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It’s no secret that the appearance of scenes strongly depend on the illumination conditions. For 
example, in these images, everything is kept constant except the illumination, and yet the pixel values 
are completely different. Because appearance can vary so much, estimating illumination from images is 
a very important task in computer vision.
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Figure 4. Panoramic image of the collection room. 14 of the 15 cameras used are highlighted with yellow circles, 17 of the 18 flashes are
highlighted with white boxes with the occluded camera/flash pair being located right in front of the subject in the chair. The monitor visible
to the left was used to ensure accurate positioning of the subject throughout the recording session.

Session 1 Neutral Session 1 Smile Session 2 Session 3 Session 4

Figure 5. Example high resolution images of one subject across all four recording session. For session 1 we recorded a smile image in
addition to the neutral image.

3. Data Collection Procedure

We recorded data during four sessions over the course
of six months. During each session we recorded a single
neutral high resolution frontal image. In addition, during
the first session an additional image showing the subjects
smiling was recorded. Figure 5 shows all high resolution
images from one subject for sessions 1 through 4.

After the recording of the high resolution images, sub-
jects were taken inside the collection room and seated in
a chair. The height of the chair was adjusted so that the
head of the subject was between camera 11 0 and cam-
era 24 0. We used two live monitors attached to cameras
11 0 and 05 1 to ensure correct head location of the sub-
jects throughout the recording procedure. In each session,
multiple image sequences were recorded, for which subjects
were instructed to display different facial expressions. Sub-
jects were shown example images of the various expressions
from the Cohn-Kanade database [7] immediately prior to
the recording. Table 2 lists the expressions captured in each

session. Figure 6 shows example images for all facial ex-
pressions contained in the database.

For each camera 20 images were captured within 0.7
seconds: one image without any flash illumination, 18 im-
ages with each flash firing individually, and then another
image without any flash illumination. Taken across all cam-
eras a total of 300 images were captured for each sequence.
See Figure 7 for a montage of all 15 camera views shown
with frontal flash illumination. Unlike in the previous PIE
database [13] the room lights were left on for all record-
ings. Flash-only images can be obtained through simple
image differencing of flash and non-flash images as shown
in Figure 8. Due to the rapid acquisition of the flash images
subject movement between images is neglectible.

4. Database Statistics

In total, the Multi-PIE database contains 755,370 images
from 337 different subjects. Individual session attendance
varied between a minimum of 203 and a maximum of 249

Lighting in the lab
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3 EXPERIMENTAL RESULTS

In this section, we present and discuss each of the afore-
mentioned face recognition techniques using two different
databases. Because of the specific hypotheses that we
wanted to test about the relative performance of the consid-
ered algorithms, many of the standard databases were in-
appropriate. So, we have used a database from the Harvard
Robotics Laboratory in which lighting has been systemati-
cally varied. Secondly, we have constructed a database at
Yale that includes variation in both facial expression and
lighting. 

1

3.1 Variation in Lighting

The first experiment was designed to test the hypothesis
that under variable illumination, face recognition algo-
rithms will perform better if they exploit the fact that im-
ages of a Lambertian surface lie in a linear subspace. More
specifically, the recognition error rates for all four algo-
rithms described in Section 2 are compared using an im-
age database constructed by Hallinan at the Harvard Ro-
botics Laboratory [14], [15]. In each image in this data-
base, a subject held his/her head steady while being illu-
minated by a dominant light source. The space of light
source directions, which can be parameterized by spheri-
cal angles, was then sampled in 15! increments. See Fig. 3.
From this database, we used 330 images of five people (66
of each). We extracted five subsets to quantify the effects
of varying lighting. Sample images from each subset are
shown in Fig. 4.

Subset 1 contains 30 images for which both the longitudi-
nal and latitudinal angles of light source direction are
within 15! of the camera axis, including the lighting

1. The Yale database is available for download from http://cvc.yale.edu.

direction coincident with the camera’s optical axis.
Subset 2 contains 45 images for which the greater of the

longitudinal and latitudinal angles of light source di-
rection are 30! from the camera axis.

Subset 3 contains 65 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 45! from the camera axis.

Subset 4 contains 85 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 60! from the camera axis.

Subset 5 contains 105 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 75! from the camera axis.

For all experiments, classification was performed using a
nearest neighbor classifier. All training images of an indi-

Fig. 3. The highlighted lines of longitude and latitude indicate the light
source directions for Subsets 1 through 5. Each intersection of a lon-
gitudinal and latitudinal line on the right side of the illustration has a
corresponding image in the database.

Fig. 4. Example images from each subset of the Harvard Database used to test the four algorithms.
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Indeed, a lot of work has been done in this area, and here I’m just showing a small sampling of it. One 
thing to note here: all of this is done in the lab, with tightly controlled conditions. But what about 
images in the wild, outside of the lab?
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Lighting in the wild

Well, there’s actually very little work dealing with illumination in real settings. Recently, there’s been a 
few papers dealing with real consumer imagery but they were focusing either on specific objects such 
as faces, or dealt with many images like in webcam sequences or image collections.  
But what about single images?
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Lighting in the wild
Speci!c objects

[Bitouk et al., SIGGRAPH ’08]

We estimate the 3 albedos ρc and the 27 illumination coefficients
βc,k by minimizing the sum of squared differences (SSD) be-
tween the right-hand side of Equation 2 and the aligned face image
Ic(x, y) within the replacement region.

We convert the RGB albedos to the HSV color space and use the l∞
metric to compare the average color within the replacement regions
of the input face image I

(1) and the replacement candidate I
(2).

Only those candidates whose hue and saturation are within 5% and
brightness within 10% of the input image are kept. To compare the
illuminations, we define the lighting distance dL as the l2 distance
between corresponding lighting coefficients (and keep only the top
50%):

dL(I(1)
, I

(2)) =

0

@
X

c∈{R,G,B}

9X

k=1

“
β(1)

c,k − β(2)
c,k

”2

1

A
1/2

. (3)

The second column of Figure 4c shows replacement results after
selection based on resolution, blur, color, and lighting. Notice that
the results are, in general, much better than those in the previous
column (without pruning based on attributes).

4.3 Seam Signature

Although our selection process so far has already removed many
unsuitable candidates for replacement, another important criteria to
match is the appearance of the face along the boundary of the re-
placement region. Differences across this boundary (e.g., caused
by facial hair, eyebrows, and hair covering the forehead) can pro-
duce visible artifacts in the final output, even after image blending.
To avoid these problems, we introduce a simple filter which uses a
“signature” of the seam along the replacement boundary. We first
resize each aligned image in the replacement library to 256x256
pixels and then define the seam to be a strip containing all pixels in-
side the replacement region within a 6 pixel radius of its boundary.
We create the seam signature by unfolding the seam into a rectangu-
lar image, and normalize it so that the average intensity is the same
for all faces in the library. This seam signature provides an efficient
representation of the texture along the replacement mask boundary.
To reduce the dependence of the seam signatures on lighting, we
compare the seam signatures using the L2 distance of the absolute
value of the gradient in the direction along the seam. To avoid pe-
nalizing gradual changes in appearance, we use a distance of 0 for
all pixels within 8% of each other, only using the L2 distance for
pixels which differ by more than this amount. The better quality of
replacement results in the third column of Figure 4c shows that this
criteria is important for filtering faces with significant differences
along the boundary of the replacement region.

