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Abstract Global or indirect illumination effects such
as interreflections and subsurface scattering severely

degrade the performance of structured light-based 3D

scanning. In this paper, we analyze the errors in struc-

tured light, caused by both long-range (interreflections)
and short-range (subsurface scattering) indirect illumi-

nation. The errors depend on the frequency of the pro-

jected patterns, and the nature of indirect illumination.

In particular, we show that long-range effects cause de-

coding errors for low-frequency patterns, whereas short-
range effects affect high-frequency patterns.

Based on this analysis, we present a practical 3D

scanning system which works in the presence of a broad

range of indirect illumination. First, we design binary
structured light patterns that are resilient to individual

indirect illumination effects using simple logical opera-

tions and tools from combinatorial mathematics. Scenes

exhibiting multiple phenomena are handled by combin-
ing results from a small ensemble of such patterns. This

combination also allows detecting any residual errors

that are corrected by acquiring a few additional images.

Our methods can be readily incorporated into existing

scanning systems without significant overhead in terms

A preliminary version of this paper appeared in [16].
Mohit Gupta is with the Computer Science Department,
Columbia University, New York, NY, 10027.
E-mail: mohitg@cs.columbia.edu
Amit Agrawal is with the Mitsubishi Electrical Research Labs,
Cambridge, MA, 02139.
E-mail: agrawal@merl.com
Ashok Veeraraghavan is with the Electrical and Computer Engi-
neering Department, Rice University, Houston, TX, 77005.
E-mail: vashok@rice.edu
Srinivasa G. Narasimhan is with the Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, 15213.
E-mail: srinivas@cs.cmu.edu

of capture time or hardware. We show results for several
scenes with complex shape and material properties.
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1 Introduction

Structured light triangulation has become the method

of choice for shape measurement in several applica-
tions including industrial automation, graphics, human-

computer interaction and surgery. Since the early work

in the field about 40 years ago [37,25,33], research has

been driven by two factors: reducing the acquisition
time and increasing the depth resolution. Significant

progress has been made on both fronts (see the survey

by Salvi et al. [34]) as demonstrated by systems which

can recover shapes at close to 1000 Hz. [41] and at a

depth resolution better than 30 microns [11].

Despite these advances, the applicability of most

structured light techniques remains limited to well be-

haved scenes. It is assumed that scene points receive

illumination only directly from the light source. For

many real world scenarios, this is not true. Imagine a
robot trying to navigate an underground cave or an

indoor scenario, a surgical instrument inside human

body, a robotic arm sorting a heap of metallic machine

parts, or a movie director wanting to image the face
of an actor. In all these settings, scene points receive

illumination indirectly in the form of interreflections,

subsurface or volumetric scattering. Such effects, col-
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Translucent Marble Slab 

Concave Bowl 

Strong Interreflections Blurring due to sub-surface scattering 

(a) Concave bowl on a (b) Input image under (c) Input image under
translucent marble slab low-frequency illumination high-frequency illumination

Errors due to 

interreflections 

Errors due to 

subsurface scattering 

(d) Shape recovered using (e) Shape recovered using (f) Shape recovered using
Conventional Gray codes (11 images) Modulated phase shifting [8] (162 images) our ensemble codes (42 images)

Fig. 1 Measuring shape for the ‘bowl on marble-slab’ scene. This scene is challenging because of strong interreflections inside
the concave bowl and subsurface scattering on the translucent marble slab. (b) Scene points inside the bowl which are not directly
illuminated receive substantial irradiance due to interreflections. (d) This results in systematic errors in the recovered depth. (c) Due to
subsurface scattering on the translucent marble slab, high-frequency illumination patterns are severely blurred. Notice the low contrast
of the stripes as compared to the bowl. (e) This results in depth-errors on the marble-slab. (f) Our technique uses an ensemble of
codes optimized for individual indirect illumination effects, and results in an accurate shape reconstruction. Parentheses contain the
number of input images. More results and comparisons with existing techniques are at the project web-page [1].

lectively termed global or indirect illumination1, often
dominate the direct illumination and strongly depend

on the shape and material properties of the scene. Not

accounting for these effects results in large errors in the

recovered shape (see Figure 1b). Because of the system-
atic nature of these errors 2, it is hard to correct them

in post-processing.

The goal of this paper is to build an end-to-end

system for structured light 3D scanning under a broad

1 Global illumination should not be confused with the oft-used
“ambient illumination” that is subtracted by capturing image
with the structured light source turned off.

2 In photometric stereo, interreflections result in a shallow but
smooth reconstruction [29,28]. In structured light 3D scanning,
interreflections result in local errors.

range of indirect illumination effects. The focus is on de-
signing the projected patterns (coding) and decoding

schemes. In particular, we consider binary structured

light patterns, which are perhaps the simplest to imple-

ment and widely used in several research and commer-
cial systems. The key observation is that different in-

direct illumination effects place contrasting constraints

on the spatial frequencies of projected structured light

patterns. In particular, interreflections result in errors

for low-frequency structured light patterns 3. On the

3 Strictly speaking, since all binary patterns have step edges,
all of them have high spatial frequencies. For the analysis and
discussion in this paper, low-frequency patterns implies patterns
with thick stripes. Similarly, high-frequency patterns mean pat-
terns with only thin stripes.
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other hand, local effects such as subsurface scattering

and defocus blur the high-frequency patterns, making

it hard to decode them reliably.

We design patterns that modulate indirect illumi-

nation and prevent the errors at capture time itself.

We show that it is possible to construct codes with

only high-frequency binary patterns by introducing the
concept of logical coding and decoding. The key idea is

to express low-frequency patterns as pixel-wise logical

combinations of two high-frequency patterns. Because

of high frequencies, these patterns are resilient to long-
range effects. In order to deal with short-range effects,

we use tools from combinatorial mathematics to design

patterns consisting solely of low frequencies. In compar-

ison, most currently used patterns (e.g., Gray codes)

contain a combination of both low and high spatial fre-
quencies, and thus are ill-equipped to deal with indirect

illumination.

Indirect illumination in most real world scenes is not

limited to either short or long-range effects. Codes opti-

mized for long-range effects make errors in the presence

of short-range effects and vice versa. How do we han-
dle scenes that exhibit more than one type of indirect

illumination effect (such as the one in Figure 1(a))? To

answer this, we observe that the probability of two dif-

ferent codes producing the same erroneous decoding is
very low. This observation allows us to project a small

ensemble of codes and use a simple voting scheme to

compute the correct decoding at every pixel, without

any prior knowledge about the scene (Figure 1(d)).

Finally, for highly challenging scenes, we present

an error detection scheme based on a simple consis-

tency check over the results of the individual codes in
the ensemble. We then use an error correction scheme

which further reduces the errors due to indirect illu-

mination by selectively re-illuminating only the incor-

rectly reconstructed scene points [38]. We demonstrate
accurate reconstructions on scenes with complex ge-

ometry and material properties, such as shiny brushed

metal, translucent wax and marble and thick plastic

diffusers (like shower curtains). Our techniques outper-

form many existing schemes while using significantly
fewer images (12-42 versus 200-700) as compared to

previous work dealing with indirect illumination. We

believe that these techniques are important steps to-

wards making 3D scanning techniques applicable to a
large class of complex, real world scenarios.

2 Related Work

Structured light 3D Scanning: 3D scanning using

structured light is one of the oldest computer vision

techniques. Since the first papers [37,25,33], a lot of

progress has been made in terms of reconstruction speed,

accuracy and resolution. Broadly, these techniques are

divided into discrete [22] and continuous [40] coding

schemes. For an exhaustive survey on structured light
techniques, reader is referred to the survey by Salvi et

al [34]. In addition, hybrid techniques that combine

structured light with photometric stereo based tech-

niques have been proposed as well [30,3].

