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It’s no secret that the appearance of scenes strongly depend on the illumination conditions. For
example, in these images, everything is kept constant except the illumination, and yet the pixel values
are completely different. Because appearance can vary so much, estimating illumination from images is

a very important task in computer vision.
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Indeed, a lot of work has been done in this area, and here I’'m just showing a small sampling of it. One
thing to note here: all of this is done in the lab, with tightly controlled conditions. But what about
images in the wild, outside of the lab?




Lighting in the wild

[Lalonde, Efros, and Narasimhan, ICCV 2009]

Well, there’s actually very little work dealing with illumination in real settings. Recently, there’s been a
few papers dealing with real consumer imagery but they were focusing either on specific objects such
as faces, or dealt with many images like in webcam sequences or image collections.

But what about single images?
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Well this is a hugely under-constrained problem: we don’t know the capture conditions, material
properties, scene geometry, nor illumination conditions. Yet when we look at this image, we’re pretty
sure that the sun is coming from the right, because we’re able to exploit the different effects that are
caused by the illumination conditions: shadows, sky, shading. Unfortunately, these effects have been
largely ignored in computer vision.

In this talk, | will show that we can extract these 3 cues from images in order to automatically estimate
the illumination conditions from images. In particular we’ll focus on the relative position of the sun
with respect to the camera, although in the paper we do estimate whether the sun is being occluded

(by a cloud) or not.

Of course, these cues can be very weak, they might not always be available, but together, they still
provide us with some sense of lighting direction, and it is this qualitative sense of direction that we’re

after in the paper.
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[Lalonde, Efros, and Narasimhan, ICCV 2009]

But before we talk about how we compute these cues from an image, let me ask you this: without even
looking at the image, can we say something about where the sun is? In other words, is there some kind
of prior we could use when the cues from the image are uncertain?
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Sun prior

Uniform sampling

[Lalonde, Efros, and Narasimhan, ICCV 2009]

We tried 2 different ideas. First, what if images were captured randomly both in location and time? Well
if that was the case, and if we only focus on the sun elevation, we get a probability curve that looks
like that.
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n the x-axis, we have the sun elevation, in degrees, which ranges from 0 (straight up) to 90 degrees (at
the horizon).
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n the x-axis, we have the sun elevation, in degrees, which ranges from 0 (straight up) to 90 degrees (at
the horizon).
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n the x-axis, we have the sun elevation, in degrees, which ranges from 0 (straight up) to 90 degrees (at
the horizon).
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Of course, people don’t take pictures uniformly across the earth, but do so according to a distribution
that looks like this one, taken from the 6 million image database of Hays and Efros. If instead we
sample the Earth according to that distribution, then the probability curve changes to this.
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Of course, people don’t take pictures uniformly across the earth, but do so according to a distribution
that looks like this one, taken from the 6 million image database of Hays and Efros. If instead we
sample the Earth according to that distribution, then the probability curve changes to this.
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Note the peak between 20-55 degrees which tells us that when people take pictures, it’s more likely
that the sun is in this area..

Note that we don’t have azimuth information because that data isn’t available online yet. With the
advent of devices with digital compasses like the iPhone, that data should become soon available to
get an even more informative prior.
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Note the peak between 20-55 degrees which tells us that when people take pictures, it’s more likely
that the sun is in this area..

Note that we don’t have azimuth information because that data isn’t available online yet. With the
advent of devices with digital compasses like the iPhone, that data should become soon available to
get an even more informative prior.
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Note the peak between 20-55 degrees which tells us that when people take pictures, it’s more likely
that the sun is in this area..

Note that we don’t have azimuth information because that data isn’t available online yet. With the
advent of devices with digital compasses like the iPhone, that data should become soon available to
get an even more informative prior.
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But of course we also need to look at the image, so let’s see how we compute these cues now. First, we
split the image into our 3 regions, using the existing geometric context algorithm of Hoiem et al. and
compute the cues on each one of them independently. Let’s get started by looking at the sky. What
information is really available on the sky region? Is it really just a patch of blue pixels as we too often

think?
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In ECCV last year, we showed that in image sequences such as a webcam, the clear sky alone can be
used to recover 3 important camera parameters: its zenith angle, azimuth angle, and focal length. For
this we used a physically-based model of the sky appearance from Perez et al. Once this is known, we
can recover at every frame in the sequence, the sun position, the sky color everywhere, and even a
cloud segmentation. In short, the sky alone can be used to estimate the natural illumination

parameters of each frame in an image sequence.
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Now, we only have a single image, so things are much more under-constrained.

