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Figure 1: A time-reversed rigid body simulation with 3037 rigid balls bouncing, colliding, and sliding into place that was computed in under one hour.

Abstract

Physically based simulation of rigid body dynamics is commonly
done by time-stepping systems forward in time. In this paper, we
propose methods to allow time-stepping rigid body systems back-
ward in time. Unfortunately, reverse-time integration of rigid bod-
ies involving frictional contact is mathematically ill-posed, and can
lack unique solutions. We instead propose time-reversed rigid body
integrators that can sample possible solutions when unique ones do
not exist. We also discuss challenges related to dissipation-related
energy gain, sensitivity to initial conditions, stacking, constraints
and articulation, rolling, sliding, skidding, bouncing, high angular
velocities, rapid velocity growth from micro-collisions, and other
problems encountered when going against the usual flow of time.
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1 Introduction

With few exceptions, physically based animation is formulated as
an initial value problem: initial conditions are specified, and a time-
stepping scheme advances the system forward until the desired mo-
tion is generated. While this is suitable for the vast majority of
situations, there are times where we care more about the final con-
figuration of the system, or an intermediate one, rather than the

starting configuration. In these cases, it can make more sense to
use time-reversed simulation, in which we specify the final config-
uration of the system (possibly at rest) and step it backward in time
until we have generated enough motion. An illustrative example is
shown in Figure 1.

In simple mathematical terms, one can consider “time reversal” of
Newton’s equations of motion, f =Ma, as just the replacement of
time, t, by −τ , where τ is a “reverse time” variable:

M
d2x

dt2
= f

„

x,
dx

dt
, t

«

t→−τ
−→ M

d2x

dτ2
= f

„

x,−
dx

dτ
,−τ

«

. (1)

If the forces are autonomous and independent of velocity, e.g.,
f = f(x), such as for a bunch of particles interacting via gravity,
then the forces will look the same forward or backward in time, and
the system can be said to have time-reversal symmetry [Reichen-
bach 1999]. However, for other systems, such as those involving
velocity-dependent damping forces, the dynamics are not necessar-
ily symmetric, e.g., if energy is lost moving forward in time, then
it is gained moving backward in time. While the extension to rigid
body animation might seem straightforward, unfortunately, as they
say, the “devil is in the details,” and running systems backward in
time is not for the faint of heart.

Perhaps the most discouraging fact is that, unlike in forward simu-
lation, we can not uniquely solve a backward simulation problem,
in general. For dissipative systems, such as rigid bodies with fric-
tional contact, the problem of generating motion ending in a given
state is vastly under-determined; mathematically speaking, it is an
ill-posed problem. For example, take a single block sitting at rest
on a plane, and consider the nearly limitless set of motions ending
in that position. It could have been sitting in place for a second or a
year. It could have balanced on a single edge for an arbitrary length
of time before falling victim to gravity and landing on its face. It
could have slid in from any compass direction, while rotating (or
not) about its vertical axis. It could have bounced some before slid-
ing, or simply fallen a vertical mile only to land perfectly in place.
With friction, it is even possible for the box to slide, then bounce,
then slide again. If the geometry were rounded, it might have rolled
into place, perhaps while sliding or bouncing.

In this paper, we consider time-reversed simulation of rigid bodies
with frictional contact. Since we know we can not find a unique



solution to backward simulation, we take a different approach. We
propose to sample possible backward motions that could have gen-
erated the final simulation state. Doing so will require a holistic
approach: we must consider not just the mathematics and time-
stepping scheme, but also sampling strategies and ways to commu-
nicate user intent about the desired motion, e.g., “when should it
start moving, and in what way.” To begin with, in the first half of
the paper, we propose changes to a typical rigid body time-stepping
scheme that allow it to step backward in the presence of frictional
contacts; we consider schemes based on the Linear Complementar-
ity Problem (LCP) formulation.

Unfortunately, merely being able to take backward timesteps of
some possible motion does not guarantee that we will generate long
sequences of plausible motion. The true challenges and limitations
of backward simulation emerge only after we have designed and
implemented a time-stepping scheme. It turns out that the naı̈ve ap-
plication of reverse simulation results in motion that, while perhaps
technically and physically possible, can be qualitatively and quan-
titatively different from typical forward simulations. Therefore, in
the second half of the paper, we catalogue a number of situations
where any basic reverse simulator with a limited time horizon will
generate noticeable artifacts. Where appropriate, we also suggest
possible solutions, which may in some cases violate physics, but
which produce noticeably less offensive motion.

Terminology Before continuing on to discuss time-reversed sim-
ulation in depth, we should pause to establish some terminology.
We will use the term forward to refer to increasing time: t, t + ∆t,
t + 2∆t, . . . Backward and reverse will refer to decreasing time:
t, t −∆t, t − 2∆t, . . . Similarly, with respect to a reference time
tref, before will refer to times t < tref and after will refer to times
t > tref. Although we will refer to forward simulation frequently,
the problems we will actually be solving will all use backward in-
tegration, so the initial conditions for the solver will always refer to
the simulation state we provide as input to the reverse solver, which
will often (but not always) consist of the bodies at rest.

Related Work

Rigid body simulation has a rich history in both the mechanics and
computer graphics literature. As we will discuss in §2, our method
is based on the Linear Complementarity Problem (LCP) formula-
tion due to Baraff [1991; 1994] and Stewart and Trinkle [1996;
1997], but many other methods are available. Perhaps the simplest
techniques to implement are those which handle contacts by apply-
ing instantaneous impulses to the bodies; continuous contacts are
handled using a series of small impulses [Hahn 1988; Mirtich and
Canny 1995]. While these methods are fast, they tend to handle
stacking behavior poorly and do not accurately model friction.