Shape recovery in the presence of indirect illu-
mination: The seminal work of Nayar et al. [28] pre-

sented an iterative approach for reconstructing shape

of Lambertian objects in the presence of interreflec-

tions. Liu et al. [24] proposed a method to estimate
the geometry of a Lambertian scene by using the second

bounce light transport matrix. Gupta et al. [19] pre-

sented methods for recovering depths using projector

defocus [39] under indirect illumination effects. Chan-

draker et al. [6] use interreflections to resolve the bas-
relief ambiguity inherent in shape-from-shading tech-

niques. Holroyd et al. [21] proposed an active multi-

view stereo technique where high-frequency illumina-

tion is used as scene texture that is invariant to indirect
illumination. Park et al. [32,31] move the camera or the

scene to mitigate the errors due to indirect illumination

in a structured light setup. Hermans et al. [20] use a

moving projector in a variant of structured light trian-

gulation. The depth measure used in this technique (fre-
quency of the intensity profile at each pixel) is invariant

to indirect illumination. In this paper, our focus is on

designing structured light systems that are applicable

for a wide range of scenes, and which require a single
camera and a projector, without any moving parts.

Nayar et al. showed that the direct and indirect

components of scene radiance could be efficiently sep-

arated [29] using high-frequency illumination patterns.
This has led to several attempts to perform structured

light scanning under indirect illumination [7,8,14]. All

these techniques rely on subtracting or reducing the in-

direct component and apply conventional approaches
on the residual direct component. While these approaches

have shown promise, there are three issues that pre-

vent them from being applicable broadly: (a) the di-

rect component estimation may fail due to strong in-

terreflections (as with shiny metallic parts), (b) the
residual direct component may be too low and noisy

(as with translucent surfaces, milk and murky water),

and (c) they require significantly higher number of im-

ages than traditional approaches, or rely on weak cues
like polarization. Recently, Couture et al. [9] proposed

using band-pass unstructured patterns to handle inter-

reflections. Their approach involves capturing a large
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number (200) of images with random high-frequency

patterns projected on the scene. In contrast, we ex-

plicitly design ensembles of illumination patterns that

are resilient to a broader range of indirect illumination

effects (interreflections, subsurface scattering, defocus,
diffusion, and combinations of multiple effects), while

using significantly fewer images.

Shape recovery in other optically challenging

scenarios: Active illumination has also been used to
measure density distribution of volumetric media [4,

15] and reconstruct transparent objects [35,26]. For a

detailed survey on techniques for reconstructing trans-

parent and specular surfaces, please refer to the state
of the art report by Ihrke et al. [23]. There have also

been techniques for performing 3D scanning in the pres-

ence of volumetric media using light striping [27,17].

Our techniques can not handle volumetric scattering.

The focus of this work is on reconstructing opaque and
translucent surfaces with complex shapes.

3 Analysis of Errors due to Indirect

Illumination

In this section, we analyze errors in structured light

caused due to different indirect illumination effects. The

basic principle behind shape from structured light is

triangulation. Each projector row/column is encoded
with a unique spatial or temporal code. A projector

illuminates the scene with the assigned code and cam-

era takes a sequence of images, one for each projected

pattern. For each camera pixel, the corresponding pro-

jector row/column is found by decoding the measured
intensity values. Once the correspondence is computed,

depth is computed by triangulation.

The resulting depth estimate is incorrect if there is
an error in estimating the correspondence. The magni-

tude of errors depends on the region of influence of indi-

rect illumination at any scene point. For instance, some

scene points may receive indirect illumination only from

a local neighborhood (subsurface scattering). We call
these short-range effects. Some points may receive indi-

rect illumination from a larger region (interreflections

or diffusion). We call these long-range effects. As shown

in Figures 2 and 3, long-range effects and short range
effects result in incorrect decoding of low and high spa-

tial frequency patterns, respectively. We analyze these

errors for the case of binary structured light patterns.

Binary patterns are decoded by binarizing the cap-
tured images into illuminated vs. non-illuminated pix-

els. A robust way to do this is to capture two images

L and L, under the pattern P and the inverse pattern

P , respectively 4. For a scene point Si, its irradiances

Li and Li are compared. If, Li > Li, then the point is

classified as directly lit. A fundamental assumption for

correct binarization is that each scene point receives ir-

radiance from only a single illumination element (light
stripe or a projector pixel). However, due to indirect il-

lumination effects and projector defocus, a scene point

can receive irradiance from multiple projector pixels,

resulting in incorrect binarization.

In the following, we derive the condition for correct
binarization in the presence of indirect illumination and

defocus. Suppose Si is directly lit under a pattern P .

The irradiances Li and Li are given as:

Li = Li
d + β Li

g , (1)

Li = (1− β)Li
g , (2)

where Li
d and Li

g are the direct and indirect components

of the irradiance at Si [29], when the scene is fully lit.

β is the fraction of the indirect component under the
pattern P .

In the presence of defocus (projector or camera), the

projected patterns and the captured image is blurred.

Similarly, aberrations due to imperfect projector optics

also result in blurring of the projected patterns. The
blur influences the highest frequency patterns, often

completely blurring them out 5. Defocus, unlike indirect

illumination effects, modulates the direct component as

well, as shown in [19]:

Li = αLi
d + β Li

g , (3)

Li = (1− α)Li
d + (1 − β)Li

g . (4)

The fractions (α and 1−α) depend on the projected
pattern and the amount of defocus. In the absence of

defocus, α = 1. For correct binarization, it is re-

quired that Li > Li, i.e.

αLi
d + β Li

g > (1− α)Li
d + (1− β)Li

g (5)

This condition is satisfied in the absence of indirect

illumination (Li
g = 0) and defocus (α = 1). Next, we

analyze the errors in the binarization process due to
different indirect illumination effects and defocus 6.

4 The inverse pattern can be generated by subtracting the im-
age from image of the fully lit scene.

5 For example, pico-projectors are increasingly getting popu-
lar for structured light applications in industrial assembly lines.
However, due to imperfect optics, they can not resolve patterns
with thin stripes, for example, a striped pattern of 2-pixel width.

6 Errors for the particular case of laser range scanning of
translucent materials were analyzed in [13]. Errors due to sen-
sor noise and spatial mis-alignment of projector-camera pixels
were analyzed in [36].
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Scene with interreflections: Concave V-groove

Illustration of errors due to interreflections (color online): The scene point marked with red is directly illuminated when the
low-frequency pattern is projected on the scene. It is not directly lit when the inverse pattern is projected. Due to interreflections, its
intensity is higher when it is not directly lit (0.25) as compared to when it is directly lit (0.16). This results in a decoding (binarization)
error, as shown on the right. Scene points decoded as one (directly illuminated) are marked in yellow and points decoded as zero (not
illuminated) are marked in blue. In the correct decoding, only the points to the left of the concave edge should be zero.

Decoding for high-frequency patterns: High-frequency patterns are decoded correctly even in the presence of interreflections. See
Section 3.1 for a detailed explanation.

Fig. 2 Structured light decoding in the presence of interreflections (color online). Top: A concave v-groove. Middle:
Illustration of structured light decoding errors due to interreflections. Interreflections result in low-frequency patterns being decoded
incorrectly. Bottom High-frequency patterns are decoded correctly.
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(a) (b) (c) (d) (e)

Fig. 3 Structured light decoding in the presence of subsurface scattering: (a) This scene consists of a translucent slab of
marble on the left and an opaque plane on the right. (b) A high-frequency pattern is severely blurred on the marble. Consequently,
binarization information can not be extracted reliably on the marble slab (c). In contrast, the image captured (d) under a low-frequency
pattern is binarized (e) more accurately.

3.1 Long-range effects (interreflections)

Suppose a scene point Si receives most of the indirect

component when it is not directly lit (β ≈ 0 in Eqs. 1-

4), and the indirect component is larger than the direct
component (Li

d < Li
g). Substituting in the binarization

condition (Eq. 5), we get Li < Li, which results in a bi-
narization error. Such a situation may arise due to long-

range interreflections, when scenes are illuminated with

low-frequency patterns. This is because low-frequency

patterns illuminate the scene asymmetrically. For ex-
ample, consider the v-groove concavity shown in Fig-

ure 2. Under a low-frequency pattern, several points in

the concavity are brighter when they are not directly

lit, resulting in a binarization error.