4.4 Searching the Library

Selecting candidate faces from the library using the various ap-
pearance attributes introduced in this section is a nearest neighbor
search problem. This can be computationally intensive due to the
high dimensionality of the blur, illumination and seam signature
features. To speed things up, we use a sequential selection ap-
proach. Given a query face, we first execute a fast SQL query to
select faces whose pose, resolution and average colors (given by the
albedo ρc, c ∈ {H, S, V }) are close to those of the input face. This
step allows us to reduce the number of potential candidate replace-
ments from 33,000 to just a few thousand faces. Next, we further
prune the list of candidates using the blur distance dB and, subse-
quently, the lighting distance dL. Finally, we select the top 50 can-
didate faces which match the seam signature of the input face. By
running these steps in increasing order of complexity, our C++ im-
plementation of the appearance-based selection algorithm requires
less than a second to generate a list of candidate replacements for
an input face image.

Figure 5: Color and lighting adjustment. We replace (a) the face
in the input photograph with (b) the face selected from the library.
Replacement results (c) without and (d) with recoloring and relight-
ing. Notice the significantly improved realism in the final result.

Figure 6: Face replacement results. Each row contains (from left to
right) the original photograph, a candidate face selected from the
library, and the replacement result produced automatically using
our algorithm. The age and gender mismatches in (c) and (d) could
be avoided by enforcing consistency across those attributes (which
our system does not currently do).

We estimate the 3 albedos ρc and the 27 illumination coefficients
βc,k by minimizing the sum of squared differences (SSD) be-
tween the right-hand side of Equation 2 and the aligned face image
Ic(x, y) within the replacement region.

We convert the RGB albedos to the HSV color space and use the l∞
metric to compare the average color within the replacement regions
of the input face image I

(1) and the replacement candidate I
(2).

Only those candidates whose hue and saturation are within 5% and
brightness within 10% of the input image are kept. To compare the
illuminations, we define the lighting distance dL as the l2 distance
between corresponding lighting coefficients (and keep only the top
50%):
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The second column of Figure 4c shows replacement results after
selection based on resolution, blur, color, and lighting. Notice that
the results are, in general, much better than those in the previous
column (without pruning based on attributes).

4.3 Seam Signature

Although our selection process so far has already removed many
unsuitable candidates for replacement, another important criteria to
match is the appearance of the face along the boundary of the re-
placement region. Differences across this boundary (e.g., caused
by facial hair, eyebrows, and hair covering the forehead) can pro-
duce visible artifacts in the final output, even after image blending.
To avoid these problems, we introduce a simple filter which uses a
“signature” of the seam along the replacement boundary. We first
resize each aligned image in the replacement library to 256x256
pixels and then define the seam to be a strip containing all pixels in-
side the replacement region within a 6 pixel radius of its boundary.
We create the seam signature by unfolding the seam into a rectangu-
lar image, and normalize it so that the average intensity is the same
for all faces in the library. This seam signature provides an efficient
representation of the texture along the replacement mask boundary.
To reduce the dependence of the seam signatures on lighting, we
compare the seam signatures using the L2 distance of the absolute
value of the gradient in the direction along the seam. To avoid pe-
nalizing gradual changes in appearance, we use a distance of 0 for
all pixels within 8% of each other, only using the L2 distance for
pixels which differ by more than this amount. The better quality of
replacement results in the third column of Figure 4c shows that this
criteria is important for filtering faces with significant differences
along the boundary of the replacement region.

4.4 Searching the Library

Selecting candidate faces from the library using the various ap-
pearance attributes introduced in this section is a nearest neighbor
search problem. This can be computationally intensive due to the
high dimensionality of the blur, illumination and seam signature
features. To speed things up, we use a sequential selection ap-
proach. Given a query face, we first execute a fast SQL query to
select faces whose pose, resolution and average colors (given by the
albedo ρc, c ∈ {H, S, V }) are close to those of the input face. This
step allows us to reduce the number of potential candidate replace-
ments from 33,000 to just a few thousand faces. Next, we further
prune the list of candidates using the blur distance dB and, subse-
quently, the lighting distance dL. Finally, we select the top 50 can-
didate faces which match the seam signature of the input face. By
running these steps in increasing order of complexity, our C++ im-
plementation of the appearance-based selection algorithm requires
less than a second to generate a list of candidate replacements for
an input face image.

Figure 5: Color and lighting adjustment. We replace (a) the face
in the input photograph with (b) the face selected from the library.
Replacement results (c) without and (d) with recoloring and relight-
ing. Notice the significantly improved realism in the final result.

Figure 6: Face replacement results. Each row contains (from left to
right) the original photograph, a candidate face selected from the
library, and the replacement result produced automatically using
our algorithm. The age and gender mismatches in (c) and (d) could
be avoided by enforcing consistency across those attributes (which
our system does not currently do).

Well, there’s actually very little work dealing with illumination in real settings. Recently, there’s been a 
few papers dealing with real consumer imagery but they were focusing either on specific objects such 
as faces, or dealt with many images like in webcam sequences or image collections.  
But what about single images?
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Lighting in the wild
Image sequences

[Sunkavalli et al., CVPR ’08]
Figure 4. Color Constancy. The top row shows the original frames 1, 35, 94 and 120 and the bottom row shows the corresponding images
reconstructed with the sun and sky illuminant colors fixed to those of frame 35.

Table 1. RMS reconstruction errors.
Data # Imgs Resolution RMS Error

Sunny square 95 130× 260 6.42%

Cloudy square 120 240× 360 7.36%

nying video shows these sequences in their entirety. It is

important to note that the visible portions of the sky in our

sequences were not considered in the decomposition; for all

the results shown in the paper and the video, they have been

copied from the original data to avoid distracting the reader.

In our results, errors are caused by foreground objects,

smoke, interreflections from windows, and saturation of

the camera. Another significant source of error is devia-

tion from the assumed Lambertian reflectance model. From

examining our data, it seems as though a rough-diffuse

model [13] would be more appropriate.

4. Implications for machine vision
The appearance of a scene depends on shape and re-

flectance, the scene illumination (both color and angular

distribution), as well as the observer’s viewpoint. Any vi-

sual task that requires some of this information seeks to re-

cover it in a manner that is insensitive to changes in the

others. By explicitly isolating many of these scene factors,

our model enables novel approaches to some visual tasks

and improves the performance of a number of others. Here

we provide examples that relate to both color and geometry.