Also easy to implement are penalty-based contact methods, such
as Hertz, Kelvin-Voigt, or Hunt-Crossley models (see [Hunt and
Crossley 1975; Lankarani and Nikravesh 1994]). As in (1), these
force-based models are trivial to reverse (just negate the damping
term), but can be slow compared to competing constraint-based
methods, and they generally do not handle complicated stacking be-
havior well due to the difficulty in incorporating a proper Coulomb-
like friction model (although see [Mirtich 2000]).

Guendelman and colleagues introduced a timestepping scheme
which interleaves contact handling and timestepping [2003]. Con-
tacts are handled one at a time in a relaxation scheme, but conver-
gence is accelerated through use of the contact graph [Hahn 1988].
Weinstein and colleagues extended this method to articulated bod-
ies with control [2006]. Kaufman and colleagues [2005] solved
for the contact forces on each body separately, holding other bod-

ies in the scene fixed. Milenkovic and Schmidl [2001] formulated
the contact problem as a quadratic program. It is likely that time-
reversed simulation methods could be developed based on any of
these methods, although the issues that we discuss in §4 arise re-
gardless of the underlying time-stepping scheme.

A number of optimization-based techniques have been developed
for finding solutions to the boundary-value problem (BVP) in which
both the object’s initial and final states are specified by the user. In
particular, spacetime constraints [Witkin and Kass 1988] could be
interpreted as a BVP-style reverse-integration scheme. However,
giving the user this level of control necessarily involves tradeoffs,
and for optimization-based methods the drawbacks are performance
and scalability. Popović and colleagues [2000; 2003] use gradient
descent to find solutions quickly; the initial guess for the optimizer
is a single forward simulation from the starting condition, or, in
later work, the user’s sketched motion. Chenney and Forsyth [2000]
used sampling techniques to solve various boundary-value prob-
lems, while Twigg and James [2007] added user input to speed
convergence. In cases with small numbers of objects and where
both the start and end states are specified, any of these approaches
would be superior to ours, but we demonstrate that our method can
scale up to larger numbers of objects.

Adjoint methods for gradient computation step through the simu-
lation forward and then backward [Wojtan et al. 2006; McNamara
et al. 2004], but the backward stage involves performing computa-
tions on the existing simulation rather than computing new time-
reversed motion. Similarly, time-warp rigid body simulation [Mir-
tich 2000] involves “rolling back” bodies to earlier states, but only
to states that were computed previously using forward simulation.

Geometric integrators are time-stepping schemes that preserve cer-
tain invariants of the system, such as energy [Leimkuhler and Reich
2005; Kharevych et al. 2006]. These methods are ideal for simu-
lating N -body systems where exact energy preservation is needed
to prevent orbits from spiraling inward, and they guarantee that the
dynamics are reversible. However, this energy preservation and re-
versibility does not hold across frictional collision events, and in-
deed there are cases (e.g., a body at rest) where the trivial solution
computed by a reversible integrator will not generate the desired be-
havior. In a similar vein, Gear and Kevrekidis [2004] take a series
of forward steps and use a polynomial fit to exterapolate backward,
but this assumes that the function is smooth which does not hold in
the presence of contacts.

2 Background: Forward Steps

A multitude of schemes exist for time-stepping rigid body simula-
tions. While it may be possible to turn many of these into backward
schemes, there are various trade-offs. In particular, simple penalty-
based methods can afford at best a minimal amount of control over
the resulting simulation, as even small oscillations in position due
to numerical round-off quickly grow into large bounces due to the
use of inverse damping, which makes capturing either sliding or
stacking behaviors difficult.

Our scheme is based on the Linear Complementarity Problem
(LCP) formulations due to Baraff [1991] and Stewart and Trin-
kle [1997]. Before we explain how our backward scheme
differs, we will first review how the original forward scheme
worked. Because we used the open-source Open Dynamics En-
gine (ODE) [Smith 2006] as a starting point for our solver, we will
highlight a few places where that software differs from earlier work.



2.1 Review of LCP formulation of frictional contact

Each contact consists of a point pi and a normal ni (Figure 2, left).
Suppose we have a set of contact points p1, . . .pn. The scalar nor-
mal velocity vt

ni
evaluated at time t is the relative velocity of the

two bodies at pi along ni. The convention is that if the bodies are
separated at pi and the normal velocity vt

ni
at each contact point

is nonnegative, then the two bodies will not interpenetrate at the
given contact point in the next timestep. To maintain this invariant,
we apply a normal impulse ∆tfni

ni at each contact point. Solv-
ing for impulses instead of forces and formulating constraints in
terms of post-timestep velocities avoids the classic Painlevé prob-
lem as noted by Stewart and Trinkle [1996]; once velocities are
computed they can be used to advance positions. Conveniently,
if we use an Euler timestepping scheme, the relationship between
the set of normal impulses f = {fn1

, fn2
. . . fnn} applied to a

pair of colliding bodies and the resulting post-collision velocities
vt+∆t = {vt+∆t

n1
, vt+∆t

n2
. . . vt+∆t

nn
} at each of those points is lin-

ear, and can be written as,

v
t+∆t = v

t + ∆tJM
−1

J
T
f + ∆tJM

−1
f0 (2)

where M is a generalized mass matrix, f0 contains body forces,
and J is the matrix transforming object velocities into contact con-
straint normal velocities vt = {vt

ni
} (see Baraff’s course notes

for details [2001]). The impulses ∆tfni
and velocities vt+∆t

ni
must

satisfy three conditions,

(a) bodies must not interpenetrate at the contact: vt+∆t
ni

≥0;

(b) contact forces can only repel and never attract: fni
≥0; and

(c) contact forces are allowed to drive the post-collision velocity
to 0 but not beyond, that is, (fni

)(vt+∆t
ni

)=0.