On the other hand, if the scene is illuminated with

a high-frequency pattern, the captured image is bina-

rized correctly even in the presence of interreflections.
This is explained as follows. If a high-frequency pat-

tern (with equal off and on pixels) is projected on the

scene, scene points receive approximately half the in-

direct component, i.e., β ≈ 0.5 [29]. Thus, for a scene
point Si, Li ≈ Li

d + 0.5Li
g and Li ≈ 0.5Li

g. Conse-

quently, Li ≥ Li, and the condition for correct bina-
rization is satisfied. An example is shown in Figure 2.

3.2 Short-range effects (subsurface scattering and

defocus)

Short-range effects result in low-pass filtering of the in-
cident illumination. In the context of structured light,

these effects may severely blur the high-frequency pat-

terns, making it hard to correctly binarize them. This

can be explained in terms of the binarization condition
in Eq. 5. For high-frequency patterns, β ≈ 0.5 [29]. If

the difference in the direct terms |αLi
d − (1− α)Li

d| is

small, either because the direct component is low due

to subsurface scattering (Li
d ≈ 0) or because of severe

defocus (α ≈ 0.5), the pattern can not be binarized

robustly. An example is shown in Figure 3.

For short-range effects, most of the indirect illumi-

nation at a scene point comes from a local neighbor-

hood. Suppose a low-frequency patterns is projected on

the scene. If a scene point is directly illuminated, most
of its local neighborhood is directly illuminated as well.

Hence, α ≥ 0.5 and β ≥ 0.5. Thus, for low-frequency

patterns, short-range effects actually help in correct de-

coding even when the direct component is low.

For conventional Gray codes, the high-frequency pat-

terns correspond to the lower significance bits. Incorrect
decoding of high-frequency patterns results in a loss of

depth resolution. For example, when conventional Gray

codes are used, if patterns of stripe-width less than 5

pixels are not resolved, last 2 bits of information are
lost. An example is shown in Figure 6.

In summary, long and short-range effects re-

spond differently to the spatial frequencies of

the incident illumination. In the presence of long-

range effects, low-frequency patterns are susceptible to

incorrect binarization, whereas high-frequency patterns
are decoded correctly. On the other hand, for short-

range effects, high-frequency patterns are susceptible

to coding errors while the low-frequency patterns are

decoded accurately.

4 Patterns for Error Prevention

In this section, we design patterns that modulate in-

direct illumination and prevent errors at capture time

itself. Because of the contrasting requirements on spa-

tial frequencies (as discussed in the previous section), it
is clear that we need different codes for different indirect

illumination effects. For long-range effects, we want pat-

terns with only high frequencies (low maximum stripe-
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widths). For short-range effects, we want patterns with

only low frequencies (high minimum stripe-widths). How-

ever, most currently used patterns contain a combina-

tion of both low and high spatial frequencies. How do

we design patterns with only low or only high frequen-
cies? We show that by performing simple logical op-

erations, it is possible to design codes with only high

frequency patterns. For short-range effects, we draw on

tools from the combinatorial maths literature to design
binary codes with large minimum stripe-widths, result-

ing in patterns with low spatial frequencies.

4.1 Logical coding-decoding for long-range effects

We introduce the concept of logical coding and decod-

ing to design patterns with only high frequencies. An

example is given in Figure 4. For binary structured

light, the goal is to correctly binarize the captured im-

ages. We model the binarization process as a function
from the set of binary projected patterns (P) to the set

of binary classifications of the captured image (B):

f : P ⇒ B . (6)

For a pattern P ∈ P, f(P ) is the binarization of

the captured image if the scene is illuminated by P . As
discussed in the previous section, under interreflections,

f(P ) is computed robustly if P is a high-frequency pat-

tern. But, if P is a low-frequency pattern, f(P ) may

be computed incorrectly. How do we ensure that f(P )
is computed correctly even for low-frequency patterns?

We propose decomposing a low-frequency pattern Plf

into two high-frequency patterns P 1
hf and P 2

hf using

pixel-wise binary operators ⊙ and ⊙̂, such that:

f(Plf ) = f
(
P 1
hf ⊙ P 2

hf

)
= f

(
P 1
hf

)
⊙̂ f

(
P 2
hf

)
(7)

If we find such a decomposition, we can robustly

compute the binarizations f
(
P 1
hf

)
and f

(
P 2
hf

)
, and

combine these to achieve the correct binarization f (Plf ).

Two questions remain: (a) What binary operators can

be used? (b) How can we decompose a low frequency
pattern into two high-frequency patterns? For both bi-

nary operators, we choose the logical XOR (⊗) because

it has the following properties. First, the binarization

function f is distributive with respect to XOR:

f
(
P 1
hf ⊗ P 2

hf

)
= f

(
P 1
hf

)
⊗ f

(
P 2
hf

)
(8)

This property allows decomposing a pattern into

two patterns, then computing and combining their bi-

narizations to achieve the binarization for the original

pattern. Second, the all zero pattern 0 is the identity

for XOR, i.e., P⊗0 = P . Third, XORing a pattern with

itself gives the zero pattern, i.e., P ⊗ P = 0. Fourth,

XOR is associative, i.e., for any three patterns P,Q,R,

(P ⊗ Q) ⊗ R = P ⊗ (Q ⊗ R). Using these three prop-
erties, it is easy to show that if Plf = P 1

hf ⊗ P 2
hf , then

P 2
hf = Plf ⊗ P 1

hf .

This provides a simple means to find the decompo-

sition for a low-frequency pattern Plf . First, choose a

high-frequency pattern P 1
hf . The second pattern P 2

hf is

then computed by simply taking the pixel-wise logical
XOR of Plf and P 1

hf . We call the first high-frequency

pattern the base pattern. Instead of the low-frequency

pattern, the two high-frequency patterns P 1
hf and P 2

hf

are projected on the scene. The corresponding captured
images are binarized. The two binarizations are then

combined by performing another pixel-wise logical XOR

operation. This produces the correct binarization as if

the scene was illuminated by the original low-frequency

pattern. An example is shown in Figure 4.

The logical patterns can be constructed by taking

the pixel-wise logical XOR of a high-frequency pattern
(base pattern) in the conventional Gray codes with all

other patterns. This is illustrated in Figure 4. The re-

sulting patterns have only high spatial frequencies. Note

that there is no overhead introduced; the number of pro-
jected patterns remains the same as the conventional

codes. If the last Gray code pattern is chosen as the

base plane, the resulting codes are called logical XOR-

02 codes. All the projected patterns have a maximum

stripe width of 2 pixels. In contrast, the original Gray
codes have a maximum stripe-width of 512 pixels.

If the second-to-last pattern is used as the base

plane, the resulting codes are called logical XOR-04

codes. The last pattern is projected unmodified. In these

codes, all the projected patterns have a maximum stripe-

width of 4 pixels. In general, if the (n − k)th pattern
is used as the base plane, the resulting codes are called

logical XOR-2k+1 codes, where n is the total number

of projected patterns. The maximum stripe width is

2k+1 pixels and the last k − 1 planes are projected un-
modified. The patterns for logical XOR-02 and XOR-04

codes are shown in Figure 7. The pattern images can

be downloaded from the project web-page [1].

