
Legendre polynomials Triple Product Integral and
lower-degree approximation of polynomials using

Chebyshev polynomials

Mohit Gupta Srinivasa G. Narasimhan

CMU-RI-TR-07-22

May 2007

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

c© Carnegie Mellon University

Abstract

In this report, we present two mathematical results which can be useful in a variety of settings. First, we present an
analysis of Legendre polynomials triple product integral. Such integrals arise whenever two functions are multiplied,
with both the operands and the result represented in the Legendre polynomial basis. We derive a recurrence relation
to calculate these integrals analytically. We also establish the sparsity of the triple product integral tensor, and derive
the Legendre polynomial triple product integral theorem, giving the exact closed form expression for the sparsity
structure.

Secondly, we derive a truncation scheme to approximate a polynomial with a lower degree polynomial, while
keeping the approximation error low under the L∞ norm. We use the Chebyshev polynomials to derive our truncation
scheme. We present empirical results which suggest that the approximation error is quite low, even for fairly low
degree approximations.

I

Contents

1 Legendre Polynomial Triple Product Integral 1
1.1 Motivation and Technical Contribution . 1
1.2 Previous Work . 1
1.3 Calculation of the Triple Integral . 1
1.4 Sparsity of the Triple Integral . 3

2 Polynomial truncation scheme using Chebyshev polynomials 4
2.1 Approximation using Chebyshev Polynomials . 5
2.2 Truncation Scheme . 5
2.3 Truncation as a matrix operation . 5

II

1 Legendre Polynomial Triple Product Integral

Given two functions f(x) and g(x), suppose we want to find the product h(x) = f(x) ∗ g(x), where all the functions
are represented in Legendre Polynomials basis:

f(x) =
∑

i aiLi(x), g(x) =
∑

i biLi(x), h(x) =
∑

i ciLi(x),

where Li is the ith Legendre Polynomial.

⇒ ∑
k ckLk(x) = (

∑
i aiLi(x)) ∗ (

∑
j bjLj(x))

⇒ ∑
k ckLk(x) =

∑
i

∑
j aibjLi(x)Lj(x)

c′ks are the unknowns here. To simplify, we exploit the orthogonality of Legendre Polynomials (refer [1] for a list
of properties of the Legendre polynomials). Multiplying by L k(x) and integrating from −1 to 1:

ck = 2k+1
2

∑
i

∑
j aibjTI(i, j, k)

where TI(i, j, k) =
∫ 1

−1 Li(x)Lj(x)Lk(x)dx is defined as the Legendre Polynomial Triple Product Integral.

1.1 Motivation and Technical Contribution

Given K terms each in the expansion of f(x) and g(x), h(x) will have 2K terms. Thus, we have a total of 2K ×K ×
K = 2K3 computations to calculate all the ck. However, looking at the slices of the TI tensor (3D), one can observe
that a large fraction of the entries are zero (Figure 1). Also, the sparsity of the TI tensor has a particular structure. In
this report, we establish the sparsity formally, and find a closed form expression for the sparsity structure.

Once we establish sparsity of the TI tensor , we can reduce the number of computations, specially if we know the
exact distribution of the non-zero elements apriori. The main technical contributions here are:

• Establish sparsity of the TI tensor – prove that only a small fraction of elements are non-zero.

• Find out the distribution of non-zero elements, i.e. find the closed analytical form of the function N(i, j, k),
which returns 1 if the element is non-zero, and 0 otherwise.

1.2 Previous Work

Ng et al [3] provide an analysis of triple product integrals for basis like Haar Wavelets, Spherical Harmonics and
Fourier Series. However, to the best of our knowledge, there is no such previous work on Legendre Polynomials.
Legendre Polynomials form a system of basis polynomials with a wide support, as compared to Haar Wavelets which
provide only compact support. Thus, in practise, a function can be represented using a relatively small number of
Legendre Polynomials. We believe that a thorough analysis of triple product integrals for Legendre Polynomials would
be useful, given the generality of the problem (multiplication of two functions in Legendre Coefficients domain).

1.3 Calculation of the Triple Integral

As earlier, TI(i, j, k) =
∫ 1

−1 Li(z)Lj(z)Lk(z)dz. We will now try to calculate the triple integrals by formulating a
recurrence relation for the same:

1

Figure 1: Various Slices of the TI tensor. Area in black is zero. We can observe that a significant fraction of the TI tensor is zero.
Also, the sparsity of the TI tensor seems to have a particular structure. In this project, we want to establish the sparsity formally,
and find a closed form expression for the sparsity structure.

TI(i, j, k) =
∫ 1

−1

Li(z)Lj(z)︸ ︷︷ ︸
Term1

Lk(z)︸ ︷︷ ︸
Term2

dz (Integration By Parts)

=
[
LiLj

∫
Lk

]1

−1

−
∫ 1

−1

(LiLj)′
∫

Lk

=
1

2k + 1
[LiLj(Lk+1 − Lk−1)]

1
−1 −

1
2k + 1

∫ 1

−1

(LiLj)′(Lk+1 − Lk−1)

(
Lk =

L′
k+1 − L′

k−1

2k + 1

)
[1]

= 0 − 1
2k + 1

∫ 1

−1

(L′
iLj + LiL

′
j)(Lk+1 − Lk−1)

(
Lk(1) = 1, Lk(−1) = (−1)k

)
[1]

= − 1
2k + 1

∫ 1

−1


Lj

� i
2 �∑

r=1

(2i + 3 − 4r) ∗ Li+1−2r + Li

� j
2 �∑

r=1

(2j + 3 − 4r) ∗ Lj+1−2r


 ∗ (Lk+1 − Lk−1)

.