This last condition corresponds to the intuition that contact forces
should not add energy to the system. These three conditions com-
bined with the linear relationship (2) form a Linear Complementar-
ity Problem, which can be written

0 ≤ vt+∆t
ni

⊥ fni
≥ 0, i = 1 . . . N, (3)

where the⊥ symbol is used to indicate the complementarity condi-
tion, vt+∆t

ni
fni

= 0. Note that Stewart’s and Trinkle’s original for-
mulation [1996] posed constraint (a) in terms of positions, requiring
that the bodies be fully separated at the next timestep. We prefer to
use velocities (as did Anitescu and Potra [1996]) as forcibly separat-
ing bodies during backward simulation imparts a nonzero velocity
which (as we will see) tends to grow without bound.

Restitution In the model described above, after only a single im-
pact the relative velocity between objects will drop to zero. Resti-
tution is needed for objects to bounce as they do in the real world.
We follow the approach described in Stewart [1998] and use a New-
tonian model for impacts instead of the Poisson model which is
more common in graphics [Popović et al. 2000; Guendelman et al.
2003]. Under this model, the post-impact velocity is related to the
pre-impact velocity by a constant α ∈ [0, 1) termed the coefficient

of restitution, such that vt+∆t
ni

= −αvt
ni

. A collision is inelastic if
α = 0; for convenience, we will call it elastic if α > 0. Under the
Stewart model, elastic collisions can be incorporated into the LCP
framework by modifying the allowed range of vt+∆t

ni
,

0 ≤ vt+∆t
ni

+ αvt
ni

⊥ fni
≥ 0. (4)

The decision of whether to apply an elastic or inelastic collision
response is commonly made using a cutoff velocity ǫ > 0 for vt

ni
,

switching to an inelastic response whenever |vt
ni
| < ǫ to allow

objects to come to rest and avoid spending time applying barely
perceptible elastic micro-collisions to bodies.

n1

p1

n2

p2

u1

u2

b.

a.

vt+∆t
ni

= 0

f n
i

=
0

fni

vt+∆t
ni

Figure 2: Linear Complementarity Problem for the normal force: Left:

A contact point i consists of a point pi and a normal ni. If the normal

velocity of the two objects at pi is 0, then the two bodies will not penetrate.

For friction we add two vectors ui (above) and wi (not pictured) that span

the tangent plane. Right: Constraints on the acceleration and force at a

contact point i correspond to values of vni
and fni

which lie on the thick

red line. When solving the LCP, Lemke’s algorithm begins with fni
= 0; if

vni
≥ 0 (e.g., point (a)), we are done, but if vni

< 0 (e.g., point (b)) then

we must increase fni
until vni

moves into the valid range.

Friction To model friction, we associate a pair of vectors ui ⊥ ni

and wi ⊥ ni with each contact point i. These vectors lie in the
tangent plane at pi and oppose sliding in that plane. As in (2),
the relationship between impulses ∆tfwi

wi applied along these
vectors and changes in velocity at other contact points is linear. For
friction, the constraints are slightly different,

(a) friction must always oppose velocity; that is, if vt+∆t
wi

≤ 0
then fwi

≥ 0 and vice versa,

(b) friction forces are bounded by a constant fraction µ of the
normal force, −µfni

< |fui
|+ |fwi

| < µfni
, and

(c) friction must be maximal if the resulting tangential velocity is
nonzero, vt+∆t

wi
(µfni

− |fwi
|) = 0 (this last condition is re-

lated to the principle of maximal dissipation [Stewart 2000]).

For simplicity, ODE decouples the two friction directions: the
single constraint in (b) above is converted to two individual con-
straints,

−µfni
< |fui

| < µfni
−µfni

< |fwi
| < µfni

(5)

which approximates the classic friction cone using a pyramid. The
resulting LCP constraint is

0 ≤ µfni
− |fui

| ⊥ vt+∆t
ui

, fni
vt+∆t
ui

≤ 0. (6)

These constraints are easier to see visually and correspond to the
red line in Figure 3. ODE actually computes friction forces in two
passes; the first estimates normal forces for a frictionless system,
and the second computes friction forces using the bounds µfni

from the first pass. In our implementation we solve for friction
and normal forces simultaneously similar to Baraff [1994].

2.2 Solving the LCP Problem

One algorithm commonly used for solving LCPs is Lemke’s algo-
rithm, which is described succinctly by Baraff [1994] with more de-
tails available in Cottle, Pang and Stone [1992]. Lemke’s algorithm
begins with each of the fni

, fwi
, fui

at zero (e.g., points (a) or (b)
in Figure 2 or points (c) or (d) in Figure 3). Each step of the solver
involves selecting a single fni

, fwi
or fui

and driving it toward

the valid region. Let {fi, v
t+∆t
i } be a generic constraint (which

could refer to any of the friction/normal constraints). As JM−1JT

is positive semidefinite, when we increase fi we find that vt+∆t
i
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Figure 3: Frictional LCP: Here, the friction force fwi
is required to lie on

the red line where the two vertical portions correspond to maximal dissipa-

tion dynamic friction and the horizontal line corresponds to static friction.