Color Logical XOR Codes: Color can be used to

reduce the number of required input images 7 as com-

pared to binary patterns. It is possible to construct

7 The color of the incident illumination can be decoded from
the image of the illuminated scenes on a per-pixel basis, even for
non-white scenes [5]. It is not required to assume spatial smooth-
ness or color neutrality of the scene.
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(a) Conventional Decoding vs. Logical Coding and Decoding (b) Generation of Logical XOR Patterns
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Ground Truth

(c) Depth (conventional Gray codes) (d) Depth (our Logical XOR04 codes) (e) Comparison with the ground truth
Mean absolute error = 28.8mm Mean absolute error = 1.4mm

Fig. 4 Logical coding and decoding for long range indirect illumination (color online): (a) In logical coding and decoding,
a low-frequency pattern is expressed as a pixel-wise logical combination (e.g., XOR) of two high-frequency patterns. The high-frequency
patterns are projected on the scene and the captured images are binarized. The two binarizations are combined by performing another
pixel-wise XOR operation. This produces the correct binarization as if the scene was illuminated by the original low-frequency pattern.
(b) The logical patterns can be constructed by taking the pixel-wise logical XOR of a high-frequency pattern (base plane) in the
conventional Gray codes with all other patterns. The resulting patterns have only high spatial frequencies. The number of projected
images remains the same. If the last pattern is chosen as the base plane, the resulting codes are called logical XOR-02 codes. If the
second-to-last pattern is used as the base plane, the resulting codes are called logical XOR-04 codes. (c) Depth map computed with
the conventional codes. Because of incorrect binarization of the low-frequency patterns, depth map has large and systematic errors.
Because of their systematic nature, these cannot be removed by simple smoothing in post-processing. (d) Depth map computed using
our logical XOR-04 codes. The errors due to interreflections have been significantly reduced. (e) Comparison with the ground-truth.

color logical XOR codes by performing logical opera-
tions, similar to the binary case.

We consider the case where each color channel at
a projector pixel has a binary value. Thus, each pro-

jector pixel can take 8 possible color values - {RGB}

= {000, 001, 010, 011, 100, 101, 110, 111}. For exam-

ple, if a projector pixel is encoded as {100}, its red
channel is 1, and the green and blue channels are 0. In

this case, Ncolor = ⌈log8(M)⌉ patterns are required to

uniquely encode M projector columns. In contrast, for

binary coding schemes, Nbin = ⌈log2(M)⌉ patterns are
required to encode M different projector columns. For

example, if M = 512, Ncolor = 3 and Nbin = 9.

Figure 5 (a-c) shows color Gray codes for a pro-

jector with 512 columns. These codes were generated

using the K-ary (K = 8) reflected Gray code construc-
tion [10]. Figures 5 (d-f) show input images of a concave

bowl under the color Gray codes. Due to low frequencies

in the projected patterns, interreflections result in er-
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(a-c) Color Gray codes

(d-f) Input images for concave bowl using color Gray codes (g) Depth map

(h-j) Color Logical XOR codes

(k-m) Input images for concave bowl using color Logical XOR codes (n) Depth map

Fig. 5 Color Gray codes vs. color Logical XOR codes (color online). (a-c) Color Gray codes for a projector with 512
columns. Since 8 distinct color values are used, only 3 patterns are required to encode 512 distinct columns (binary coding requires
9 patterns). (d-f) Input images of a concave bowl for projected patterns (a-c). (g) Computed depth map. Interreflections result in
erroneous reconstruction near the periphery of the bowl. Please zoom in for details. (h-j) Color Logical XOR codes, constructed by
performing logical XOR operations on the color Gray codes. All the patterns have high spatial frequencies. (k-m) Input images of a
concave bowl for projected patterns (h-j). (n) Computed depth map. Errors due to interreflections have been significantly mitigated.
Most of the residual errors are due to pixel saturation.
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roneous reconstruction near the periphery of the bowl.

In order to construct color logical XOR codes, we

start with color Gray codes. It has been shown that by
performing a color calibration between projector and

camera [5], the color transfer matrix between the pro-

jector and the camera can be made a diagonal matrix,

and each color channel can be treated independently.

With this observation, the color logical XOR codes can
be constructed in a similar way as binary codes. First,

a base plane is chosen. In our experiments, we chose

the highest frequency pattern as the base plane. The

remaining color XOR codes are made by taking the
pixel-wise logical XOR of the base plane with other

patterns, for each color channel independently:

X i
c = Gi

c ⊗G1
c , (9)

for c = {R,G,B}, i = {2 : Ncolor}. X
i
c is the cth color

channel of the ith pattern of the color Logical XOR

codes. Gi
c is the cth color channel of the ith pattern of

the color Gray codes. G1
c is the cth color channel of the

base plane. The captured images are first binarized in
each color channel independently 8 and then combined

by performing a pixel-wise logical XOR operation in

each color channel. This produces the K − ary (in this

case,K = 8) decoding as if the scene was illuminated by
the original low-frequency patterns. Figure 5 (h-j) show

the color Logical XOR codes constructed using the algo-

rithm described above. All the patterns have high spa-

tial frequencies. Figures 5 (k-n) show the correspond-

ing input images of the concave bowl and the computed
depth map. Errors due to interreflections have been sig-

nificantly mitigated. The MATLAB code for generating

the patterns and decoding the input images is provided

on the project web-site [1].

4.2 Maximizing the minimum stripe-widths for
short-range effects

Short-range effects can blur the high-frequency base

plane of the logical XOR codes. The resulting binariza-

tion error will propagate to all the decoded patterns.
In order to be resistant to local blurring, patterns with

low spatial frequencies must be designed. For binary

patterns, this means designing patterns with large min-

imum stripe-width. In general, it is not feasible to find

8 Two additional images of the scene, one under all white illu-
mination, and one under all black illumination were acquired to
establish the per-pixel intensity thresholds for binarization.

such codes with a brute-force search as these codes are

extremely rare9.

Fortunately, this problem has been well studied in

combinatorial mathematics. There are constructions avail-

able to generate codes with large minimum stripe-widths
(min-SW). The 10-bit binary Gray code with the max-

imum known min-SW (8 pixels) was proposed by God-

dyn et al. [12]. We call these codes the maximum min-

SW Gray codes. These codes are shown in Figures 6
and 7. The algorithm to construct these codes is given

in [12]. The MATLAB code to generate these codes can

be downloaded from the project web-site [1].

In comparison, conventional Gray codes have a min-

SW of 2 pixels. For Gray codes, increasing the minimum
stripe-width also serves the dual purpose of reducing

the maximum stripe-width. Thus, maximum min-SW

Gray codes have a maximum stripe width of 32 pix-

els. Consequently, these codes, while being resistant to
short-range effects, are also more resistant to long-range

effects as compared to the conventional Gray codes.

Figure 6 shows a scene consisting of industrial parts.

A pico-projector was used to illuminate the scene. Due

to defocus, the high-frequency patterns in the conven-
tional Gray codes can not be decoded reliably, resulting

in a loss of depth resolution. In contrast, depth map

computed using maximum min-SW Gray codes does

not suffer from loss of depth resolution.

5 Ensemble of codes for general scenes

So far, we have designed codes optimized for long or

short-range effects. In general, it is not straight-forward

to identify which code to use without knowing the domi-

nant error-inducing mode of indirect illumination. This,
in turn, requires a priori knowledge about scene. More-

over, indirect illumination in most real world scenes is

not limited to either short or long-range effects. Codes

optimized for long-range effects would make errors in

the presence of short-range effects, and vice versa. In
this section, we address the question: how can we han-

dle general real world scenes that have both short and

long-range indirect illumination effects?