Color Constancy. As mentioned in Sect. 2, most (single

image) color constancy algorithms restrict their attention

to diagonal or generalized diagonal transforms when rep-

resenting changes in illumination. Even with this restricted

model, estimating the transform parameters in uncontrolled

environments is hard to do reliably. In contrast, once our

model is fit to an image sequence, the task of color con-

stancy becomes trivial. Since we obtain illuminant trans-

form parameters separately for each frame and sun/sky mix-

ing coefficients independently for each pixel, we can obtain

illuminant-invariant descriptions everywhere simply by ma-

nipulating these parameters. Fig. 4 shows an example in

which the color in each frame of the sequence is corrected

so that the effective sky and sunlight colors are constant

over the course of the day. (They are held fixed to the colors

observed in frame 35 of the sequence). Clear differences are

visible between this and the original sequence, especially

near dawn and dusk.

We emphasize that the color corrections are applied to

the entire sequence, including the foreground objects. As

a result, if one applies a color-based recognition algorithm

to the color-corrected sequence instead of the original se-

quence, one can effectively obtain color-constant recogni-

tion with very little computational overhead. In addition,

our use of general linear transforms can be expected to pro-

vide increased accuracy over what could be obtained using

common diagonal or generalized diagonal transforms [4].

Background subtraction. Most background subtraction

methods perform poorly when the illumination changes

rapidly, for example, on a partly cloudy day. This prob-

lem is exacerbated in time-lapse data, where the time be-

tween frames is on the order of minutes, and the tempo-

ral coherence of foreground objects cannot be exploited.

By modeling the entire scene over time, our model pro-

vides the means to handle these effects quite naturally. In

particular, it immediately suggests two strategies for fore-

ground detection. As noted earlier, the trichromatic obser-

vations I(x, ·) lie in the plane spanned by vectors M1ρ(x)
and M2ρ(x). Thus, one approach to foreground detection

is simply to measure the distance between an observation

I(x, t) and its corresponding spanning plane. This approach

has the advantage of ignoring shadows that are cast by fore-

ground objects, since cast shadow induce variations within
the spanning planes. A second approach is to use the com-

plete time-varying reconstruction as a background model
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reconstructed with the sun and sky illuminant colors fixed to those of frame 35.
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Speci!c objects

[Bitouk et al., SIGGRAPH ’08]

We estimate the 3 albedos ρc and the 27 illumination coefficients
βc,k by minimizing the sum of squared differences (SSD) be-
tween the right-hand side of Equation 2 and the aligned face image
Ic(x, y) within the replacement region.

We convert the RGB albedos to the HSV color space and use the l∞
metric to compare the average color within the replacement regions
of the input face image I

(1) and the replacement candidate I
(2).

Only those candidates whose hue and saturation are within 5% and
brightness within 10% of the input image are kept. To compare the
illuminations, we define the lighting distance dL as the l2 distance
between corresponding lighting coefficients (and keep only the top
50%):
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The second column of Figure 4c shows replacement results after
selection based on resolution, blur, color, and lighting. Notice that
the results are, in general, much better than those in the previous
column (without pruning based on attributes).

4.3 Seam Signature

Although our selection process so far has already removed many
unsuitable candidates for replacement, another important criteria to
match is the appearance of the face along the boundary of the re-
placement region. Differences across this boundary (e.g., caused
by facial hair, eyebrows, and hair covering the forehead) can pro-
duce visible artifacts in the final output, even after image blending.
To avoid these problems, we introduce a simple filter which uses a
“signature” of the seam along the replacement boundary. We first
resize each aligned image in the replacement library to 256x256
pixels and then define the seam to be a strip containing all pixels in-
side the replacement region within a 6 pixel radius of its boundary.
We create the seam signature by unfolding the seam into a rectangu-
lar image, and normalize it so that the average intensity is the same
for all faces in the library. This seam signature provides an efficient
representation of the texture along the replacement mask boundary.
To reduce the dependence of the seam signatures on lighting, we
compare the seam signatures using the L2 distance of the absolute
value of the gradient in the direction along the seam. To avoid pe-
nalizing gradual changes in appearance, we use a distance of 0 for
all pixels within 8% of each other, only using the L2 distance for
pixels which differ by more than this amount. The better quality of
replacement results in the third column of Figure 4c shows that this
criteria is important for filtering faces with significant differences
along the boundary of the replacement region.

4.4 Searching the Library

Selecting candidate faces from the library using the various ap-
pearance attributes introduced in this section is a nearest neighbor
search problem. This can be computationally intensive due to the
high dimensionality of the blur, illumination and seam signature
features. To speed things up, we use a sequential selection ap-
proach. Given a query face, we first execute a fast SQL query to
select faces whose pose, resolution and average colors (given by the
albedo ρc, c ∈ {H, S, V }) are close to those of the input face. This
step allows us to reduce the number of potential candidate replace-
ments from 33,000 to just a few thousand faces. Next, we further
prune the list of candidates using the blur distance dB and, subse-
quently, the lighting distance dL. Finally, we select the top 50 can-
didate faces which match the seam signature of the input face. By
running these steps in increasing order of complexity, our C++ im-
plementation of the appearance-based selection algorithm requires
less than a second to generate a list of candidate replacements for
an input face image.

Figure 5: Color and lighting adjustment. We replace (a) the face
in the input photograph with (b) the face selected from the library.
Replacement results (c) without and (d) with recoloring and relight-
ing. Notice the significantly improved realism in the final result.

Figure 6: Face replacement results. Each row contains (from left to
right) the original photograph, a candidate face selected from the
library, and the replacement result produced automatically using
our algorithm. The age and gender mismatches in (c) and (d) could
be avoided by enforcing consistency across those attributes (which
our system does not currently do).

We estimate the 3 albedos ρc and the 27 illumination coefficients
βc,k by minimizing the sum of squared differences (SSD) be-
tween the right-hand side of Equation 2 and the aligned face image
Ic(x, y) within the replacement region.

We convert the RGB albedos to the HSV color space and use the l∞
metric to compare the average color within the replacement regions
of the input face image I

(1) and the replacement candidate I
(2).

Only those candidates whose hue and saturation are within 5% and
brightness within 10% of the input image are kept. To compare the
illuminations, we define the lighting distance dL as the l2 distance
between corresponding lighting coefficients (and keep only the top
50%):
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The second column of Figure 4c shows replacement results after
selection based on resolution, blur, color, and lighting. Notice that
the results are, in general, much better than those in the previous
column (without pruning based on attributes).