The goal of the LCP solver in this case is to modify fwi
until the point

(fwi
, vt+∆t

wi
) lies on the red line; this corresponds to moving along the di-

agonal lines shown here. (Credit: diagram inspired by one in [Smith 2006].)

increases as well, meaning that we can drive {fi, v
t+∆t
i } along the

grey lines that can be seen in both Figure 3 and Figure 2 until we
reach the valid region.

3 Backward steps

The complete state for a rigid body j at time t consists of its po-
sition xt

j , its orientation Θt
j , its linear velocity vt

j , and its angular

momentum Lt
j . In backward simulation, we are given the complete

system state S
t
j = {xt

j ,Θ
t
j ,v

t
j ,L

t
j} at time t and want to compute

the state S
t−∆t
j at time t −∆t. In this section, we will consider

a state S
t−∆t
j to be plausible if the forward timestepping scheme

described in §2 would if given S
t−∆t
j as input produce S

t
j as out-

put. We will examine each kind of constraint separately and break
down the possible configurations at t−∆t.

3.1 Normal forces

Consider first a normal constraint i (Figure 2, left). We can easily
compute the relative normal velocity vt

ni
of the two bodies at this

point. We know that vt
ni
≥ 0 (to machine precision) as this is a

simulation invariant, and to prevent interpenetration we will require
that vt−∆t

ni
≤ 0. Our goal is to determine a plausible value for

vt−∆t
ni

. Based on the LCP formulation described in §2, there are
four distinct possibilities for the state at t−∆t,

1. The relative velocity vt−∆t
ni

was large enough that the solver

chose to apply an elastic collision response: vt
ni
≥−αvt−∆t

ni
.

2. The relative velocity was 0 at the earlier timestep but is strictly
positive in the current timestep; vt−∆t

ni
=0 and vt

ni
>0. In this

case, we deduce that f t−∆t
ni

=0 (from the LCP conditions).

3. There was no relative motion normal to the surfaces in either
the earlier timestep or the current timestep: vt−∆t

ni
=vt

ni
=0.

4. The relative velocity was strictly negative at the earlier time
but is 0 in the current timestep; vt−∆t

ni
<0 and vt

ni
=0. In this

case we cannot infer anything about f t−∆t
ni

except that it was
nonnegative; however, we can say with certainty that the prior
velocity vt−∆t

ni
was small enough in magnitude to not activate

an elastic response.

The two cases with vt
ni

> 0 (1. and 2.) can easily be distinguished

from the cases with vt
ni

=0 (3. and 4.) since vt
ni

is given as input.
We can therefore break our contact handling into two paths using a
small cutoff velocity δ ≪ ǫ to distinguish between the two cases,
vt
ni

< δ and vt
ni
≥ δ.

Elastic collisions (vt
ni

> δ) In this case, we are required to de-
cide whether an object’s outgoing post-collision velocity resulted
from (i) an elastic collision applied at that contact, or (ii) other
forces in the system. This ambiguity is a stumbling block for the
backward LCP solver; if we consider Figure 4 we can see the two
possible lines that {f t−∆t

ni
, vt−∆t

ni
} are allowed to lie on. Barring

a fortuitous combination of body forces, the only way we will ever
see both vt−∆t

ni
> 0 and f t−∆t

ni
= 0, is if some other f t−∆t

nj
is

nonzero (j 6= i). If we want to find cases where fni
=0 and vt−∆t

ni

we will have to experiment with setting other fnj
in the system

to nonzero values, which turns our linear LCP formulation into a
combinatorial optimization problem.

From another perspective, imagine we are at point (a) in Figure 4
and the LCP solver needs to decide what to do. If we try to push
f t−∆t
ni

toward 0, there is a significant risk that the slope of the line
will be too steep and we will miss the valid region altogether (it
is impossible to know the true slope a priori, since changes to the
index sets will affect it). So the safe course for the solver is to
simply keep vt−∆t

ni
on the horizontal line, which it can always do by

applying appropriate forces. In an LCP solver using an algorithm
such as Lemke’s that processes the variables one by one, variables
which reach the horizontal line can never leave it, so the order we
handle variables in could significantly affect the result.

For these reasons, we discard possibility 2 altogether; if we see that
vt
ni
≥ 0, we assume that an elastic collision was applied, which

under the Newton model means that vt
ni

=−αvt−∆t
ni

. Because we
cannot guarantee that in an arbitrary frictional system a solution
exists in which each of the contacts satisfies the equality, we relax
the restriction by posing it as an LCP,

0 ≥ vt−∆t
ni

+ vt
ni

/α ⊥ f t−∆t
ni

≥ 0 (7)

We note that this backward restitution model can generate different
results from forward simulation. In forward simulation, the normal
velocity vt

ni
after the collision will be at least as large as the New-

ton model predicts, that is, vt
ni
≥ αvt−∆t

ni
. During reverse simula-

tion, vt
ni

is instead at most the predicted response, vt
ni
≤ αvt−∆t

ni
.

