSKJ03, BSP∗04].

Our examples show planned motions in dynamic environ-
ments whose obstacle motions were known a priori. This is
reasonable for applications in the movie industry that are of-
fline, and with some interactive games where the motions
of non-player entities are known in advance. Other interac-
tive applications benefit from “on-the-fly” motion generation
in environments where human-controlled characters move
unpredictably. For this case, we suggest an anytime algo-
rithm (Section 2), in which the planning process is repeat-
edly interrupted and returns the best motion computed at that
point (obtained by examining the state at the top of the plan-
ning priority queue). Provided that replanning happens at a
high enough frequency relative to the maximum speed of the
unpredictable entities, the characters will be able to avoid
obstacles “on-the-fly”. There exists a tradeoff between the
computation time and the optimality of the generated mo-
tion. For interactive game systems, the designer can mini-

mize the planning time as much as possible, while keeping
the synthesized motion reasonable.

Our behavior planner does not allow the virtual charac-
ter to exactly match precise goal postures. Our focus in on
efficiently generating complex sequences of large-scale mo-
tions across large, complex terrain involving different behav-
iors. Given a small number of appropriately designed “go
straight”, “turn left”, and “turn right” actions, our planner
can generate motions that cover all reachable space at the
macro-scale. No motion editing is required to turn fractional
amounts or traverse a fractional distance because we are
computing motion for each character to travel over relatively
long distances (compared to each motion clip). The algo-
rithm globally arranges the motion clips in a way that avoids
obstacles in cluttered environments while reaching distant
goals. The character stops when it is within a small distance
ε from the goal location. If matching a precise goal posture
is required, motion editing techniques [BW95, WP95] may
be used after the blending stage.

Although our results include animations of multiple char-
acters, we did not originally intend to build a system for gen-
erating motions for crowds. We do not claim our method to
be better than the existing specialized commercial crowd an-
imation systems. Nevertheless, the application of our plan-
ning technique to multiple characters produces results that
are quite compelling. In addition, to the best of our knowl-
edge, existing crowd animation systems utilize local reactive
steering methods [Rey87] rather than a global planning ap-
proach.

A possible direction for future work is to parametrize the
states in the FSM. Instead of having a “jog left” behavior
state, we can have a “jog left by x degrees” state. Such a state
might use interpolation methods [WH97, RCB98] to gener-
ate an arbitrary turn left motion given a few input clips. This
can decrease the amount of input data needed, while increas-
ing the variety of motion the planner can generate. We can
also have behaviors such as “jump forward x meters over an
object of height h”. This would allow our system to work in
a larger variety of environments.
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