4.3 Seam Signature

Although our selection process so far has already removed many
unsuitable candidates for replacement, another important criteria to
match is the appearance of the face along the boundary of the re-
placement region. Differences across this boundary (e.g., caused
by facial hair, eyebrows, and hair covering the forehead) can pro-
duce visible artifacts in the final output, even after image blending.
To avoid these problems, we introduce a simple filter which uses a
“signature” of the seam along the replacement boundary. We first
resize each aligned image in the replacement library to 256x256
pixels and then define the seam to be a strip containing all pixels in-
side the replacement region within a 6 pixel radius of its boundary.
We create the seam signature by unfolding the seam into a rectangu-
lar image, and normalize it so that the average intensity is the same
for all faces in the library. This seam signature provides an efficient
representation of the texture along the replacement mask boundary.
To reduce the dependence of the seam signatures on lighting, we
compare the seam signatures using the L2 distance of the absolute
value of the gradient in the direction along the seam. To avoid pe-
nalizing gradual changes in appearance, we use a distance of 0 for
all pixels within 8% of each other, only using the L2 distance for
pixels which differ by more than this amount. The better quality of
replacement results in the third column of Figure 4c shows that this
criteria is important for filtering faces with significant differences
along the boundary of the replacement region.

4.4 Searching the Library

Selecting candidate faces from the library using the various ap-
pearance attributes introduced in this section is a nearest neighbor
search problem. This can be computationally intensive due to the
high dimensionality of the blur, illumination and seam signature
features. To speed things up, we use a sequential selection ap-
proach. Given a query face, we first execute a fast SQL query to
select faces whose pose, resolution and average colors (given by the
albedo ρc, c ∈ {H, S, V }) are close to those of the input face. This
step allows us to reduce the number of potential candidate replace-
ments from 33,000 to just a few thousand faces. Next, we further
prune the list of candidates using the blur distance dB and, subse-
quently, the lighting distance dL. Finally, we select the top 50 can-
didate faces which match the seam signature of the input face. By
running these steps in increasing order of complexity, our C++ im-
plementation of the appearance-based selection algorithm requires
less than a second to generate a list of candidate replacements for
an input face image.

Figure 5: Color and lighting adjustment. We replace (a) the face
in the input photograph with (b) the face selected from the library.
Replacement results (c) without and (d) with recoloring and relight-
ing. Notice the significantly improved realism in the final result.

Figure 6: Face replacement results. Each row contains (from left to
right) the original photograph, a candidate face selected from the
library, and the replacement result produced automatically using
our algorithm. The age and gender mismatches in (c) and (d) could
be avoided by enforcing consistency across those attributes (which
our system does not currently do).

Well, there’s actually very little work dealing with illumination in real settings. Recently, there’s been a 
few papers dealing with real consumer imagery but they were focusing either on specific objects such 
as faces, or dealt with many images like in webcam sequences or image collections.  
But what about single images?
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Lighting in the wild
Image collections

[Haber et al., CVPR ’09]

model #vertices #mat #brdfs #imgs time RMSE

Minerva 100K 6 7 13 7h .18
Liberty 100K 2 4 6 3h .20
van Gogh 32K 3 4 30 14h .11
Venus 40K 2 4 13 14h .22

Table 1. Overview of the different models. “#mat”, “#brdfs”,
“#imgs” and “RMSE” refer to the number of materials used, num-
ber of basis brdfs incorporated, number of input images and aver-
age RMS error, respectively.

vert them to photometrically linear space by inverse gamma
mapping. Alternatively, a technique such as Kuthirummal et
al. [13] can perform photometric calibration.

For the Statue of Liberty, only six images were used in
the lighting and reflectance estimation, they are shown in
Figures 8 and 1. The estimated environment maps clearly
locate the sun direction correctly. Note that the light source
might wrap around borders due to the parametrization of the
environment maps. Its narrow size can only be achieved by
including the visibility information and the use of an all fre-
quency framework. Other regions in the environment map
are however reconstructed with low frequency due to their
smaller intensity. Again, the color separation between mate-
rials and environment is not perfect. This could also be due
to the different white balancing of images found on the In-
ternet. Nevertheless, the estimated materials are consistent
and of high quality as evident in Figures 8 c) and d).

Figure 10 shows our reconstructions of the Venus de
Milo on a set of 13 images. The environment maps shows
the presence of two main lightsources: daylight coming in
through the window and an interior light.

7. Discussion and Conclusion

In the presented inverse rendering framework we esti-
mate both the reflection properties of an object and the inci-
dent illumination for each individual input view. While this
problem is ill-posed in nature, we have demonstrated that
it is in principle possible to obtain a meaningful separation.
The reconstructed environment maps are the best estimates
given the input data and the bandwidth of the BRDFs. By
restricting the space of BRDFs to linear combinations of
basis BRDFs and by slightly enforcing smoothness in the
environment we constrain the space to plausible solutions
even in cases where the BRDF limits the reconstruction.
The quality of the estimated reflection properties typically
increases with the number of images as each image adds
novel constraints on the BRDF. The quality of the environ-
ment maps will only benefit from more images indirecty
through the more precise BRDFs. Furthermore, the quality
of the results is to some extent influenced by the precision of
the input geometry. One strength of our approach is that no
assumptions are placed on the image set. We can flexibly in-
corporate image collections gathered from various sources.

(a) input images for the Liberty dataset

(b) estimated environment maps

(c) object rendered under estimated illumination

(d) object rendered under point light illumination (left) and under
the Uffizi environment map (right).

Figure 8. Overview over the Liberty dataset.

(a) (b) (c) (d)

Figure 9. (a) shows the recovered albedo map for the Minerva,
while (b)-(d) show the relit model using the Uffizi environment.

Figure 10. Results for the Venus dataset. The images (left) are input
images while the images in the middle show our rendering using
the recovered lighting (right) and BRDFs.

A problem that remains is the ambiguity between illu-
mination and surface color. Currently, this can only be re-
solved by having sufficiently different input environments.
A couple of extensions of the current framework would be
interesting. So far, our system does not take interreflections
into account. An additional geometry optimization step as
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Image sequences

[Sunkavalli et al., CVPR ’08]
Figure 4. Color Constancy. The top row shows the original frames 1, 35, 94 and 120 and the bottom row shows the corresponding images
reconstructed with the sun and sky illuminant colors fixed to those of frame 35.

Table 1. RMS reconstruction errors.
Data # Imgs Resolution RMS Error

Sunny square 95 130× 260 6.42%

Cloudy square 120 240× 360 7.36%

nying video shows these sequences in their entirety. It is

important to note that the visible portions of the sky in our

sequences were not considered in the decomposition; for all

the results shown in the paper and the video, they have been

copied from the original data to avoid distracting the reader.

In our results, errors are caused by foreground objects,

smoke, interreflections from windows, and saturation of

the camera. Another significant source of error is devia-

tion from the assumed Lambertian reflectance model. From

examining our data, it seems as though a rough-diffuse

model [13] would be more appropriate.