Resting contact (vt
ni

< δ) For any contact i where vt
ni
≈ 0,

we know as discussed above that a forward solver could not have
processed this as an elastic collision (the elastic collision model
guarantees a nonzero post-collision velocity), we can treat it as if
an inelastic collision happened at time t − ∆t. In this case, we
know that vt−∆t

ni
≤ 0 and f t−∆t

ni
≥ 0. We have one other con-

straint, which is that −vt−∆t
ni

< ǫ. Unfortunately, it is impossible

to guarantee that this will hold due to the influence of other f t−∆t
nj

for j 6= i, as these may push vt−∆t
ni

over the ǫ threshold. In addi-
tion, we want to allow the user control over whether the object was
(subject to other forces) sitting at rest at time t − ∆t or whether
one or more contacts had a nonzero velocity. We therefore allow
users to select a goal velocity vgoal

ni
, where setting vgoal

ni
= 0 means

that the solver will attempt (subject to other constraints) to maintain
resting contact, while setting 0 < vgoal

ni
< ǫ instructs the solver to

set −vt−∆t
ni

≥ vgoal
ni

. The result is another LCP condition,

0 ≥ vt−∆t
ni

+ vgoal
ni

⊥ f t−∆t
ni

≥ 0 (8)
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Figure 4: LCP conditions when simulating backwards: Left: If we find

ourselves at time t with a strictly positive vt
ni

, there are two possibilities

for what could have happened at time t − ∆t: either we applied an elastic

collision response (corresponding to the horizontal line here) or we applied

an inelastic response but nonetheless saw a nonzero post-timestep velocity

vt
ni

(corresponding to the vertical line here). Given the other forces in the

system, it is trivial to determine whether a nonzero f t−∆t
ni

is needed to

explain why vt
ni

> 0; with multiple constraints, however, it is unclear how

we can quickly determine which of the f t−∆t
ni

lay on the vertical line and

which lay on the horizontal line. (Note: Point (a) is discussed in the text.)

Right: Under the restitution model we use during forward simulation, the

only way that vt
ni

can be zero is if |vt−∆t
ni

| < ǫ. However, if we add this

constraint the LCP solver will not converge in many cases, as if we are at

point (b) we are not allowed to drive f t−∆t
ni

into the negative region.

3.2 Friction

In the model described in §2.1, a nonzero tangential velocity at time
t implied that the friction force applied was maximal. That is, if
vt
wi

> 0, then |f t−∆t
wi

| = µf t−∆t
ni

. On the other hand, if vt
wi

=

0, then f t−∆t
wi

could lie anywhere inside the friction cone; this is
underconstrained, as we would expect it to be, since damping forces
tend to remove information from the system. While any answer
returned by the solver is guaranteed to be feasible, the user can
“request” a particular vt−∆t

wi
by providing a goal velocity vgoal

wi
; the

resulting LCP is

0 ≤ µf t−∆t
ni

− |fwi
| ⊥ vt−∆t

wi
− vgoal

wi
≥ 0 (9)

(fwi
)(vt−∆t

wi
− vgoal

wi
) ≤ 0 (10)

In this case, the user should also specify the friction direction wi,
which could be in any direction. By specifying different friction di-
rections for different contact points we get behaviors such as the ob-
ject spinning in. Setting vgoal

wi
= −∞ or vgoal

wi
=∞ here is equiva-

lent to requiring that the friction force be maximal, although in this
case since we know a priori the relationship between the friction
and normal forces we could just as easily fold friction into the sys-
tem matrix similar to how Baraff handled dynamic friction [1994].

3.3 Implementation

Our timestepping scheme for backward simulation is just a mirror
of the Euler scheme we use for forward timestepping; after comput-
ing the forces f t−∆t

j and torques τ t−∆t
j , we advance the velocities,

v
t−∆t
j = v

t
j −∆tM−1

f
t−∆t
j (11)

L
t−∆t
j = L

t
j −∆tτ t−∆t

j (12)

which are then used to advance the positions in the normal way.

Solving for contact forces requires only a working LCP solver. Our
system uses ODE’s implementation of Lemke’s algorithm, which
we have modified to more tightly couple the friction and normal
forces. The number of constraints in the system is identical to those

used in forward simulation, so performance is similar. The runtime
performance of Lemke’s algorithm is dominated by the cost of re-
peated matrix solves, and if fast O(n2) matrix updates are used the
total cost is roughly cubic in practice. However, like the simplex
method on which it is based, Lemke’s algorithm has exponential
worst-case performance [Baraff 1994].

The linear relationship (2) must be changed due to the backward
timestepping scheme,

v
t−∆t = v

t −∆tJM
−1

J
T
f −∆tJM

−1
f0 (13)

Since most LCP solvers are designed to operate in terms of positive
definite rather than negative definite matrices, we can flip signs,

−v
t−∆t = −v

t + ∆tJM
−1

J
T
f + ∆tJM

−1
f0 (14)

Fortunately, our constraints are most naturally posed in terms of
negative velocities, so no changes are needed to the solver to sup-
port (14). Now, we observe that the constraints for backward sim-
ulation all include a “goal velocity” term vgoal

wi
or vgoal

ni
. These can

be easily added to (14),

−(vt−∆t + v
goal) = −v

t + ∆tJM
−1

J
T
f + ∆tJM

−1
f0 (15)

Selecting these goal velocities will depend on the criteria we dis-
cussed in the previous section, which we can write in pseudocode
(more details can be found in [Twigg 2008]):

HANDLE-CONTACT(vt−∆t
i ,ni)

1 vt
ni
← vt

i · ni Splitting velocity into components

2 wi ← (vt−∆t
i − vt

ni
ni)/

˛

˛

˛

˛vt−∆t
i − vt

ni
ni

˛

˛

˛

˛

3 vt
wi

= vt
i ·wi

4 if vt
wi

< δ Setting user’s friction direction
5 then wi ← user preference
6 switch Normal velocity needs bounce?
7 case vt

ni
> δ :

8 vgoal
ni
← −vt

ni
/α

9 case vt
ni
≤ δ :

10 vgoal
ni
← 0 or user preference

11 switch Friction force needs to be maximal?
12 case vt

wi
≤ δ :

13 wi ← user-preferred direction
14 vgoal

wi
← user-preferred speed

15 case vt
wi

> δ :

16 vgoal
wi
←∞

4 Addressing Challenges and Limitations

One limitation of backward simulation as described here is that
while it is always possible in a local sense to step a given simulation
in the backward direction, naı̈vely applying to a given initial condi-
tion can generate motion that is both qualitatively and quantitatively
different from motion generated by a forward simulation. It is im-
portant to note that this is not a numerical artifact of the solver; that
is, even if we could guarantee that in all situations taking a back-
ward step followed by a forward step (or vice versa) would bring
us back exactly to where we started, our backward simulations will
still be highly sensitive to the problems we list here because in gen-
eral we provide the simulator with initial conditions that are not the
result of a plausible forward simulation.