Instead of trying to find the most likely camera parameters, or equivalently, relative sun position, as we
did in the previous work, we’ll try to find the distribution over all sun positions with respect to the
camera. In practice, we discretize the elevation-azimuth space and estimate the probability of the sun

being at each location. And to represent this distribution on sun positions,
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we’ll employ this bottom up projection, where

— the central point is straight above our head and the surrounding circle is the horizon.
- below is facing forward, with the corresponding camera field of view.
- and accordingly, we have right, back and left.

We display the probability of the sun being at each location using colors ranging from not probably to

high probable.
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— the central point is straight above our head and the surrounding circle is the horizon.
- below is facing forward, with the corresponding camera field of view.
- and accordingly, we have right, back and left.

We display the probability of the sun being at each location using colors ranging from not probably to
high probable.




Let’s take an image and see how we can obtain such a probability map from its sky pixels.
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For a given sun position on the left, we synthesize the sky using the Perez sky model. We then model
the probability of the sun having this particular position by
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Sky probabilities

P(sun position | sky pixels)
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summing the pixel-wise difference between the predicted and the actual sky, and taking the negative
exponential. This way, we model a pixel with a gaussian centered at the value predicted by the model.
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Let’s go back and try another sun position.
If we do this for every discretized sun position and normalize appropriately, we obtain our final
probability map.
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Let’s go back and try another sun position.
If we do this for every discretized sun position and normalize appropriately, we obtain our final
probability map.




What if the sky is not clear?
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This works when the sky is clear, so what if there are clouds? or if it’s overcast?
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Compare the color histogram of the sky with a sky database of 3 classes: clear, overcast, and patchy
clouds. We use a k-nearest-neighbor classifier to decide which class it belongs to.

If the overcast class wins, we don’t do any fitting and declare the sky to be uninformative. If the sky is

patchy, we first perform a simple color-based k-means segmentation with 2 clusters, and keep pixels
which belong to the “bluest” cluster.
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Compare the color histogram of the sky with a sky database of 3 classes: clear, overcast, and patchy
clouds. We use a k-nearest-neighbor classifier to decide which class it belongs to.

If the overcast class wins, we don’t do any fitting and declare the sky to be uninformative. If the sky is

patchy, we first perform a simple color-based k-means segmentation with 2 clusters, and keep pixels
which belong to the “bluest” cluster.
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Compare the color histogram of the sky with a sky database of 3 classes: clear, overcast, and patchy
clouds. We use a k-nearest-neighbor classifier to decide which class it belongs to.

If the overcast class wins, we don’t do any fitting and declare the sky to be uninformative. If the sky is

patchy, we first perform a simple color-based k-means segmentation with 2 clusters, and keep pixels
which belong to the “bluest” cluster.
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Compare the color histogram of the sky with a sky database of 3 classes: clear, overcast, and patchy
clouds. We use a k-nearest-neighbor classifier to decide which class it belongs to.

If the overcast class wins, we don’t do any fitting and declare the sky to be uninformative. If the sky is

patchy, we first perform a simple color-based k-means segmentation with 2 clusters, and keep pixels
which belong to the “bluest” cluster.




Sun position given sky
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Limitations of the sky cue

Sun behind camera
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Unfortunately, the sky is not always helpful. For instance, when the sun is behind the camera, the sky is
very uncertain about its position: it might be anywhere except in the camera field of view. Sometimes,
too, the sky might not even be visible, in which case this cue returns a constant probability map. But
notice that in these two images, the shadows seem to offer information about the sun position,

couldn’t we exploit those instead?
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Now that we’ve seen how we can exploit the sky, let’s consider another important illumination cue:
shadows cast on the ground.
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Now that we’ve seen how we can exploit the sky, let’s consider another important illumination cue:
shadows cast on the ground.




Cast shadows
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Vertical objects, such as this lamppost, act as sun dials. We know that their shadows, when cast on the
ground, point towards the sun. However, doing this the right way implies that we would need to
automatically detect the light post and its shadow, reason about its contact point with the ground,
figure out its height, etc. Of course, this is extremely hard and nobody really knows how to do it.
Instead we’ll adopt a different approach and consider the statistical distribution of shadow lines on the
ground.