4. Implications for machine vision
The appearance of a scene depends on shape and re-

flectance, the scene illumination (both color and angular

distribution), as well as the observer’s viewpoint. Any vi-

sual task that requires some of this information seeks to re-

cover it in a manner that is insensitive to changes in the

others. By explicitly isolating many of these scene factors,

our model enables novel approaches to some visual tasks

and improves the performance of a number of others. Here

we provide examples that relate to both color and geometry.

Color Constancy. As mentioned in Sect. 2, most (single

image) color constancy algorithms restrict their attention

to diagonal or generalized diagonal transforms when rep-

resenting changes in illumination. Even with this restricted

model, estimating the transform parameters in uncontrolled

environments is hard to do reliably. In contrast, once our

model is fit to an image sequence, the task of color con-

stancy becomes trivial. Since we obtain illuminant trans-

form parameters separately for each frame and sun/sky mix-

ing coefficients independently for each pixel, we can obtain

illuminant-invariant descriptions everywhere simply by ma-

nipulating these parameters. Fig. 4 shows an example in

which the color in each frame of the sequence is corrected

so that the effective sky and sunlight colors are constant

over the course of the day. (They are held fixed to the colors

observed in frame 35 of the sequence). Clear differences are

visible between this and the original sequence, especially

near dawn and dusk.

We emphasize that the color corrections are applied to

the entire sequence, including the foreground objects. As

a result, if one applies a color-based recognition algorithm

to the color-corrected sequence instead of the original se-

quence, one can effectively obtain color-constant recogni-

tion with very little computational overhead. In addition,

our use of general linear transforms can be expected to pro-

vide increased accuracy over what could be obtained using

common diagonal or generalized diagonal transforms [4].

Background subtraction. Most background subtraction

methods perform poorly when the illumination changes

rapidly, for example, on a partly cloudy day. This prob-

lem is exacerbated in time-lapse data, where the time be-

tween frames is on the order of minutes, and the tempo-

ral coherence of foreground objects cannot be exploited.

By modeling the entire scene over time, our model pro-

vides the means to handle these effects quite naturally. In

particular, it immediately suggests two strategies for fore-

ground detection. As noted earlier, the trichromatic obser-

vations I(x, ·) lie in the plane spanned by vectors M1ρ(x)
and M2ρ(x). Thus, one approach to foreground detection

is simply to measure the distance between an observation

I(x, t) and its corresponding spanning plane. This approach

has the advantage of ignoring shadows that are cast by fore-

ground objects, since cast shadow induce variations within
the spanning planes. A second approach is to use the com-

plete time-varying reconstruction as a background model

Figure 4. Color Constancy. The top row shows the original frames 1, 35, 94 and 120 and the bottom row shows the corresponding images
reconstructed with the sun and sky illuminant colors fixed to those of frame 35.
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nipulating these parameters. Fig. 4 shows an example in
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so that the effective sky and sunlight colors are constant

over the course of the day. (They are held fixed to the colors

observed in frame 35 of the sequence). Clear differences are

visible between this and the original sequence, especially
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the entire sequence, including the foreground objects. As

a result, if one applies a color-based recognition algorithm
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quence, one can effectively obtain color-constant recogni-

tion with very little computational overhead. In addition,

our use of general linear transforms can be expected to pro-

vide increased accuracy over what could be obtained using

common diagonal or generalized diagonal transforms [4].
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methods perform poorly when the illumination changes

rapidly, for example, on a partly cloudy day. This prob-

lem is exacerbated in time-lapse data, where the time be-

tween frames is on the order of minutes, and the tempo-

ral coherence of foreground objects cannot be exploited.

By modeling the entire scene over time, our model pro-

vides the means to handle these effects quite naturally. In

particular, it immediately suggests two strategies for fore-

ground detection. As noted earlier, the trichromatic obser-

vations I(x, ·) lie in the plane spanned by vectors M1ρ(x)
and M2ρ(x). Thus, one approach to foreground detection

is simply to measure the distance between an observation

I(x, t) and its corresponding spanning plane. This approach

has the advantage of ignoring shadows that are cast by fore-

ground objects, since cast shadow induce variations within
the spanning planes. A second approach is to use the com-

plete time-varying reconstruction as a background model

Speci!c objects

[Bitouk et al., SIGGRAPH ’08]

We estimate the 3 albedos ρc and the 27 illumination coefficients
βc,k by minimizing the sum of squared differences (SSD) be-
tween the right-hand side of Equation 2 and the aligned face image
Ic(x, y) within the replacement region.

We convert the RGB albedos to the HSV color space and use the l∞
metric to compare the average color within the replacement regions
of the input face image I

(1) and the replacement candidate I
(2).

Only those candidates whose hue and saturation are within 5% and
brightness within 10% of the input image are kept. To compare the
illuminations, we define the lighting distance dL as the l2 distance
between corresponding lighting coefficients (and keep only the top
50%):

dL(I(1)
, I

(2)) =

0

@
X

c∈{R,G,B}

9X

k=1

“
β(1)

c,k − β(2)
c,k

”2

1

A
1/2

. (3)

The second column of Figure 4c shows replacement results after
selection based on resolution, blur, color, and lighting. Notice that
the results are, in general, much better than those in the previous
column (without pruning based on attributes).

4.3 Seam Signature

Although our selection process so far has already removed many
unsuitable candidates for replacement, another important criteria to
match is the appearance of the face along the boundary of the re-
placement region. Differences across this boundary (e.g., caused
by facial hair, eyebrows, and hair covering the forehead) can pro-
duce visible artifacts in the final output, even after image blending.
To avoid these problems, we introduce a simple filter which uses a
“signature” of the seam along the replacement boundary. We first
resize each aligned image in the replacement library to 256x256
pixels and then define the seam to be a strip containing all pixels in-
side the replacement region within a 6 pixel radius of its boundary.
We create the seam signature by unfolding the seam into a rectangu-
lar image, and normalize it so that the average intensity is the same
for all faces in the library. This seam signature provides an efficient
representation of the texture along the replacement mask boundary.
To reduce the dependence of the seam signatures on lighting, we
compare the seam signatures using the L2 distance of the absolute
value of the gradient in the direction along the seam. To avoid pe-
nalizing gradual changes in appearance, we use a distance of 0 for
all pixels within 8% of each other, only using the L2 distance for
pixels which differ by more than this amount. The better quality of
replacement results in the third column of Figure 4c shows that this
criteria is important for filtering faces with significant differences
along the boundary of the replacement region.

4.4 Searching the Library

Selecting candidate faces from the library using the various ap-
pearance attributes introduced in this section is a nearest neighbor
search problem. This can be computationally intensive due to the
high dimensionality of the blur, illumination and seam signature
features. To speed things up, we use a sequential selection ap-
proach. Given a query face, we first execute a fast SQL query to
select faces whose pose, resolution and average colors (given by the
albedo ρc, c ∈ {H, S, V }) are close to those of the input face. This
step allows us to reduce the number of potential candidate replace-
ments from 33,000 to just a few thousand faces. Next, we further
prune the list of candidates using the blur distance dB and, subse-
quently, the lighting distance dL. Finally, we select the top 50 can-
didate faces which match the seam signature of the input face. By
running these steps in increasing order of complexity, our C++ im-
plementation of the appearance-based selection algorithm requires
less than a second to generate a list of candidate replacements for
an input face image.