5.1 Depth recovery algorithm using ensemble of codes

We show that by projecting a small ensemble of codes
optimized for different effects, it is possible to handle a

9 It is relatively easy to generate codes with small maximum
stripe-width. For example, we could find 10-bit codes with a max-
imum stripe-width of 9 pixels by performing a brute-force search.
In comparison, conventional Gray codes have a maximum stripe-
width of 512 pixels.
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(a) Maximum min-SW Gray codes (b) Conventional Gray codes

(c) Histogram of stripe-widths (d) Histogram of stripe-widths (e) Histogram of stripe-widths (f) Histogram of stripe-widths
Maximum min-SW Gray codes Conventional Gray codes Logical XOR-04 codes Logical XOR-02 codes
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Conventional Gray Codes
Our Gray Codes

(g) Scene consisting of (h) Depth map using (i) Depth map using (j) Depth map comparison
industrial parts conventional Gray codes maximum min-SW Gray codes

Fig. 6 Designing patterns for short-range effects (color online): (a) Short-range effects such as subsurface scattering and
defocus result in blurring of projected patterns. For such effects, patterns with low spatial frequencies (large stripe-widths) must be
designed. We used tools from combinatorial mathematics literature to design binary patterns which maximize the minimum stripe
width. These patterns are called maximum min-SW Gray codes. (b) Conventional Gray codes. (c-d) Histograms of stripe-widths for
different 10-bit codes. For the maximum min-SW Gray codes, all the stripes have widths in the range [8, 32] pixels. The range of
stripe-widths for conventional Gray codes, [2, 512] pixels, is significantly larger. For XOR-04 and XOR-02 codes, the ranges are [2,
4] and [1, 2] pixels respectively. (g) A scene consisting of industrial parts. (h) Due to defocus, the high-frequency patterns in the
conventional Gray codes can not be decoded reliably, resulting in a loss of depth resolution. Notice the quantization artifacts. (i)
Depth map computed using Gray codes with large minimum stripe-width (min-SW) does not suffer from loss of depth resolution.

large class of scenes, without a priori knowledge about

scene properties. The key idea is that errors made by
different codes are nearly random. Thus, if the depth

values computed using two different codes is the same,

with a very high probability, it must be the correct

value. Based on this observation, we propose a simple
depth recovery algorithm.

We project four different codes: two optimized for
long-range effects (the XOR-04 and the XOR-02 codes),

and two codes for short-range effects (the Gray codes

with maximummin-SW and the conventional Gray codes).

Each code returns a depth map of the scene, as shown
in Figure 8 (a-d). The final depth value is computed by

performing a simple consistency check across the depth

values computed using the individual codes. If any two

depth values are within a small threshold, that value is

returned 10.

Intuitively, the two long-range codes produce the

correct depth value in the presence of long-range effects,

and the short-range codes produce the correct value in

the presence of short-range effects. Since there are two

codes each for long and short-range effects, the consis-
tency check will pick the correct depth value. Note that

10 Due to imperfect projector optics, insufficient cam-
era/projector resolution or misalignment between projector and
camera pixels, the depth results from individual codes might suf-
fer from spatial aliasing. This problem is more pronounced for the
high-frequency XOR codes. To prevent aliasing from affecting the
final depth estimate, we apply a median filter (typically 3× 3 or
5× 5) to the individual correspondence maps before performing
the consistency check.
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Conventional Gray Codes

Maximum Min-SW Gray Codes

Logical XOR-04 Codes

Logical XOR-02 Codes

Fig. 7 Visualization of different binary coding schemes: The patterns are for a projector with resolution 768×1024; thus, each
scheme has 10 patterns. For each scheme, each row in the figure represents one pattern. Conventional Gray codes have a wide range of
stripe-widths - [2, 512] pixels. The range for maximum min-SW Gray codes is [8, 32] pixels. For logical XOR-04 and XOR-02 codes, the
ranges are [2, 4] and [1, 2] pixels respectively. Horizontal lines in the second row (maximum min-SW Gray codes) are actually parallel;
they appear sloped because of an optical illusion called the cafe wall illusion [2]. Patterns are available at the project web-site [1].

the conventional Gray codes may lose depth resolution

due to defocus of subsurface scattering. Therefore, if

only the two Gray codes agree, we return the depth

value computed by the maximum min-SW Gray codes.
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The pseudo-code for the method is given in Algo-

rithm 1. MATLAB code can be downloaded from the

project web-page [1].

Figure 8 (e) shows the depth map computed using

the above algorithm. While the individual codes pro-
duce significant errors, the final depth map is nearly

error-free. The 3D reconstruction of the scene is shown

in Figure 1.

In the following, we show that the probability of two
different codes making the same error, i.e., two different

codes producing the same incorrect depth value, is very

low. Readers not interested in the error analysis can

skip Section 5.2 and go directly to results in Section 6.

5.2 Error analysis of the code ensemble algorithm

Assume, without loss of generality, that the intensity

coding is along the x-dimension of the projector im-

age plane, i.e., vertical stripes are projected. Therefore,

each projector column has a unique code. For binary
patterns, the code is binary. If the total number of

projector columns is M , the code has N bits, where

N = ⌈log2(M)⌉. N binary patterns are projected on

the scene and the camera captures N images, one for
each projected pattern.

Let the binary code for projector column a be CS
a .

S denotes the coding scheme, where, S ∈ {CG,MM −

SW,XOR02, XOR04}, corresponding to conventional

Gray, maximum min-SW Gray, logical XOR02 and log-
ical XOR04 codes, respectively. Suppose a pixel in col-

umn a directly illuminates the camera pixel x. Let the

vector of intensity values at x be ISx . For correct cor-

respondence to be established, the code CS
a should be

recovered from ISx . However, various factors such as sen-

sor noise, or illumination fluctuations or defocus and

indirect illumination can result in some of the bits flip-

ping from 0 to 1 or vice versa. This results in a decoding

error. Let the recovered code be CS
b . We assume that

flipping of each bit in the code is independent of other

bits. Then, the probability of code CS
a getting decoded

incorrectly as CS
b is

Pr[CS
a → CS

b ] = pd , (10)

where p is the probability of one bit flipping and d is

the hamming distance between CS
a and CS

b , 0 ≤ d ≤ N .

p is a function of sensor noise, illumination levels, scene

albedos and light transport in the scene. A small value
of p implies that reliable decoding. A large value of p

indicates unreliable decoding. If we pose the problem of

structured light as a communication problem, p would

(a) Conventional Gray codes (b) Maximum min-SW Gray codes

(c) XOR-04 codes (d) XOR-02 codes

(e) Code ensemble algorithm (f) Qualitative light transport

Fig. 8 Code ensemble algorithm to reconstruct scenes
with multiple indirect illumination effects (color online):
The scene is the same as shown in Figure 1. We project four
different codes - two logical XOR codes and the two Gray codes.
(a-d) Depth estimates using individual codes have errors.
(e) The code ensemble algorithm performs a simple consistency
check to compute a depth map with significantly fewer errors. (f)
By analyzing the errors made by the individual codes, we can infer
qualitative information about light-transport. Points marked in
green correspond to translucent materials. Points marked in light-
blue receive strong interreflections.

denote the reliability of the communication channel be-

tween the projector and the camera.

We have assumed p to be constant for all bit posi-

tions. In general, since the errors due to indirect illu-

mination are structured, p is different for different bit
positions. For example, for conventional Gray codes,

in the presence of interreflections, since low-frequency

patterns (higher significance bits) are more likely to be
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Fig. 9 Confusion matrices for different coding schemes. Confusion matrix for a coding scheme gives the probabilities of a
projector column being decoded incorrectly as another projector column. For the scheme to be the most error resistant, the confusion
matrix should be a diagonal matrix. We use the confusion matrices of individual coding schemes to perform error analysis of our code
ensemble algorithm (Section 5). Top row: Confusion matrices for p = 0.05, where p is the probability of a single binary bit (of the N

bit code) flipping. p is a function of the noise of the imaging and illumination system, scene albedos and light transport in the scene.
For a low value of p, the confusion matrices for all the schemes are nearly diagonal. Bottom row: Confusion matrices for p = 0.3.
Because of a high value of p, the off-diagonal terms are comparable to the diagonal terms.

decoded incorrectly, p is more for higher significance

bits than lower significance bits. Computing the p val-

ues for different codes would require knowing the scene
structure a priori. One possibility is to simulate struc-

tured light decoding by rendering several scenes with

global illumination. While such an approach can pro-

vide estimates of the value of p, it is beyond the scope
of this paper. The goal of our analysis is to show that

the probability of two different coding schemes making

the same error is very low, for a wide range of values

of p. If different p values are estimated for different bit

positions, a similar analysis can be done.