We will illustrate these problems with a combination of simple
thought experiments and numerical results.



Rapid velocity growth: Backward simulation can lead to rapid
growth in simulation energy as a result of restitution-related col-
lisional and frictional dissipation effects when run in reverse. In
practice, simulations with collisions can quickly become excited,
and have useful time horizons which are short. One strategy for
alleviating this problem, but not entirely removing it, is to limit the
rate of energy gain by using restitution coefficients closer to one,
and by not having large friction coefficients. Another possibility,
although it is nonphysical, is to introduce backward damping terms
to limit the rate at which simulations gain energy.

Unchecked micro-collision events can also lead to rapid energy
gains for objects that can rattle between two other objects; for ex-
ample, an object could be trapped between panes of glass. We can
reduce the gain by increasing the restitution coefficient when we
see many collisions between the same two objects in a short time
period while running backward. In our system, the restitution co-
efficient between two objects is set to 1 after an elastic collision is
processed between those objects and then smoothly blended back
to 0 over a short time period (0.2 seconds).

High angular velocities: Multiple collisions can also lead to rapid
increases in angular momentum. However, a more subtle and dis-
tracting issue is that angular velocity may be unnaturally increased
relative to linear velocity. For example, backward simulation may
lead to objects that bounce around with typical linear velocities, yet
spin rapidly with high angular velocities. To address this we apply
a small damping torque during backward simulation which coun-
teracts rotational velocity. This is not a panacea, however, as many
collisions can occur in a short time period while the damping force
is only effective over longer time scales.

Importance of initial conditions: Consider the following simple
experiment: we place a small object inside a large box that has a
single exit barely large enough for the first object to fit. When we
run this simulation backward, we find that the smaller box bounces
around inside the larger one indefinitely while experiencing expo-
nential energy growth due to the vanishingly small probability of
finding the exit. While this is (mathematically) a valid simulation,
it does not register to us as plausible because it seems unlikely that
the smaller box could have started with such a large amount of ki-
netic energy. Certainly, low-probability events can be a problem for
forward simulation as well, but the response (rapid energy growth)
is qualitatively different.

Given that we know that there exist forward simulations that enter
the box through the hole and settle to rest, the question becomes
one of picking an initial condition for our backward simulation that
when stepped backward will produce one of these forward simu-
lations. In many cases, however, if we pick the initial conditions
in a random or pseudo-random fashion we have an arbitrarily small
probability of selecting an initial condition that is the result of some
valid forward simulation. To see this, consider Figure 5, where it is
evident that even a minimum of geometry can lead to a very non-
linear mapping from the input space to the output space.

A related problem involves entropy loss; when reverse-simulation
motion is played back, we see a collection of objects go from being
totally disordered to completely organized. This looks unnatural to
us because in the real world (loosely speaking) entropy should in-
crease as time advances. We can help a bit by choosing initial con-
ditions for reverse simulation that are less than perfectly aligned.

Stacking: One example we would like to generate involves having
objects bounce around and then coincidentally assemble into some
kind of structure. To generate this, our simulator must be able to
handle stacking behavior. Any kind of stacking immediately im-
plies a causal order to the simulation, since in forward-simulated
objects cannot fall into place until objects below them in the pile

x

θ

x

θ

Figure 5: Difficulty of choosing initial conditions: We construct a

collision-constrained example (Left) that illustrates the potentially sparse

set of final states that result from plausible falling motion. If we uniformly

sample 10,000 initial conditions, we can compute the resulting motion un-

der forward simulation and examine the final object configurations. To re-

duce quantization artifacts in the rotational component we actually look

at the position and rotation when the object passes through a fixed height

y = h. Right: These position/rotation pairs can then be plotted on a graph

as shown right (points are in yellow and overlaid on top of a density plot).

The set of dynamically achievable configurations is thus a very sparse sub-

set of the object’s configuration space. Consequently, if we randomly sam-

ple an end configuration to begin our backward simulation, the odds that

we will pick a point on that sparse set, and can reach a feasible starting

configuration, are vanishingly small.

are there to fall on. The corresponding requirement when simulat-
ing backwards is that we only cause an at-rest object to slide, roll,
or bounce if it is at the top of the pile. Although determining which
objects should be free to bounce is a difficult problem in general,
we use the simple heuristic of examining all the contact normals
for a particular object; if the dot product of every pair of normals is
positive, then the object is considered free to bounce, whereas if any
pair of normals are opposing, the object is considered constrained.
The user can override this heuristic if necessary using the sketching
interface described later.