We’ll assume that on average, most of the cast shadows on the ground come from vertical objects, and
that’s reasonable since gravity makes a lot of objects stand up straight. Since we don’t know the
height of objects, we will predict sun azimuth only, and not the elevation. And we’ll keep the
directional ambiguity since we don’t know the contact points with the ground.
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Vertical objects, such as this lamppost, act as sun dials. We know that their shadows, when cast on the
ground, point towards the sun. However, doing this the right way implies that we would need to
automatically detect the light post and its shadow, reason about its contact point with the ground,
figure out its height, etc. Of course, this is extremely hard and nobody really knows how to do it.

Instead we’ll adopt a different approach and consider the statistical distribution of shadow lines on the
ground.

We’ll assume that on average, most of the cast shadows on the ground come from vertical objects, and
that’s reasonable since gravity makes a lot of objects stand up straight. Since we don’t know the
height of objects, we will predict sun azimuth only, and not the elevation. And we’ll keep the
directional ambiguity since we don’t know the contact points with the ground.
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Vertical objects, such as this lamppost, act as sun dials. We know that their shadows, when cast on the
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figure out its height, etc. Of course, this is extremely hard and nobody really knows how to do it.
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Shadow detection
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We propose a series of simple steps which try to detect as many shadow edges as possible and keep
the number of detected reflectance edges to a minimum.

First, (Khan and Reinhard) made the observation strong shadow edges are typically visible in the L
channel, but not in the a channel, as opposed to reflectance edges which are visible in both. Based on
that insight, we compute edges that are present in the L channel, but not in the a channel.

We then find long lines using the Video Compass approach, which should take care of filtering out

short, noisy edges.
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We propose a series of simple steps which try to detect as many shadow edges as possible and keep
the number of detected reflectance edges to a minimum.

First, (Khan and Reinhard) made the observation strong shadow edges are typically visible in the L
channel, but not in the a channel, as opposed to reflectance edges which are visible in both. Based on
that insight, we compute edges that are present in the L channel, but not in the a channel.

We then find long lines using the Video Compass approach, which should take care of filtering out
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[Lalonde, Efros, and Narasimhan, ICCV 2009] [Kosecka & Wang, ECCV '02]

We propose a series of simple steps which try to detect as many shadow edges as possible and keep
the number of detected reflectance edges to a minimum.

First, (Khan and Reinhard) made the observation strong shadow edges are typically visible in the L
channel, but not in the a channel, as opposed to reflectance edges which are visible in both. Based on
that insight, we compute edges that are present in the L channel, but not in the a channel.

We then find long lines using the Video Compass approach, which should take care of filtering out
short, noisy edges.




Shadow detection
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Here’s an example of some of the extracted edges using this technique. Looking at them more closely,
we realize that shadow edges look very similar across the image, which is not the case of reflectance
edges.
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By clustering them based on their appearance, we can group all the shadow edges together, and throw
the small clusters away.
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By clustering them based on their appearance, we can group all the shadow edges together, and throw
the small clusters away.
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By clustering them based on their appearance, we can group all the shadow edges together, and throw
the small clusters away.




Shadows
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And here is the final detection result. Note that we do not detect all shadow edges, but what’s

important is that we do not have many false positives. But how do we go from detected shadow lines to

sun probability? First, we warp them in a top-down view using the focal length commonly available in
EXIF tags. If we focus on a single shadow edge for now,
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we model the sun azimuth distribution with 2 gaussians, separated by 180 degrees, since we have the
directional ambiguity: the sun could either be here or here.
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We do this for all the shadow lines, and combine their probability maps together in a voting scheme,
which makes our approach robust to spurious edges.
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which makes our approach robust to spurious edges.



P(sun azimuth | ground pixels)
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This is the final result that we get. Using the other cues to resolve the directional ambiguity, we insert
a virtual sun dial in the image and get very consistent results.
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This is the final result that we get. Using the other cues to resolve the directional ambiguity, we insert
a virtual sun dial in the image and get very consistent results.
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Here are two other examples.
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Limitations of shadows cue
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Our approach is sensitive to edges that look consistent throughout the image, but are not shadows,
such as street markings.
The estimate can also be thrown off when shadows are not being cast by vertical objects.
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such as street markings.
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Now that we’ve seen how we can exploit the shadows cast on the ground, let’s see how we can use the
shading on the vertical surfaces.
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When looking at such an image, we know that the sun comes from the left since this surface is brighter
than this one. In order to compute that, we need to somehow extract geometry from the image.
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When looking at such an image, we know that the sun comes from the left since this surface is brighter
than this one. In order to compute that, we need to somehow extract geometry from the image.
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When looking at such an image, we know that the sun comes from the left since this surface is brighter
than this one. In order to compute that, we need to somehow extract geometry from the image.