We define the confusion matrix MS for a coding

scheme S as MS(a, b) = Pr[CS
a → CS

b ], where a and b

are two projector columns. MS(a, b) is the probability
of CS

a being decoded incorrectly as CS
b . This matrix is

a measure of error resilience of a given coding scheme.

In order to be the most error resistant, the confusion

matrix should be a diagonal matrix. Note that the con-
fusion matrix is a function of p, the probability of a

single bit-flip.

Figure 9 shows the confusion matrices for four cod-
ing schemes, for two different values of p. As expected,

for a low value of p, the matrix is nearly diagonal for

all the schemes. However, for a large value of p, the

off-diagonal terms are comparable to the near-diagonal

terms. This can result in large decoding errors. Note

that the structure of the confusion matrices for the logi-
cal XOR codes is similar to the conventional Gray codes

as the former are derived from the latter.

The code ensemble algorithm (Section 5.1) produces

an error if the same decoding error happens for two

different schemes. For the camera pixel x, suppose the

correct corresponding projector column is a. The joint
probability of the column a being incorrectly decoded

as the column b, for two different coding schemes S1

and S2 is

Pr[(CS1
a → CS1

b ) & (CS2
a → CS2

b )] =

Pr[CS1
a → CS1

b ] . P r[CS2
a → CS2

b ] . (11)

This follows from the independence of the decod-
ing process for the two schemes. These probabilities

form the joint error probability matrix P (S1,S2), where

P (S1,S2)(a, b) = MS1(a, b)×MS2(a, b). Figure 10 shows

the matrices for 6 pairs of schemes. The off-diagonal
values are small. Finally, we note that a column a can

be incorrectly decoded as any other column b. So, the

probability that the code ensemble algorithm will result
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Error probabilities for the code ensemble algorithm (p=0.3)

Fig. 10 Error analysis of our code ensemble algorithm (Section 5.1). First and third rows: Joint error probability matrices
for different pairs of schemes, for different values of p. Most of the off-diagonal values are of the order of 10−6. Second and fourth
rows: Sum of rows of the joint error probability matrices. The resulting plots are the probabilities that the code ensemble algorithm
will result in a decoding error, for each projector column. Most of the probability values are less than 1%.

(CG, MM-SW) (CG, XOR04) (CG, XOR02) (MM-SW, XOR04) (MM-SW, XOR02) (XOR04, XOR02)

p=0.05 0.2% 0.9% 0.9% 0.2% 0.1% 0.8%
p=0.1 0.3% 1.4% 1.4% 0.3% 0.2% 1.2%
p=0.3 1.4% 0.3% 0.3% 0.1% 0.1% 0.3%
p=0.5 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

Fig. 11 Mean error probabilities for the code ensemble algorithm. This table gives the mean probabilities of a pair of
schemes making the same decoding error. These are computed by taking the mean of the error probabilities for all the projector
columns (Figure 10, second and fourth rows). Most of the values are less than 1%, with the maximum being 1.4%.

(CG, MM-SW) (CG, XOR04) (CG, XOR02) (MM-SW, XOR04) (MM-SW, XOR02) (XOR04, XOR02)

p=0.05 0.01 1.03 1.03 0.02 0.02 1.06
p=0.1 0.06 1.67 1.67 0.07 0.07 1.74
p=0.3 0.25 0.52 0.51 0.29 0.28 0.56
p=0.5 0.33 0.33 0.33 0.33 0.33 0.33

Fig. 12 Mean decoding error (in pixels) for the code ensemble algorithm. A decoding error results in an incorrect depth
estimate. The magnitude of the depth error is directly proportional to the column error |a− b|, where a is the correct column number
and b is the decoded (incorrect) column number. This table gives the mean column decoding errors for different pairs of schemes. Most
of the errors are less than 1 pixel, with the maximum being 1.67 pixels.
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in a decoding error for the column a is the sum of the

ath row of the matrix P (S1,S2)

P (S1,S2)(a) =
∑

b

P (S1,S2)(a, b) . (12)

Figure 10 (second and fourth rows) shows the plots

for P (S1,S2)(a) with respect to a for different pairs of

schemes. Note that most of the probability values are

less than 1%. Figure 11 shows the mean probability of

error for different pairs of schemes, where the mean is
taken over all the projector columns. Most of the values

are less than 1%, with the maximum being 1.4%.

Mean depth error: A decoding error results in an
incorrect depth estimate. The magnitude of the depth

error is directly proportional to the column error |a −

b|, where a is the correct column number and b is the

decoded column number. The expected column error
E(S1,S2) for a pair of schemes S1 and S2 is

E(S1,S2) =
1

M

∑

a,b

|a− b|P (S1,S2)(a, b) , (13)

where M is the total number of projector columns. Fig-
ure 12 shows the mean column decoding error for differ-

ent pairs of schemes, under different noise levels. Most

of the errors are less than 1 pixel, with the maximum

being 1.67 pixels. While this analysis was done for a

projector with 1024 columns, it can be extended in a
similar way for a different number of columns.

6 Experiments and Results

In our experiments, for phase-shifting, we project 18

patterns (3 frequencies, 6 shifts for each frequency). For
modulated phase-shifting [8], we project 162 patterns

(9 modulated patterns for each phase-shifting pattern).

For our ensemble codes, we project a total of 42 pat-

terns - 10 patterns for each of the 4 codes, 1 all-white
pattern and 1 all-black patterns. Images captured un-

der the all-white and all-black illumination patterns are

used to establish per-pixel intensity thresholds for bi-

narization.

Scenes with subsurface scattering and defocus:
Figure 6 shows a scene consisting of industrial parts.

Due to defocus, the high-frequency patterns in the con-

ventional Gray codes are not decoded reliably, result-

ing in a loss of depth resolution. Depth map computed
using maximum min-SW Gray codes does not suffer

from loss of depth resolution. Figure 13 and 14 shows

objects and scenes with strong subsurface scattering.

Translucent materials are often characterized by low di-

rect component. Since modulated phase shifting [8] re-

lies on explicitly separating the direct and the indirect

components, it suffers from low signal-to-noise-ratio for

highly translucent materials. The resulting depth maps
are severely degraded due to noisy. Our code ensem-

ble does not rely on explicit direct-indirect separation,

resulting in significantly better reconstructions.

Scenes with diffusion:Next, we consider scenes which
have only long-range effects. Figures 15 and 16 show

scenes comprising of thin, nearly transparent surfaces.

In both cases, light diffuses through the material and is

reflected from the background/interior, creating long-

range optical interactions. Consequently, conventional
Gray codes and phase-shifting result in large errors in

the reconstructed shape. For some moderately difficult

scenes, such as the shower curtain in Figure 15, it is

sufficient to use only one of our codes, instead of the
full ensemble.

Scenes with multiple indirect illumination ef-

fects: Next, we show scenes which have multiple indi-

rect illumination effects (but each scene point receives
either long or short-range effects). Figures 1 and 8 show

a scene consisting of a bowl on a marble slab. Depth

estimates using individual codes (Figures 8(a-d)) have

errors due to various indirect illumination effects. The

depth estimate using our code ensemble has signifi-
cantly fewer errors. Corresponding 3D reconstructions

are shown in Figure 1. By analyzing the errors made

by the individual codes, qualitative information about

light-transport can be inferred, as shown in Figure 8
(f). Points marked in green correspond to translucent

materials. Points marked in light-blue receive strong in-

terreflections.

The scenes in Figures 17 and 18 have both inter-

reflections and subsurface scattering. Modulated phase-
shifting performs poorly on translucent materials, whereas

conventional Gray codes and phase-shifting produce er-

rors due to interreflections. In contrast, reconstruction

produced using our ensemble of codes has significantly
reduced errors.

Finally, we consider scenes which have points that

receive both short and long-range effects. Figure 19

shows results for a cup made of styrofoam. Since styro-

foam is weakly translucent, points inside the cup receive
both subsurface scattering and strong interreflections.