L′

k =
� k

2 �∑
r=1

(2k + 3 − 4r) ∗ Lk+1−2r




2

Figure 2: First Level of the recurrence tree

= − 1
2k + 1

� i
2 �∑

r=1

(2i + 3 − 4r) ∗ [TI(i + 1 − 2r, j, k + 1) − TI(i + 1 − 2r, j, k − 1)]

− 1
2k + 1

� j
2 �∑

r=1

(2j + 3 − 4r) ∗ [TI(i, j + 1 − 2r, k + 1) − TI(i, j + 1 − 2r, k − 1)]

Thus, we have expressed TI’s in terms of a summation of TI’s of lower order. We can calculate the 3D tensor
of TI’s using Dynamic Programming in time O(K 4). We can also exploit the symmetry TI(i, j, k) = TI(i, k, j) =
TI(j, k, i) = . . . to make the computations fast and numerically stable.

1.4 Sparsity of the Triple Integral

We use the recurrence relation derived above to prove the sparsity of the TI tensor, as given by the following Legendre
Polynomials Triple Product Integral theorem:

Theorem 1. TI(i, j, k) = 0 if either of the following two conditions hold:

• The triplet (i,j,k) doesn’t satisfy triangle inequality, i.e. either i + j < k, or i + k < j or j + k < i

• (i + j + k) mod 2 �= 0.

Proof. We will prove the two cases separately:

• The triplet (i,j,k) doesn’t satisfy triangle inequality: Let the triplet (i, j, k) doesn’t satisfy triangle inequality.
Without loss of generality, lets assume that i + j < k. Consider the recurrence tree for TI(i, j, k). The first
level is shown in Figure 2. We will first prove that if the root triplet (i, j, k) doesn’t satisfy triangle inequality,
then neither of the triplets in the corresponding sub-tree does.

Let a child of TI(i, j, k) be TI(i′, j′, k′). We consider two cases:

– k′ = k + 1: Since either i′ < i, j′ = j or i′ = i, j′ < j, we have i′ + j′ < k′

– k′ = k − 1: Since either i′ <= i − 1, j′ = j or i′ = i, j′ <= j − 1, we still have i′ + j′ < k

3

Hence, given a root triplet (i, j, k) not satisfying triangle inequality, neither of the triplets in the corresponding
sub-tree does.

Now we look at the leaves of such a sub-tree, or the base cases. We stop recursing when one of the indices (i,j
or k) becomes 0. This is when we have reached a leaf of the tree. Let the triplet at a leaf be i b, jb, kb. Without
loss of generality, let ib = 0. Now, ib + jb < kb (by above argument). Since ib = 0, we have jb �= kb. Thus, the
value at the leaf is given by:

TI(ib, jb, kb) =
∫ 1

−1
L0(x)Ljb

(x)Lkb
(x)dx

⇒ TI(ib, jb, kb) =
∫ 1

−1 Ljb
(x)Lkb

(x)dx = 0

So, if i + j < k for the root of the recurrence tree, TI = 0 for all the leaves in the sub-tree. Since the value at
the root is a linear combination of all the leaves, the value at the root is zero too.

• (i + j + k) mod 2 �= 0: Consider the recurrence tree for TI(i, j, k) (Figure 2). The sum of indices of all the
children of TI(i, j, k) is (i+ j + k)+ (2− 2r) or (i+ j + k)− 2r, for a given positive integer r. The same will
hold for all the recursion sub-trees as well. This implies that like the Triangle Inequality-ness, the even-ness of
the sum of indices (i + j + k) is preserved into the sub-tree, starting from the root. The sum will be even for all
the nodes in the tree if it is even for the root and will be odd if it is odd for the root.

Now we again look at the leaves of the tree, or the base cases. We stop recursing when one of the indices (i,j or
k) becomes 0. If the sum of indices of the root of the tree is odd, sum of indices for all the leaves will be odd
too (from above). Since one of the indices is zero, the other two won’t be the same, and hence, as above, values
at all the leaves in the tree would be zero. Thus, the value at the root, TI(i, j, k) = 0 if (i + j + k) mod 2 �= 0.

Using the above theorem, the following result can be derived:

Result 1. Let 1 ≤ i, j, k ≤ K . The total number of TI(i,j,k) is K 3. The number of non-zero TI’s ≤ � 1
4k3+ 3

8k2+ 1
4k�.

It is easy to derive the above number by using Theorem 1 and simple counting. This result implies that only about
1
4 of the TI entries are non-zero.