Vertical surfaces
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For this, we again use the geometric context algorithm of Hoiem et al. to split the vertical surfaces into
3 groups: facing right, facing left, and facing towards the camera.

The idea is that each surface predicts a sun position in the direction of its normal, and we combine
them together by weighting them according to their relative brightness. Note that this is not reliable

enough to predict the sun elevation angle, so we focus on the azimuth only.
Now this only works if the albedos are either the same, or known, neither of which is true.
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For this, we again use the geometric context algorithm of Hoiem et al. to split the vertical surfaces into
3 groups: facing right, facing left, and facing towards the camera.

The idea is that each surface predicts a sun position in the direction of its normal, and we combine
them together by weighting them according to their relative brightness. Note that this is not reliable

enough to predict the sun elevation angle, so we focus on the azimuth only.
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But look at the image again. When the sun shines directly on a surface, the effects due to illumination
overwhelm those due to albedo, so we can actually compare their brightnesses directly.
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But look at the image again. When the sun shines directly on a surface, the effects due to illumination
overwhelm those due to albedo, so we can actually compare their brightnesses directly.




Sun position given surfaces
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This cue is definitely the weakest of all 3, since the albedo assumption, the vertical surface
classification and complex cast shadows can affect its output. But we found that most of the time, it’s

still useful to figure out the rough sun direction, and helps resolve the shadow ambiguity as in the
examples shown here.
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Now that we’ve computed the 3 scene cues: probability of the sun position given the sky, shadows, and
vertical surfaces, we can combine them with our prior on the sun elevation to obtain a final, more
robust estimate of the sun position distribution.
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vertical surfaces, we can combine them with our prior on the sun elevation to obtain a final, more
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Now that we’ve computed the 3 scene cues: probability of the sun position given the sky, shadows, and

vertical surfaces, we can combine them with our prior on the sun elevation to obtain a final, more
robust estimate of the sun position distribution.
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Now that we’ve computed the 3 scene cues: probability of the sun position given the sky, shadows, and
vertical surfaces, we can combine them with our prior on the sun elevation to obtain a final, more
robust estimate of the sun position distribution.
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Now that we’ve computed the 3 scene cues: probability of the sun position given the sky, shadows, and
vertical surfaces, we can combine them with our prior on the sun elevation to obtain a final, more
robust estimate of the sun position distribution.
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Now that we’ve computed the 3 scene cues: probability of the sun position given the sky, shadows, and
vertical surfaces, we can combine them with our prior on the sun elevation to obtain a final, more
robust estimate of the sun position distribution.
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Here are a few qualitative results. Here’s an example where the shadows are the most important cue.
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Shadows and vertical surfaces, more clutter
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Here’s a challenging example, full of clutter
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[Lalonde, Efros, and Narasimhan, ICCV 2009]

We also performed a quantitative evaluation of our approach, on more than 950 images taken from 15
different calibrated webcams, of which | show an example here. At each frame, we know where the sun
is with respect to the camera.
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Here we show the cumulative plot of the % of images that have error less than the x axis.

This is what chance would look like.
Our scene cues, ...

Let me highlight two points here.
We’re able to predict the sun position within 22 degrees for 55% of the images. This is equivalent to

distinguishing between north-east and north-north-east, for instance. And for 75% of the images, we
can distinguish between north and north-east for example.
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One application of this method is object insertion.
When the sky is visible in the image, and when it is clear, we can actually fit our sky model to the most
likely sun position, and synthesize the entire sky hemisphere!
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We can use this high-dynamic range sky probe to render an object and realistically insert it in the
image, and do so completely automatically.
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We can use this high-dynamic range sky probe to render an object and realistically insert it in the
image, and do so completely automatically.
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To conclude, we looked at 3 cues in the image which contain information about the sun relative
position: the sky, shadows cast on the ground, and the shading on vertical surfaces. We showed that
we can reliably estimate the relative sun position by combining the predictions of these cues together
with a data-driven prior computed on 6M images.

These ideas have allowed us for the first time, to obtain information about illumination on
uncontrolled, single outdoor images.

In our future work, we want to use that knowledge about illumination to introduce this idea of

illumination-aware scene interpretation: can our estimate of illumination, even if it’s uncertain, to
improve tasks like object detection and scene understanding.
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