Conventional Gray codes produce large errors in the

recovered shape. The spatial frequencies of the max

min-SW Gray codes are not sufficiently high to pre-
vent errors. However, accurate shape is recovered using

the code ensemble because of high-frequency XOR-02

and XOR-04 codes. Figure 20 shows shape recovery re-
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(a) Object (b) Modulated PS (c) Code ensemble (d) Object (e) Modulated PS (f) Code ensemble

Fig. 13 Reconstructing translucent wax objects: Translucent materials (a,d) are often characterized by low direct component.
Since modulated phase shifting relies on explicitly separating the direct and the indirect components, it suffers from low signal-to-
noise-ratio for highly translucent materials. The resulting depth maps are very noisy (b,e). Our code ensemble does not rely on explicit
direct-indirect separation, resulting in better quality depth-maps (c,f).

(a) Candles and flower vase (b) Conventional Gray codes (c) Modulated phase shifting (d) Our code ensemble

Fig. 14 Candles and flower-vase: (a) The scene consists of a flower vase and some wax candles. The flower vase is made of diffuse
glass, resulting in diffusion of light. The wax candles have subsurface scattering. Depth from phase shifting (b) has errors on the flower
vase, while modulated phase shifting results in errors on the candles (c). Depth map using our code ensemble (d) is nearly error free.
Zoom in for details.

(a) Shower curtain (b) Conventional Gray codes (c) Phase shifting (d) The XOR-04 codes

Fig. 15 Shower-curtain: (a) Light diffuses through the curtain and is reflected from the background, creating long-range optical
interactions. Consequently, (b) conventional Gray codes and (c) phase-shifting result in large holes in the estimated shape. The correct
shape of the curtain is approximately planar, with small ripples. (d) Reconstruction using our logical XOR-04 codes is nearly error
free, with the same number of input images as the conventional Gray codes.

(a) Ikea lamp (b) Conventional Gray codes (c) Our code ensemble (d) Visualization of (c)

Fig. 16 Reconstructing an Ikea lamp (color online): The lamp is made of thin translucent paper. Light diffuses inside the lamp,
bounces inside and comes back out. (b) Conventional Gray codes result in errors near the periphery of the lamp (marked in red). (c)

Depth map using our code ensemble. (d) 3D visualization of (c).
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(a) Fruit-basket (b) Conventional Gray (11 images)

(c) Phase shifting (d) Modulated phase shifting [8]
(18 images) (162 images)

(e) Code ensemble (42 images) (f) 3D Visualization for (e)

Fig. 17 Measuring 3D shape of a fruit-basket (color on-
line). (a) This scene has both interreflections (corner of the fruit-
basket) and subsurface scattering on the fruits. (b-c) Conven-
tional Gray codes and phase-shifting produce erroneous depth-
maps to interreflections (errors marked in red). (d) Modulated
phase shifting produces errors on the translucent fruits due to
low direct component. (e) Our technique using an ensemble of
codes results in significantly fewer errors. Parentheses contain
the number of input images.

sults for a wax bowl. Points inside the bowl receive

strong subsurface scattering. Since the interreflections

are weak (the bowl is shallow), the code ensemble pro-

duces an accurate shape. For more results and high-
resolution images, see the project web-page [1].

Figure 21 shows a failure case - a deep container

made of highly translucent wax. Points inside the con-
tainer receive both strong interreflections and strong

subsurface scattering. Since none of the four codes com-

pute the correct shape, the code ensemble fails to re-

construct the object.

Comparisons with Couture et al. [9]: Recently,

Couture et al. [9] proposed an approach to deal with

interreflections by projecting a large number (200) of

(a) Bowls and milk (b) Conventional Gray (11 images)

(c) Phase-shifting (18 images) (d) Code ensemble (42 images)

3D Visualizations for (d)

Fig. 18 Depth map computation for the bowls and milk
scene (color online). (b) Conventional Gray codes and (c)
phase-shifting result in errors (marked in red) at points receiving
strong interreflections. (d) Depth-map using our code ensemble.

random high-frequency patterns on the scene. Figure 22

shows comparisons of their approach with our XOR-04

codes, which have similar spatial frequencies as used
in [9]. Since all three scenes have strong interreflections,

the conventional Gray codes result in large errors. The

random high-frequency codes successfully remove the

errors. The XOR-04 codes produce results of the same

accuracy, while requiring an order of magnitude fewer
images (12 versus 200).

7 Error detection and correction

The patterns presented in the previous section can suc-

cessfully prevent a large fraction of errors. For highly

challenging scenes, however, some errors might still re-

main. An example is shown in Figure 23. This object
is a concave lamp made of brushed metal. This is a

challenging object due to strong, high-frequency inter-

reflections. Figure 24 (e) shows the reconstruction re-



19

(a) Styrofoam cup (b) Conventional Gray codes (c) Max min-SW Gray codes (d) Code ensemble

Fig. 19 Styrofoam cup (interreflections+subsurface scattering): Styrofoam is weakly translucent. Points inside the cup receive
both subsurface scattering and strong interreflections. (b) Conventional Gray codes produce large errors in the recovered shape. (c)
The spatial frequencies of our max min-SW Gray codes are not sufficiently high to prevent errors. (d) Accurate shape is recovered
using our code ensemble because of high-frequency XOR-02 and XOR-04 codes.

sults using the code ensemble. While the reconstruction

is better as compared to individual codes, a significant

amount of errors remain. For building a reliable shape

measurement system, it is critical to detect and correct
these residual errors.

Traditionally, error detection and correction strate-

gies from communication theory have been adopted in

the context of structured light. An example is the Ham-
ming error correcting codes used by Minou et al. [25].

These techniques treat structured light coding-decoding

as a signal transmission problem. Although good for

handling random sensor/illumination noise, these codes

can not handle the systematic errors made due to indi-
rect illumination. In this section, we present strategies

for detecting and correcting such errors.

7.1 Error detection

Our error detection algorithm is based on a simple ob-

servation. The consistency check proposed in the pre-

vious section, in addition to preventing errors, can also

be used for detecting errors. For a pixel, if none of the
four codes agree, it is marked as an error pixel, as illus-

trated in Figure 24 (f). It is possible that one of the four

values might be the correct value. However, as there is

an error correction stage to follow, we take a conserva-
tive approach and classify such pixels as error pixels.

Since no extra patterns need to be projected, the error

detection stage does not place any overhead in terms of

acquisition time.

Park et al. [32,31] use similar consistency checks
across range scans acquired from different view points.

By registering different scans and comparing the val-

ues from different scans, they remove spurious measure-

(a) Wax bowl (b) Code ensemble

Fig. 20 Wax bowl (interreflections+subsurface scatter-
ing): (a) Points inside the bowl receive weak interreflections (the
bowl is shallow) and strong subsurface scattering. (b) Shape com-
puted using the code ensemble algorithm.

(a) Deep wax container (b) Code ensemble

Fig. 21 Deep wax container (failure case): Points inside the
container receive both strong interreflections and strong subsur-
face scattering. Since none of the four codes compute the correct
shape, the code ensemble fails to reconstruct the object.

ments due to specular interreflections. In contrast, our

technique does not require moving the acquisition setup

or the object.
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Scene Conventional Gray Our XOR-04 codes Codes in [9]
(12 images) (12 images) (200 images)

‘Ball’ Scene

‘Games’ Scene

‘Corner’ Scene

Fig. 22 Comparisons with Couture et al. [9]: First column shows scenes with interreflections. Second column shows shape
recovered with conventional Gray codes. Since all the scenes have strong interreflections, conventional Gray codes result in large errors
(marked in red). The random high-frequency codes [9] successfully remove the errors, as shown in the third column. The XOR-04
codes produce results of the same accuracy (fourth column), while requiring an order of magnitude fewer images (12 versus 200).