Figure 5: Color and lighting adjustment. We replace (a) the face
in the input photograph with (b) the face selected from the library.
Replacement results (c) without and (d) with recoloring and relight-
ing. Notice the significantly improved realism in the final result.

Figure 6: Face replacement results. Each row contains (from left to
right) the original photograph, a candidate face selected from the
library, and the replacement result produced automatically using
our algorithm. The age and gender mismatches in (c) and (d) could
be avoided by enforcing consistency across those attributes (which
our system does not currently do).

We estimate the 3 albedos ρc and the 27 illumination coefficients
βc,k by minimizing the sum of squared differences (SSD) be-
tween the right-hand side of Equation 2 and the aligned face image
Ic(x, y) within the replacement region.

We convert the RGB albedos to the HSV color space and use the l∞
metric to compare the average color within the replacement regions
of the input face image I

(1) and the replacement candidate I
(2).

Only those candidates whose hue and saturation are within 5% and
brightness within 10% of the input image are kept. To compare the
illuminations, we define the lighting distance dL as the l2 distance
between corresponding lighting coefficients (and keep only the top
50%):
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The second column of Figure 4c shows replacement results after
selection based on resolution, blur, color, and lighting. Notice that
the results are, in general, much better than those in the previous
column (without pruning based on attributes).

4.3 Seam Signature

Although our selection process so far has already removed many
unsuitable candidates for replacement, another important criteria to
match is the appearance of the face along the boundary of the re-
placement region. Differences across this boundary (e.g., caused
by facial hair, eyebrows, and hair covering the forehead) can pro-
duce visible artifacts in the final output, even after image blending.
To avoid these problems, we introduce a simple filter which uses a
“signature” of the seam along the replacement boundary. We first
resize each aligned image in the replacement library to 256x256
pixels and then define the seam to be a strip containing all pixels in-
side the replacement region within a 6 pixel radius of its boundary.
We create the seam signature by unfolding the seam into a rectangu-
lar image, and normalize it so that the average intensity is the same
for all faces in the library. This seam signature provides an efficient
representation of the texture along the replacement mask boundary.
To reduce the dependence of the seam signatures on lighting, we
compare the seam signatures using the L2 distance of the absolute
value of the gradient in the direction along the seam. To avoid pe-
nalizing gradual changes in appearance, we use a distance of 0 for
all pixels within 8% of each other, only using the L2 distance for
pixels which differ by more than this amount. The better quality of
replacement results in the third column of Figure 4c shows that this
criteria is important for filtering faces with significant differences
along the boundary of the replacement region.

4.4 Searching the Library

Selecting candidate faces from the library using the various ap-
pearance attributes introduced in this section is a nearest neighbor
search problem. This can be computationally intensive due to the
high dimensionality of the blur, illumination and seam signature
features. To speed things up, we use a sequential selection ap-
proach. Given a query face, we first execute a fast SQL query to
select faces whose pose, resolution and average colors (given by the
albedo ρc, c ∈ {H, S, V }) are close to those of the input face. This
step allows us to reduce the number of potential candidate replace-
ments from 33,000 to just a few thousand faces. Next, we further
prune the list of candidates using the blur distance dB and, subse-
quently, the lighting distance dL. Finally, we select the top 50 can-
didate faces which match the seam signature of the input face. By
running these steps in increasing order of complexity, our C++ im-
plementation of the appearance-based selection algorithm requires
less than a second to generate a list of candidate replacements for
an input face image.

Figure 5: Color and lighting adjustment. We replace (a) the face
in the input photograph with (b) the face selected from the library.
Replacement results (c) without and (d) with recoloring and relight-
ing. Notice the significantly improved realism in the final result.

Figure 6: Face replacement results. Each row contains (from left to
right) the original photograph, a candidate face selected from the
library, and the replacement result produced automatically using
our algorithm. The age and gender mismatches in (c) and (d) could
be avoided by enforcing consistency across those attributes (which
our system does not currently do).

Well, there’s actually very little work dealing with illumination in real settings. Recently, there’s been a 
few papers dealing with real consumer imagery but they were focusing either on specific objects such 
as faces, or dealt with many images like in webcam sequences or image collections.  
But what about single images?
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What about single images?

Well, there’s actually very little work dealing with illumination in real settings. Recently, there’s been a 
few papers dealing with real consumer imagery but they were focusing either on specific objects such 
as faces, or dealt with many images like in webcam sequences or image collections.  
But what about single images?
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Well this is a hugely under-constrained problem: we don’t know the capture conditions, material 
properties, scene geometry, nor illumination conditions. Yet when we look at this image, we’re pretty 
sure that the sun is coming from the right, because we’re able to exploit the different effects that are 
caused by the illumination conditions: shadows, sky, shading. Unfortunately, these effects have been 
largely ignored in computer vision. 
In this talk, I will show that we can extract these 3 cues from images in order to automatically estimate 
the illumination conditions from images. In particular we’ll focus on the relative position of the sun 
with respect to the camera, although in the paper we do estimate whether the sun is being occluded 
(by a cloud) or not.

Of course, these cues can be very weak, they might not always be available, but together, they still 
provide us with some sense of lighting direction, and it is this qualitative sense of direction that we’re 
after in the paper. 
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with respect to the camera, although in the paper we do estimate whether the sun is being occluded 
(by a cloud) or not.

Of course, these cues can be very weak, they might not always be available, but together, they still 
provide us with some sense of lighting direction, and it is this qualitative sense of direction that we’re 
after in the paper. 
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But before we talk about how we compute these cues from an image, let me ask you this: without even 
looking at the image, can we say something about where the sun is? In other words, is there some kind 
of prior we could use when the cues from the image are uncertain?
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Sun prior

Uniform sampling

We tried 2 different ideas. First, what if images were captured randomly both in location and time? Well 
if that was the case, and if we only focus on the sun elevation, we get a probability curve that looks 
like that. 
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n the x-axis, we have the sun elevation, in degrees, which ranges from 0 (straight up) to 90 degrees (at 
the horizon). 
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Sun prior