Even after we ensure causality through this heuristic, however, we
note that stacks of bodies are extremely prone to flying apart un-
der the reverse simulation (this corresponds to a forward simulation
where all the bodies arrive at their precise positions in the stack si-
multaneously, which can limit the range of motions). The cause of
this phenomenon can be seen in Figure 6; basically, to ensure that
the stack remains balanced when running backward, we must antic-
ipate collisions before they occur and ensure that the stack has the
exact velocity at the time of the collision to cancel out the impulse
generated by the impact. Ensuring this for every impact would ne-
cessitate a substantial amount of lookahead that would make back-
ward simulation less practical. We take an alternative approach
which is not physically valid but produces reasonable-looking mo-
tion: we allow the normal force to drop below 0 for objects that are
constrained according to the heuristic in the previous paragraph.
This corresponds to allowing stacked objects to attract each other,
which prevents blocks at the bottom of the stack from transitioning
from rest to bouncing.

Joints and constraints: One of the advantages of using the LCP
formulation is that joints are easy to add; we simply add extra vari-
ables to f in (2) for the Lagrange multipliers (see Witkin’s course
notes for details [2001]). To generate backward simulations involv-
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Figure 6: Stacking: In forward simulation, a high-speed elastic collision

between a single block and a stack of blocks (a) may result in a torque

applied to the entire stack (b) which causes a corner of the stack to lift

slightly off the ground (c) before settling down via an inelastic collision

(d). If we imagine trying to simulate this behavior backward, however, we

notice that at step (d) before any collisions have occurred we must apply

our inelastic collision to cause a nonzero velocity for the stack; failure to

do so means that an opposing torque will be applied at step (b) that, unless

it is somehow damped out through other low-probability events, will cause

the stack to disintegrate almost immediately.

a. b. c.

t
Figure 7: Joints: In a forward simulation, dropping these two connected

bodies results in the resting configuration (c). If we begin our backward

simulation from this resting configuration, however, we quickly run into

problems; from (c), we must apply precisely the right impulse to the up-

per block to push it into the vertical configuration, and at that exact moment

(b) the bottom block must lift off the surface. If we fail to match this exactly,

there will be some residual angular motion about the joint at (a) which will

quickly get multiplied through inter-block collisions.

ing jointed and otherwise constrained bodies, this formulation holds
without modification save reversing the signs on any Baumgarte
stabilization terms (we want joint constraint error to decrease as the
simulation steps backward, not increase).

Despite the convenience of implementation, generating plausible
time-reversed simulations of articulated bodies remains challeng-
ing: for short periods, the generated motion is reasonable, but even-
tually the attached bodies begin rebounding off each other with ex-
ponentially growing velocities. This is similar to backward simu-
lation of deforming bodies; where vibrations damp out during for-
ward simulations, they grow without bound during reverse simula-
tion. To understand why this problem arises in the first place, con-
sider Figure 7; here, the only way to avoid a nonzero velocity at the
joint (and hence inter-body collisions) is if we experience the low
probability event that the simulation chooses to cause the resting
bottom block to rise up off the surface at exactly the right moment.

One heuristic that can ameliorate the effect somewhat for articu-
lated bodies is to set the coefficient of restitution to unity between
bodies connected by a series of joints, but we recognize that this is a
highly unappealing solution and hope that future work will suggest
better alternatives.

Rolling: Rolling behavior is essential for generating realistic be-
havior for balls and cars. However, without a rolling friction model,
it is impossible to generate rolling behavior during backward sim-
ulation unless the object is rolling without slipping in the initial

conditions we provide to the solver. This is an unintuitive result,
but it follows from the following two observations:

1. The principle of maximal dissipation ensures that any slipping
grows without bound as the simulator steps in reverse. Sup-
pose, for example, that our scene consists of a single sphere
resting on the ground with a rotational velocity ωi. In for-
ward simulation, friction opposes this angular velocity, so in
backward simulation it must reinforce it; the result is a sphere
that spins ever faster in one direction while accelerating in the
opposite.

2. In the absence of rolling friction, if an object is sitting at rest
then there exists no forward simulation involving only rolling
which could have concluded in that state. This means that if
we provide our backward simulator with the initial condition
that our sphere is sitting unmoving then it is only through the
application of rolling friction that we can start the ball rolling.

This means that a working rolling friction model is an essential part
of backward simulation. Ours is quite simple: we add terms to
the LCP that (1) oppose rotational motion along all three axes, and
(2) are proportional to the normal force. By including them in the
solver itself, we guarantee that the rolling forces are proportional to
the normal force, which would be difficult if we computed rolling
friction before we solved for the normal forces, and that rolling
friction does not cause violation of any of the other constraints,
which would be difficult to ensure if rolling friction was added in
after the LCP solver step.

Sliding, skidding, and bouncing: When the initial conditions for
the backward simulation specify that the object is at rest, we have
an enormous amount of leeway in what the object should do. As
described in §3, we can provide hints to the simulator on a per-
contact basis specifying that the object begin sliding or that a small
nonzero normal impulse be applied.

One possibility is to give the user direct control over these pos-
sibilities. In our interactive system, the user can use gestures to
distinguish between sliding and bouncing (see Figure 8).

Figure 8: User-specified motion suggestions can provide hints to the back-

ward integrator to use when the resulting motion may be nonunique. An

arced line indicates bouncing while a straight line indicates sliding with the

direction of the line hinting the sliding direction. We use a simple method to

distinguish between the two possibilities by fitting a 2nd-degree polynomial

to the sketched curve and comparing the quadratic coefficient to a threshold.