7.2 Error correction

To correct the errors, we iteratively collect additional

images while illuminating only the scene points cor-

responding to the error pixels. This technique, based
on the work of Xu et al. [38], progressively reduces

the amount of indirect illumination, resulting in reduc-

tion of the error pixels. In the subsequent iterations,

the scene points which are already decoded correctly
are not illuminated. This is achieved using illumination

masks, as shown in Figures 24 (g,h). By progressively

reducing the number of points getting illuminated (and

hence, interreflections), the residual errors are reduced.

By acquiring images in 2 extra iterations 11, we achieve
a nearly perfect reconstruction.

Conventional Gray codes can not reconstruct a large

portion of the object. Modulated phase-shifting [8] can
not remove the high-frequency interreflections, result-

ing in large errors. The mean absolute errors as com-

11 We projected only the logical codes in subsequent iterations,
thus requiring 82 images in total.

pared to the ground truth for our result, conventional

Gray codes and modulated phase-shifting are 1.2mm,
29.8mm and 43.9mm respectively (height of the lamp =

250mm), respectively. The ground truth was acquired

by manually binarizing the captured images.

It is important to note that for this error correction

strategy to be effective, the error prevention and detec-
tion stages are critical. Since our techniques correctly

reconstruct a large fraction of the scene in the first it-

eration itself, we require only a small number of extra

iterations (typically 1-2) even for challenging scenes.

In comparison, the approach presented in [38] requires
a large number of iterations (10-20) and images (500-

800). This is because it uses conventional Gray codes,

which do not prevent errors in the first place. Secondly,

its error detection technique, based on direct-indirect
separation, is conservative. Consequently, if the direct

component is low (for example, in the presence of sub-

surface scattering), this technique may not converge.
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Algorithm 1 Structured Light Scanning in the Pres-

ence of Indirect Illumination
1. Project patterns and capture images for the 4 codes - two

Gray codes (Conventional Gray and Gray codes with max-
imum min-SW), and the two logical codes (XOR02 and
XOR04).

2. Compute depth values for the two Gray codes using conven-
tional decoding and the two logical codes using the logical
decoding (Section 4.1).

3. Apply a median filter (e.g., 3× 3 or 5× 5) to the individual
depth values to prevent propagation of aliasing errors.

4. Compare the depth values. If any two codes are consistent,
return that value as the correct depth. If the two Gray codes
are consistent, return the value computed by the maximum
min-SW Gray codes (Section 5).

5. Error detection: Mark the camera pixels where no two
codes agree as error pixels (Section 7). An example is shows
in Figure 24.

6. Error correction: Mask the patterns so that only the scene
points corresponding to the error pixels are lit [38]. Repeat
steps 1 − 5 to progressively reduce the residual errors (Sec-
tion 7, Figure 24).

8 Discussion and Limitations

Frequencies of the projected patterns: Our meth-

ods make the following assumptions on indirect illumi-
nation. The high-frequency codes assume that indirect

illumination is locally smooth. The low-frequency codes

assume that the indirect illumination is local. If both

these conditions are violated simultaneously, our tech-
niques may produce incorrect results. For example, if a

scene has mirror interreflections, or if the extent of sub-

surface scattering is significantly larger than the mini-

mum stripe width of max min-SW codes, our techniques

may fail to reconstruct the scene accurately.

This limitation is because we have classified indi-
rect illumination into either long or short-range. To

handle general scenes with a continuous range of in-

direct illumination effects, patterns with a continuous

set of frequencies can be used. For example, it is possi-

ble to construct different band-pass codes by doing the
XOR operations. Instead of only XOR-02 and XOR-

04 codes, depending on the scene, XOR-08, XOR-16,

XOR-32 codes can be used. Alternatively, sinusoidal

patterns can be used as they provide more flexibility
in controlling spatial frequencies [18]. Ultimately, there

is a trade-off between acquisition speed and the range

of scenes that can be handled. Four sets of patterns

with extreme frequencies can be considered to be the

minimal set.

What are the good spatial frequencies to use? An-
swering this requires a more thorough analysis of the

frequencies of light transport. While such an analysis

is hard for general scenes, we believe that studying the

(a) Concave Metal Lamp

Fig. 23 Concave metal lamp: A highly challenging object due
to strong, high-frequency interreflections.

statistics of light transport for natural scenes will pro-

vide useful insights. This forms a promising direction

of future research.

Single dominant mode of indirect illumination:
Our techniques assume a single dominant mode of indi-

rect illumination for every scene point. If a scene point

receives both strong short-range and long-range effects,

for example, inside of a strongly translucent and deep

bowl, none of the codes will produce the correct re-
sult. An example is shown in Figure 20. In this case,

the code ensemble algorithm and the error correction

step will not be able to retrieve the correct result. Our

techniques can not handle scenes in the presence of par-
ticipating media as volumetric scattering also results in

both short-range and long-range interactions.

Qualitative classification of indirect illumination:

The qualitative classification of indirect illumination

shown in Figure 8 is specific to the projector camera
configuration. So far, we haven’t reached a stage where

this classification can provide reliable quantitative in-

formation about the scene. For example, most of the

points inside the bowl receive interreflections. But since

this classification is based on the errors that the code
ensemble algorithm makes, only a few points are clas-

sified as receiving interreflections.

Conventional Gray codes as short-range codes:
In our code ensemble, we have considered conventional

Gray codes as being resistant to short-range effects.

This is an approximation. Due to local effects, the higher

frequency images in the conventional Gray codes will
get blurred, and might not be decoded correctly. How-

ever, since the high-frequency patterns correspond to

the lower significance bits, the resulting errors are small
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(a) Conventional Gray (b) Max min-SW Gray 

(c) Logical XOR-4 (d) Logical XOR-02 

Consensus-checking among the code ensemble 

Any Two Codes 

Consistent 

No Two Codes 

Consistent 

(e) Depth from Ensemble 

(f) Error map (Red Pixels) (i) Depth Map 

First Iteration 

(g) Illumination Mask 

Second Iteration 

(h) Illumination Mask 

(j) Depth Map 

Error detection using consistency check Error correction

(k) Conventional Gray codes (l) Modulated phase shifting (m) Our code ensemble (n) After error detection
(11 images) (162 images) (42 images) and correction (82 images)

Fig. 24 Error Detection and Correction (color online): (a) We use the same consistency check as in the code ensemble algorithm
for detecting errors. (a-d) Four depth maps using the individual codes. (e) Depth using the code ensemble algorithm has a significant

amount of residual errors. (f) For a pixel, if no two codes agree on a depth value, it is marked as an error pixel (red). Since no extra
patterns are projected, the error detection stage places no overhead in terms of acquisition time. In subsequent iterations, scene points
that are already decoded correctly are not illuminated. This is achieved using an illumination masks (g,h). By progressively reducing
the number of points getting illuminated (and hence, interreflections), the residual errors are reduced [38] (i,j). This object is very
hard to reconstruct with existing schemes (k,l). Using our techniques, we achieve a high quality reconstruction (n). The mean errors
for our result (n), conventional Gray codes (k) and modulated PS (l) are 1.2mm, 29.8mm and 43.9mm respectively (height of lamp
= 250mm). The parentheses contain number of input images.

(e.g., < 4 pixels if the last two patterns are lost). Hence,

in the consistency check step, the result of conventional

Gray codes will still agree with that of the max min-

SW Gray codes. In this case, the value computed by the
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minimum min-SW codes is returned. A future research

direction is to design more codes with large minimum

stripe widths.

Acquisition speed: Our techniques are currently lim-

ited to binary codes (monochrome and color) and thus

require capturing several tens of images, making them
unsuitable for dynamic scenes. The number of input

images can be decreased by having more than two in-

tensity levels in the projected images. An interesting

direction of future work is to extend our techniques to
N -ary (N > 2) codes and continuous schemes, such

as phase shifting [18], which require fewer images as

compared to discrete binary patterns. The number of

images can also be reduced using a priori knowledge

about the scene. For example, if the scene is known
to have only interreflections, then it is sufficient to use

only the logical codes, e.g., XOR-04. If, however, no a

priori knowledge about the scene is available, then the

code ensemble should be used.
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