Uniform sampling

Of course, people don’t take pictures uniformly across the earth, but do so according to a distribution 
that looks like this one, taken from the 6 million image database of Hays and Efros. If instead we 
sample the Earth according to that distribution, then the probability curve changes to this.
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[Hays and Efros, CVPR ’08]
Of course, people don’t take pictures uniformly across the earth, but do so according to a distribution 
that looks like this one, taken from the 6 million image database of Hays and Efros. If instead we 
sample the Earth according to that distribution, then the probability curve changes to this.
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Note the peak between 20-55 degrees which tells us that when people take pictures, it’s more likely 
that the sun is in this area..
Note that we don’t have azimuth information because that data isn’t available online yet. With the 
advent of devices with digital compasses like the iPhone, that data should become soon available to 
get an even more informative prior. 
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But of course we also need to look at the image, so let’s see how we compute these cues now. First, we 
split the image into our 3 regions, using the existing geometric context algorithm of Hoiem et al. and 
compute the cues on each one of them independently. Let’s get started by looking at the sky. What 
information is really available on the sky region? Is it really just a patch of blue pixels as we too often 
think?
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Illumination from webcams

[Perez et al., ’93]
[Lalonde, Narasimhan & Efros, ECCV ’08  + IJCV ’09]

In ECCV last year, we showed that in image sequences such as a webcam, the clear sky alone can be 
used to recover 3 important camera parameters: its zenith angle, azimuth angle, and focal length. For 
this we used a physically-based model of the sky appearance from Perez et al. Once this is known, we 
can recover at every frame in the sequence, the sun position, the sky color everywhere, and even a 
cloud segmentation. In short, the sky alone can be used to estimate the natural illumination 
parameters of each frame in an image sequence. 
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this we used a physically-based model of the sky appearance from Perez et al. Once this is known, we 
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Webcams vs single images

Now, we only have a single image, so things are much more under-constrained. 
Instead of trying to find the most likely camera parameters, or equivalently, relative sun position, as we 
did in the previous work, we’ll try to find the distribution over all sun positions with respect to the 
camera. In practice, we discretize the elevation-azimuth space and estimate the probability of the sun 
being at each location. And to represent this distribution on sun positions, 
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Zenith

Bottom-up projection

we’ll employ this bottom up projection, where
- the central point is straight above our head and the surrounding circle is the horizon.
- below is facing forward, with the corresponding camera field of view. 
- and accordingly, we have right, back and left.
We display the probability of the sun being at each location using colors ranging from not probably to 
high probable. 
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Sky

Let’s take an image and see how we can obtain such a probability map from its sky pixels.
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For a given sun position on the left, we synthesize the sky using the Perez sky model. We then model 
the probability of the sun having this particular position by
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Sky probabilities

-
2

-

P(sun position | sky pixels)

variance
exp

summing the pixel-wise difference between the predicted and the actual sky, and taking the negative 
exponential. This way, we model a pixel with a gaussian centered at the value predicted by the model.
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Sky

Original sky

Predicted sky at current sun position

Let’s go back and try another sun position. 
If we do this for every discretized sun position and normalize appropriately, we obtain our final 
probability map.
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What if the sky is not clear?

This works when the sky is clear, so what if there are clouds? or if it’s overcast? 
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Clear vs overcast vs patchy

show image where clouds 
are subtracted?

show the one on 23.

Compare the color histogram of the sky with a sky database of 3 classes: clear, overcast, and patchy 
clouds. We use a k-nearest-neighbor classifier to decide which class it belongs to.

If the overcast class wins, we don’t do any fitting and declare the sky to be uninformative. If the sky is 
patchy, we first perform a simple color-based k-means segmentation with 2 clusters, and keep pixels 
which belong to the “bluest” cluster.
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Compare the color histogram of the sky with a sky database of 3 classes: clear, overcast, and patchy 
clouds. We use a k-nearest-neighbor classifier to decide which class it belongs to.

If the overcast class wins, we don’t do any fitting and declare the sky to be uninformative. If the sky is 
patchy, we first perform a simple color-based k-means segmentation with 2 clusters, and keep pixels 
which belong to the “bluest” cluster.
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Limitations of the sky cue
Sun behind camera

Unfortunately, the sky is not always helpful. For instance, when the sun is behind the camera, the sky is 
very uncertain about its position: it might be anywhere except in the camera field of view. Sometimes, 
too, the sky might not even be visible, in which case this cue returns a constant probability map. But 
notice that in these two images, the shadows seem to offer information about the sun position, 
couldn’t we exploit those instead?
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Unfortunately, the sky is not always helpful. For instance, when the sun is behind the camera, the sky is 
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too, the sky might not even be visible, in which case this cue returns a constant probability map. But 
notice that in these two images, the shadows seem to offer information about the sun position, 
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Now that we’ve seen how we can exploit the sky, let’s consider another important illumination cue: 
shadows cast on the ground.
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Cast shadows

Vertical objects, such as this lamppost, act as sun dials. We know that their shadows, when cast on the 
ground, point towards the sun. However, doing this the right way implies that we would need to 
automatically detect the light post and its shadow, reason about its contact point with the ground, 
figure out its height, etc. Of course, this is extremely hard and nobody really knows how to do it.
Instead we’ll adopt a different approach and consider the statistical distribution of shadow lines on the 
ground. 
We’ll assume that on average, most of the cast shadows on the ground come from vertical objects, and 
that’s reasonable since gravity makes a lot of objects stand up straight. Since we don’t know the 
height of objects, we will predict sun azimuth only, and not the elevation. And we’ll keep the 
directional ambiguity since we don’t know the contact points with the ground.



[Lalonde, Efros, and Narasimhan, ICCV 2009]

Cast shadows

Vertical objects, such as this lamppost, act as sun dials. We know that their shadows, when cast on the 
ground, point towards the sun. However, doing this the right way implies that we would need to 
automatically detect the light post and its shadow, reason about its contact point with the ground, 
figure out its height, etc. Of course, this is extremely hard and nobody really knows how to do it.
Instead we’ll adopt a different approach and consider the statistical distribution of shadow lines on the 
ground. 
We’ll assume that on average, most of the cast shadows on the ground come from vertical objects, and 
that’s reasonable since gravity makes a lot of objects stand up straight. Since we don’t know the 
height of objects, we will predict sun azimuth only, and not the elevation. And we’ll keep the 
directional ambiguity since we don’t know the contact points with the ground.



[Lalonde, Efros, and Narasimhan, ICCV 2009]

Cast shadows

Vertical objects, such as this lamppost, act as sun dials. We know that their shadows, when cast on the 
ground, point towards the sun. However, doing this the right way implies that we would need to 
automatically detect the light post and its shadow, reason about its contact point with the ground, 
figure out its height, etc. Of course, this is extremely hard and nobody really knows how to do it.
Instead we’ll adopt a different approach and consider the statistical distribution of shadow lines on the 
ground. 
We’ll assume that on average, most of the cast shadows on the ground come from vertical objects, and 
that’s reasonable since gravity makes a lot of objects stand up straight. Since we don’t know the 
height of objects, we will predict sun azimuth only, and not the elevation. And we’ll keep the 
directional ambiguity since we don’t know the contact points with the ground.