If the user fails to provide any particular direction, the simulator
itself must make these decisions, preferrably in a suitably random
fashion. In developing this, our goal is to generate motion that is as
similar as possible to motion generated using a forward simulation.
To investigate this quantitatively, we generated over 1000 forward
simulations of a block landing on a plane, randomizing both the
initial angular and linear velocities. We recorded the contact state at
each step of the simulation. In Figure 9, we have plotted the number
of contacts recorded in each frame of the simulation (only a subset
of the simulations are shown here). Note that this data depends
on both the collision geometry and the sampling method used to
generate initial states; for more general geometries this could easily
be run as a pre-processing step as single-body simulations can be
computed quite quickly.
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Figure 9: Contact state transitions: Top: Contact state in rigid body sim-

ulation is complex, as we see transitions between 0 (free-flight), 1, 2, and 3
(flat on a face) contacts for a box thrown against a plane. Time runs from

right to left, so at the far left of the plot the box is at rest; the simulations

have been sorted lexicographically by contact configuration for easy view-

ing. Bottom: 200 simulations computed using backward simulation; our

goal is to get qualitatively similar simulations.

0123

Figure 10: Contact transitions: We use a simple model for determining

when to transition between contact states during backward simulation. Be-

cause we can only apply impulses out of the plane, we can only transition

to states with fewer contacts, as seen here. Probabilities for transitioning

between contact states are computed from the data in Figure 9.

Ideally, we would like our backward simulation to generate a plot
that looks as much like this as possible for simulated motions. To
this end, we developed the simple state-space model that can be
seen in Figure 10. We can use the vgoal

ni
parameter to induce a

separation at a given contact point; however, we cannot force an
already separating contact to “stick,” so our model only includes
transitions from more contacts to fewer contacts. We propose a sim-
ple Markov model; if we let ηt be the number of contacts at time t,
then the probability P(ηt | ηt−∆t) of transitioning from ηt contacts

to ηt−∆t is independent of all the other states ηt+∆t, ηt+2∆t, . . .
(this is the Markov condition). These state transition probabili-
ties are computed directly from the data in Figure 10. At runtime,
we count the number of active contacts at each timestep and use a
random-number generator to decide whether to transition to a dif-
ferent contact state; if so, an additional step selects randomly which
of the contacts should be separated, and the appropriate vgoal

ni
is set.

The resulting contact behavior can be seen in Figure 9. While there
are significant differences between the plots, if we examine the re-
sulting motion it seems plausible; see our video results.

5 Results

To test the usefulness and scalability of our approach, we applied it
to several different examples.

Spelling balls: Chenney and Forsyth [2000] showed several exam-
ples of dropping balls into grid cells to spell out words. This is a
nearly ideal example for our approach, since we care much more
about the resulting shape than we do about exactly where the balls
come from. The tradeoff we make here is that we have very little
control over where the balls fall from, while Chenney and Forsyth

incorporated this into their prior. In our version we dropped 3037
balls into square bins to spell out the classic typesetting dummy
text “Lorem ipsum dolor sit amet. . . ” (see Figure 1). Although our
example has 100 times as many balls as the ACM example, it runs
in just under an hour on our test machine, which has a 2.66GHz
Intel Core 2 processor and 2GB of RAM. Note that in this example
good modelling of rolling and sliding is essential to getting realistic
behavior toward the end of the simulation.

Spelling boxes: Since we are running the simulation backward, we
can make the final state as unrealistic as we want. In this case, we
spell “t → −t” without using bins to catch the objects (see Fig-
ure 11). Note that there is no requirement that the objects’ motion
be independent; in fact, many of the objects interact extensively.
This example was computed in under a minute and exhibits some of
the angular velocity growth noted in §4; we apply a reverse damp-
ing force to tame velocity growth somewhat.

Stacking: We built this stack out
of bricks. This example is par-
ticularly prone to the microcol-
lisions/rattling problem described
in §4 due to the proximity of the
bricks as they settle into the stack.
As a result, many of the simula-
tions were discarded due to rapid energy growth. Sorting the re-
sulting simulations by energy, however, we could quickly find rela-
tively low-energy simulations for rendering, and several are shown
in the accompanying video.

Collision scenario design: Backward simulation can also be use-
ful for specifying intermediate frames of a simulation. For example,
the collision scenario shown in Figure 12 was simulated by using
the intermediate frame as initial conditions for both forward and
backward rigid body simulators. The objects appear to fly in, col-
lide and bounce up, spelling “CRASH,” then fall.

6 Conclusion

While backward simulation has long been considered a potential
tool in our animation toolbox, there has been little in-depth ex-
amination of its implications. We have highlighted a number of
the issues in this paper and provided partial solutions, but we hope
that continued investigation will solve these problems outright. Our
method is particularly useful for specifying final (or intermediate)
states, and running them backward in time, and has computational
complexity similar to traditional LCP solvers for forward-time rigid
body simulation.

Notwithstanding numerous issues and limitations (§4), many inter-
esting challenges remain. There are numerous behaviors that are
not handled by our model such as stick-slip effects. Deformation
would be an additional challenge, as vibrations will tend to diverge
to infinity. Given the ill-posedness of backward simulation, there
appears to be significant potential for user-guided motion planning
and optimization. Future work should also investigate strategies for
generating more natural motion. Combining forward and backward
simulation techniques might leverage the strengths of both meth-
ods. Bidirectional simulation could be useful in motion optimiza-
tion and sampling for boundary value problems. We expect that
more sophisticated backward integration strategies might better ex-
ploit the naturalness of forward simulation to explore reverse times,
similar to work on manifold-based integration [Gear and Kevrekidis
2004], but in the presence of complex frictional collisions and con-
tact, and animator concerns.



Figure 11: Time-reversal spelled backwards

Figure 12: Collision scenario designed by time-stepping forwards and backwards from one intermediate frame.
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