2 Polynomial truncation scheme using Chebyshev polynomials

In many settings, we are interested in approximating a polynomial by a lower degree polynomial, while keeping the
approximation error low. For example, we stated in Section 1.1 that if we use K terms for the Legendre expansion
of two polynomials f(x) and g(x), then the product polynomial will have 2K terms. For a variety of computational
considerations (memory, speed), it would be desirable to keep the degree of the product polynomial the same as the
operands, i.e. K .

In this section of the report, we derive a truncation scheme to approximate a polynomial with a lower degree poly-
nomial, while keeping the approximation error low under the L∞ norm. In the particular case of computing a product
of two polynomials in the Legendre domain, this scheme will help keep the degree of the product the same as that of
the operands.

We use the Chebyshev polynomials to derive our truncation scheme. Chebyshev Polynomials are a set of orthogo-
nal polynomials, and are denoted by Tn(x). First few Chebyshev polynomials are given in Figure 3.They are defined
using the following recurrence:

Tn+1(x) = 2xTn(x) − Tn−1(x), with T0(x) = 1, T1(x) = x

4

T0(x) 1
T1(x) x
T2(x) 2x2 − 1
T3(x) 4x3 − 3x
T4(x) 8x4 − 8x2 + 1
T5(x) 16x5 − 20x3 + 5x
T6(x) 32x6 − 48x4 + 18x2 − 1

Figure 3: First few Chebyshev Polynomials

2.1 Approximation using Chebyshev Polynomials

Chebyshev polynomials find wide use in approximating polynomials with a lower degree one. In particular, the
polynomial

pn−1(x) = xn − 21−nTn(x)

is the best n − 1 degree approximation for f(x) = xn on the interval [−1, 1] under the L∞ norm, with the
maximum deviation being 21−n [2]. We call pn−1(x) as the degree n − 1 mini-max polynomial, as it minimizes the
maximum deviation.

We extend the result by coming up with an approximation for the function f(x) = x n+1 defined on the interval
[−1, 1] with a polynomial of degree k, for any k, 0 ≤ k ≤ n. It is a useful result since we can approximate x n+1 with
a polynomial of any lower degree.

2.2 Truncation Scheme

Suppose we want a degree k approximation for xn with 0 ≤ k ≤ n − 1. We start with the expression for pn(x), the
degree n − 1 approximation. Since, it is a degree n − 1 polynomial, it can be written as:

pn(x) = cn−1x
n−1 + cn−2x

n−2 + . . . + cmxk + . . . + c0

Now, we replace xn−1 with degree n − 2 mini-max polynomial in the above expression, which in turns gives us
a degree n − 2 approximation for xn. Similarly, we cascade down, each time replacing the leading power of x in
successive approximations with the one-lower degree mini-max polynomial. In each step, we reduce the degree by
one; we repeat until we have a degree k approximation.

Note that although we don’t have any theoretical error bounds, we present empirical results which suggest that the
approximation error is quite low (Figure 4) , even for fairly low degree approximations.

2.3 Truncation as a matrix operation

In this section, we formulate the degree truncation operation as a matrix multiplication operation. We represent a poly-
nomial p(x) by a vector P of its coefficients. Let the degree k polynomial approximation of f(x) = x n, according to
our scheme, is given by tn

k (x), and the corresponding coefficient vector by T n
k (size k + 1).

Then, given a degree n polynomial pn(x), and its coefficient vector Pn, we can calculate pk(x) (Pk), its degree k
approximation (k < n) as a matrix multiplication:

Pk︸︷︷︸
k+1×1

= Mnk︸︷︷︸
k+1×n+1

∗ Pn︸︷︷︸
n+1×1

5

where,

Mnk =
[
T n

k T n−1
k . . . T k+1

k Ik×k

]
, Ik×k is a k × k identity matrix.

References

[1] M. ABRAMOWITZ AND I. A. STEGUN, Handbook of Mathematical Functions with Formulas, Graphs, and Math-
ematical Tables, Dover, New York, 1965, ch. 22.

[2] S. D. CONTE AND C. W. D. BOOR, Elementary Numerical Analysis: An Algorithmic Approach, McGraw-Hill
Higher Education, 1980, pp. 242–244.

[3] R. NG, R. RAMAMOORTHI, AND P. HANRAHAN, Triple product wavelet integrals for all-frequency relighting,
ACM Trans. Graph., 23 (2004), pp. 477–487.

6

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

30 (9.314 × 10−10) 27 (2.981 × 10−8) 24 (4.649 × 10−6)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

21 (3.396 × 10−5) 18 (8.779 × 10−4) 15 (3.327 × 10−3)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

10 (7.076 × 10−2) 5 (2.811 × 10−1) 1 (7.201 × 10−1)

Figure 4: Lower Degree Polynomial Approximations of x31 with our algorithm in the interval [−1, 1]. Green plot is the approxi-
mation, and red crosses indicate the original function. Sub-Captions of plots are the degrees of approximation m. The numbers in
parentheses are the maximum approximation error (L∞ error norm) over the interval [−1, 1]. We can observe that for m > 15, the
two plots are almost indistinguishable, which is remarkable, since we are approximating x31. This establishes the accuracy of the
algorithm in an empirical sense. For m < 15, we start noticing some error.

7