[Lalonde, Efros, and Narasimhan, ICCV 2009]

Cast shadows

Vertical objects, such as this lamppost, act as sun dials. We know that their shadows, when cast on the 
ground, point towards the sun. However, doing this the right way implies that we would need to 
automatically detect the light post and its shadow, reason about its contact point with the ground, 
figure out its height, etc. Of course, this is extremely hard and nobody really knows how to do it.
Instead we’ll adopt a different approach and consider the statistical distribution of shadow lines on the 
ground. 
We’ll assume that on average, most of the cast shadows on the ground come from vertical objects, and 
that’s reasonable since gravity makes a lot of objects stand up straight. Since we don’t know the 
height of objects, we will predict sun azimuth only, and not the elevation. And we’ll keep the 
directional ambiguity since we don’t know the contact points with the ground.



[Lalonde, Efros, and Narasimhan, ICCV 2009]

Cast shadows

Vertical objects, such as this lamppost, act as sun dials. We know that their shadows, when cast on the 
ground, point towards the sun. However, doing this the right way implies that we would need to 
automatically detect the light post and its shadow, reason about its contact point with the ground, 
figure out its height, etc. Of course, this is extremely hard and nobody really knows how to do it.
Instead we’ll adopt a different approach and consider the statistical distribution of shadow lines on the 
ground. 
We’ll assume that on average, most of the cast shadows on the ground come from vertical objects, and 
that’s reasonable since gravity makes a lot of objects stand up straight. Since we don’t know the 
height of objects, we will predict sun azimuth only, and not the elevation. And we’ll keep the 
directional ambiguity since we don’t know the contact points with the ground.



[Lalonde, Efros, and Narasimhan, ICCV 2009]

Shadow detection

[Khan & Reinhard, ICIP ’05]

We propose a series of simple steps which try to detect as many shadow edges as possible and keep 
the number of detected reflectance edges to a minimum.
First, (Khan and Reinhard) made the observation strong shadow edges are typically visible in the L 
channel, but not in the a channel, as opposed to reflectance edges which are visible in both. Based on 
that insight, we compute edges that are present in the L channel, but not in the a channel. 
We then find long lines using the Video Compass approach, which should take care of filtering out 
short, noisy edges.
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We propose a series of simple steps which try to detect as many shadow edges as possible and keep 
the number of detected reflectance edges to a minimum.
First, (Khan and Reinhard) made the observation strong shadow edges are typically visible in the L 
channel, but not in the a channel, as opposed to reflectance edges which are visible in both. Based on 
that insight, we compute edges that are present in the L channel, but not in the a channel. 
We then find long lines using the Video Compass approach, which should take care of filtering out 
short, noisy edges.
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Shadow detection

Here’s an example of some of the extracted edges using this technique. Looking at them more closely, 
we realize that shadow edges look very similar across the image, which is not the case of reflectance 
edges.
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By clustering them based on their appearance, we can group all the shadow edges together, and throw 
the small clusters away. 
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Shadows

And here is the final detection result. Note that we do not detect all shadow edges, but what’s 
important is that we do not have many false positives. But how do we go from detected shadow lines to 
sun probability? First, we warp them in a top-down view using the focal length commonly available in 
EXIF tags. If we focus on a single shadow edge for now,
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directional ambiguity: the sun could either be here or here.  
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This is the final result that we get. Using the other cues to resolve the directional ambiguity, we insert 
a virtual sun dial in the image and get very consistent results.
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Limitations of shadows cue
Shadow detection

Our approach is sensitive to edges that look consistent throughout the image, but are not shadows, 
such as street markings. 
The estimate can also be thrown off when shadows are not being cast by vertical objects. 
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When looking at such an image, we know that the sun comes from the left since this surface is brighter 
than this one. In order to compute that, we need to somehow extract geometry from the image.
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Vertical surfaces

[Hoiem et al., IJCV ’07]
For this, we again use the geometric context algorithm of Hoiem et al. to split the vertical surfaces into 
3 groups: facing right, facing left, and facing towards the camera. 
The idea is that each surface predicts a sun position in the direction of its normal, and we combine 
them together by weighting them according to their relative brightness. Note that this is not reliable 
enough to predict the sun elevation angle, so we focus on the azimuth only. 
Now this only works if the albedos are either the same, or known, neither of which is true.
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But look at the image again. When the sun shines directly on a surface, the effects due to illumination 
overwhelm those due to albedo, so we can actually compare their brightnesses directly.
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3

This cue is definitely the weakest of all 3, since the albedo assumption, the vertical surface 
classification and complex cast shadows can affect its output. But we found that most of the time, it’s 
still useful to figure out the rough sun direction, and helps resolve the shadow ambiguity as in the 
examples shown here.



[Lalonde, Efros, and Narasimhan, ICCV 2009]

Sun position given surfaces

3

5

This cue is definitely the weakest of all 3, since the albedo assumption, the vertical surface 
classification and complex cast shadows can affect its output. But we found that most of the time, it’s 
still useful to figure out the rough sun direction, and helps resolve the shadow ambiguity as in the 
examples shown here.



[Lalonde, Efros, and Narasimhan, ICCV 2009]

Limitations of surfaces cue

glitch



[Lalonde, Efros, and Narasimhan, ICCV 2009]

Limitations of surfaces cue
No "at surfaces

glitch



[Lalonde, Efros, and Narasimhan, ICCV 2009]

Cue combination
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vertical surfaces, we can combine them with our prior on the sun elevation to obtain a final, more 
robust estimate of the sun position distribution. 
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Quantitative evaluation

We also performed a quantitative evaluation of our approach, on more than 950 images taken from 15 
different calibrated webcams, of which I show an example here. At each frame, we know where the sun 
is with respect to the camera. 



[Lalonde, Efros, and Narasimhan, ICCV 2009]

Quantitative evaluation

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Error (deg)

%
 o

f i
m

ag
es

 (9
84

 im
ag

es
 to

ta
l)

Here we show the cumulative plot of the % of images that have error less than the x axis.
This is what chance would look like. 
Our scene cues, ...

Let me highlight two points here. 
We’re able to predict the sun position within 22 degrees for 55% of the images. This is equivalent to 
distinguishing between north-east and north-north-east, for instance. And for 75% of the images, we 
can distinguish between north and north-east for example. 
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One application of this method is object insertion.
When the sky is visible in the image, and when it is clear, we can actually fit our sky model to the most 
likely sun position, and synthesize the entire sky hemisphere!
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Conclusion

To conclude, we looked at 3 cues in the image which contain information about the sun relative 
position: the sky, shadows cast on the ground, and the shading on vertical surfaces. We showed that 
we can reliably estimate the relative sun position by combining the predictions of these cues together 
with a data-driven prior computed on 6M images. 
These ideas have allowed us for the first time, to obtain information about illumination on 
uncontrolled, single outdoor images. 
In our future work, we want to use that knowledge about illumination to introduce this idea of 
illumination-aware scene interpretation: can our estimate of illumination, even if it’s uncertain, to 
improve tasks like object detection and scene understanding.
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